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Searching for Optimal Frame Patterns in an
Integrated TDMA Communication System
Using Mean Field Annealing

Gangsheng Wang and Nirwan Ansa®enior Member, IEEE

Abstract— In an integrated time-division multiple access approaches, namely, fixed-length boundary (FB) and movable
(TDMA) communication system, voice and data are multiplexed boundary (MB), are generally used as shown in Fig. 1. In the
in time to share a common transmission link in a frame format FB scheme, a TDMA frame is partitioned into two regions
in which time is divided into slots. A certain number of time - ’ . . .
slots in a frame are allocated to voice and the rest are used to Con.S'Stmg of a certain number_ of t'm_e S"?ts’ one for \_/O'Ce
transmit data. Maximum data throughput can be achieved by traffic and the other for data traffic. The idle time slots assigned
searching for the optimal configuration(s) of relative positions of to voice cannot be used to transmit data. Obviously, this
voice and data transmissions in a frame (frame pattern). When scheme does not fully utilize system facilities. In contrast,

the problem size becomes large, the computational complexity in yne MB scheme can utilize any residual voice time slots to
searching for the optimal patterns becomes intractable. In this

paper, mean field annealing (MFA), which provides near-optimal transmit data. As a reSUI_t' the queL_ung delay is expected t(_)
solutions with reasonable complexity, is proposed to solve this decrease. Many multiplexing strategies have been proposed in
problem. The determination of the related parameters are order to fully utilize the integrated system resources [1]-[5].
addressed. Comparison with the random search and simulated  |n [5], a slotted ALOHA random access protocol is em-

annealing algorithm is made in terms of solution optimality 5veq for data transmission in a TDMA mobile commu-
and computational complexity. Simulation results show that the

MFA approach exhibits a good tradeoff between performance nication ;ystem. Instead of .form.ing a long queue, data are
and computational complexity. retransmitted when they collide, i.e., when two or more data

) . Lo . packets are transmitted at the same time slot. It has been shown
Index Terms—Combinatorial optimization, energy function, . - .
frame pattern, mean field annealing, neural networks, simulated [5] that. the arrangement of relative positions of voice and
annealing, time division multiple access. data within a frame (called frame pattern) may affect data
throughput. Searching for the optimal frame pattern to obtain
maximum data throughput is a combinatorial optimization
problem. Conventional methods for solving such an optimiza-
HE integration of data and voice in an integrated servicéien problem usually get stuck in local optima which may
data network (ISDN) has received extensive attentidye far from the globally optimal solution. Moreover, as the
in recent years in order to efficiently share the system rproblem size grows, the computational complexity for search-
sources such as transmission, switching and control functioirgy global optima using these methods becomes incredibly
Many research works have been directed to the time-divisioomplicated. In [5], the stochastic simulated annealing (SA)
multiple access (TDMA) strategy. In a TDMA system, thalgorithm is applied in order to search for the optimal frame
time axis is divided into frames, and each frame consigtattern. SA is a powerful stochastic optimization method in
of a certain number of fixed-length slots. A certain portiosearching for global optimal solutions [6], but very time-
of the time slots in a frame is assigned to voice, and tlw@nsuming. It has been shown that finite-time approximation
remaining portion is reserved for data. Many studies in tl@nnot guarantee convergence to an optimal solution [6].
literature model the voice traffic as a lossy system and dd&arthermore, for a large size problem, the state space is
as a queuing system. Therefore a voice traffic will be blockedo large that finding the exact global minimum becomes
with no transmission if it cannot find an available time slantractable.
at the instant of its arrival. For data traffic, arrivals form a In this paper, a mean field annealing (MFA) algorithm is
queue and are transmitted in any available data time slgiesented to search for the optimal frame patterns. Instead of
based on first-come first-serve order. Hence the objective of the stochastic search process of SA, MFA performs thermal
system design is to minimize the blocking probability of thaveraging operations, which leads to an overall decrease in
voice traffic as well as the queuing delay of data traffic. Twoomputational effort. This paper is organized as follows. In
. . . the next section, the problem is defined, and the corresponding
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Fig. 1. Integrated voice and data TDMA frame format: (a) FB scheme. (b) MB scheme.
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Fig. 2. A frame format.

parameters are discussed. In Section V, numerical example$he average number of packets successfully transmitted in
and simulation results are given, and conclusions are madd¢he time intervals; is
—G-s;

II. THE MULTIPLEXING SCHEME AND DATA THROUGHPUT G5y (3)

The same multiplexing strategy and assumption discussedrife average data throughput is
[5] are adopted in this paper for the sake of comparison. Within
the TDMA link, a synchronous transmission is provided for L

i i i issi =— G-sie (4)
voice, and a contention scheme is used for data transmission. Vs N, 4 @
The frame format is shown in Fig. 2. Each frame consists of =1

N fixed-length time slots. It can be seen that the relative positions of voice and data
Denote the following. will decide data throughput. For a giveN and Ny, there
Ng: Number of time slots that can be used for data packedse OJYd frame patterns. For example, assuming = 40
at a given frame. and N; = 10, the total number of feasible frame patterns
k;:  Slot number of theith available data slot, whereis C{) = 8.4 x 10%. The computational complexity using
1<k <N, 1<i< N, exhaustive search for finding the optimal frame pattern among
s;¢  Interdistance between th#h data slot and its first the set of all frame patterns becomes intractable as the problem
successofé + 1)th data slot, where size increases. In the next section, an MFA algorithm is

introduced to obtain the optimal frame pattern while reducing
the computational complexity.

8 = ki-l—l_kia ifi:1a2a"'aNd_1a

t k1+N_k'Nd if 1 = Ny.
s = (s1, 82, -, sn, ) is called aframe patterrin the integrated VE:;;U?ME:QTE?ESN:EﬁEESNG
communication system.
Obviously

A. Statistical Mechanics

In statistical mechanics, a physical process cadledealing
The same assumptions are made as in [5], i.e., is often performed in order to relax the system to the state with
1) The holding time of the voice call is much longer thathe minimum free energy. In the annealing process, a solid in
the frame time so that the queuing behavior of data férheat bathis heated up by increasing the temperature of the
a given frame pattern can reach steady state. bath until the solid is melted into liquid, then the temperature
2) The slotted ALOHA random access protocol is assumé®l lowered down slowly. At each temperature, all particles
for data transmission. The total data traffic, new and@ndomly arrange themselves until thermal equilibrium is
retransmitted, constitutes Roisson proceswith mean reached. If the cooling is slow enough to allow the solid
arrival rateG packets/slot. to reach thermal equilibrium at each temperature, the low
The probability of only one data packet is transmitted iRN€"9Y crystalline solid would be formed when the system

the interval s; is the one that no Poisson data packets af®frozen(T — 0). However, if the annealing is too fast, the
generated during the time intervaj solid may become glass with noncrystalline structure or the

defected crystal with meta-stable amorphous structures. If a
state is defined by the set of particle positions, then, at thermal
(2) equilibrium, the probability of the system being in states

sp+ s+ sy, =N

Pr (a packet transmitted in the time intervg) = ¢~
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represented by th&ibbs distribution[6], [7] From (8), it can be seen that the Metropolis criterion while
EG) performing the local search for the minimum cost at a fixed

L o exp(—%,7) temperatureZ allows occasional transition from a lower

m =Pr{s =1} = (5) X | . . . . .
' ' Z cost configuration to a higher cost configuration with certain

where Z = Y, exp(—£2) is called thepartition function probability, thus preventing the system from getting stuck in

_50)
ky T Tall . . 1.
k, is the Boltzmann constantl” is the temperature, angl(;) |0c@l minima. The random process = (s(k) : k > 0)

is the energy of staté, and S is the state space. It is easwenerated in SA can be characterized by a discrete time

to find that [6] homogeneous Markov chain [6]. The one-step transition matrix
‘ is shown at the bottom of the page, whet&z,y) is the
] ] exp( fb(,})) 1 probability of generating configuratiapnfrom x. If G(z,y) is
Tlgr;o = Tlgr;o _EG) IS symmetric, the generation probability of any configuratiois
2jcs exp k;,T) |51

uniformly distributed in its neighboring configuration $é{z)
implying that, at a very high temperature, all states are equa#ind the configuration transition is based on (8). The resulting
probable. On the other hand, we have Markov chains are irreducible, aperiodic, and recurrent [6].
Under these conditions, the stationary equilibrium distribution

E()—Ewin _ : , L
. T eXP(— ke T ) 7; for configuration¢ exists after an infinite number of
lim 7; = lim E)—Fon ..
T—0 T—0 chs exp( — 7ka) transitions
= IS,iinl if i € Sinin 7) mi(T) = lim Pr{s(k) =4 | T}
0 otherwise koo
= lim Pr{s(k) =¢|s(0) = 50,7}
whereSyim = {i : E(i) = Enin} and Epin = minges E(j). k—oo o
From this equation, we can see that, as the temperature . eXp(— TZ ) (10)
approaches zero, the system will converge to the states with o s exp(_@) ’
the minimum energy, i.e., the states with the minimum energy I€
are reached at lower temperature. From (7), we know that
1 i
. . , if ¢ € S
— . = |$min | _Inu“
B. Simulated Annealing 7} %1% 7m:(T) {0 otherwice. (11)

Based on the annealing process in the statistical mechanics,
Kirkpatrick et al. [8] proposed an algorithm, nameymu- 1herefore
lated annealing(SA) for solving complicated combinatorial ) ) )
optimization problems. In the SA algorithm, the simulation lim nglgop(s(’%‘) € Smin)} = %151027@@)
of the annealing process is performed. The cost function €S
and configuration in optimization correspond to the energy Z =1 (12)
function and state of statistical physics, respectively. The 1€ Smin
temperature is introduced as a control parameter.
Suppose that a cost functioi : § — Rt, s € S,
to be minimized is defined on some finite s&t For each
configurations € &, there is a neighboring set'(s) C S,
which is generated by a small perturbationsof
In SA, given the current stat€k), a neighboring state’ (k)
is randomly selected fromV'(s), wherek is the kth trial. The
transition probability from state(k) to s’(k) is given by the
Metropolis criterion[6], [9]

Equation (12) states that the SA algorithm asymptotically

converges to configurations with the minimum cost, i.e., if

the temperature is slowly lowered and at each temperature
the system performs a sufficient number of transitions, the
configurations (solutions) with the global minimum cost can

be found with probability one.

C. Mean Field Annealing
Even though SA is proven to be able to reach the global

Pls(k), s'(k)] = Pr{s(k) — 5'(k)} optima asymptotically, it is time consuming to reach thermal
— exp|— [f(s"(R)) = f(s(R))]T (8) equilibrium at each temperature. Finite number of transitions at
T each temperature cannot guarantee convergence to the global
where optima. In statistical physicsyean fieldapproximation is often
used. MFA uses a set of deterministic equations to replace the
[#]T = max{0, z}. (9) stochastic process in SA. It uses saddle point approximation

P(z,y) =Pr[s(k + 1) = y|s(k) = 2]
0 if y & N(x) andy # =,
= G(a:,y)min{l,exp(—w)} if y € N(z) andy # =,
L= sy G(z,z') min {1,exp( — W)} if y=ux
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in the calculation of the stationary probability distribution at For the binary system, we have the following MFA equa-
equilibrium, and reaches equilibrium at each temperature fastiens:

than SA. Even though this approximation method may not 1 h;
guarantee convergence to global minima, it does provide a vi=g [1 + tanh <ﬁ)} (19)
good approximation in finding near-optimal solutions with less af(v)
computing effort. h;=— o (20)
As shown in the previous section, the stationary probability e
distribution at equilibrium for configuratios’ is given by In 1982, Hopfield [12] defined the following energy function
, of the Hopfield net for optimization:
(T) exp(—@) 1
7rS, = 5 — P . .
Z fh(s) — _5 Z Z CTU S$iSy; — Z SZIZ (21)
7 J 7
z Z exp<_@> where s; € {0,1}. In the Hopfield model, the system is
. r represented by a network composed.afeurons. Each neuron

) . ] ) ) i 1 can be represented by an operational amplifierjs the
wheres, s’ € Z™ are configurations and is the set of integer. output of neurori, andT};, which is symmetricT}; = T}; and

For a large optimization problem, the direct calculation of th?n — 0), represents the synaptic connection between neuron

partition functionZ is prohibitive, and thus an approximationandj_ I; is the input current to amplifier. The stable states

method such as the saddle point approximation [11] iS USeff-the network correspond to tf2# comers of the hypercube

Note that the Dirac delta functiof(-) can be expressed as {0,1}", the local minima of the energy function defined in
§(x) = 1 /C"ry dy (13) (21). For the MFA approximation, if the energy function is
2mi Jy formulated as (21), the mean field and the thermal average

where the integral is taken along the imaginary axis. Hence; become

S afn(v
Z:Zexp(—%) hi:_%:z:ﬂjvj +1; (22)
S T J
_I he
=C /dv/c T V) gy R anh [ 15
zﬂ: . f Ui =50 =g 1+ tanh 57 |- (23)
— —fe(u,v) In MFA, the iterative procedure to reach thermal equilibrium
C |l dv (e du (14)
R I at each temperature is calleelaxation in which the mean
where field is updated by
v
fe(u,v) = % +uv —In Z e’ (15) hi(t + At) = h;(t) + At {— a‘gL(V) - hi(t)} (24)
S UZ

C is a complex constant, anfl is called theeffective energy Taking the limit, we have

in statistical mechanics. At saddle points, dh; hi(t + At) — h(t)
u-s = lim (25)
af. Do s-¢ dt  At—0 At
=V - — = 0
du Do cus or
and (16) dh; Afn(v)
of _10/(v) . =g i) =) Tyuj+ L= i (26)
ov T Ov tu= J
Therefore The MFA relaxation operation at each temperature should lead
S s ews the system to stable equilibrium. The MFA procedure can be
vV=58r= S—eus summarized in the flow chart shown in Fig. 3.
s 17)
1 9f(v)
=775 IV. SEARCHING FOR THEOPTIMAL PATTERNS BY MFA
v
heres is the th | ofat t wre As shown in Section Il, maximizing data throughput
wheresy 1S e therma aver%?c((av) at temperatura, is equivalent to finding a specific frame pattesfi*® =
In statistical physicsh = — =5 is called themean field ¢ opt” opt ') such that
If a configurations = [sy, s2,---,s,]" is represented by a ' 7% 7 7Na
sequence of binary values, i.&,e {0,1}", then we have 1 Qe .
v = [v1,v2,---,v,]" and Ysorr Iglcagws:glcegﬁl;(?-swe 7 (27)
1 Wi S U H
v — Esi=0 S;-€ __¢c _ 1[1 1 tanh (&)} subject to
¢ Ei:o cwisi 14w 2 2 N,
7 (18) s; =N, wherel <s; <N - Ng+1. 28
whereu = [ug, ug, -, u, )" andu; = — 2% - aggv) ; ' ’ - ¢ (28)
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® Formulate Energy Function
® Weights

® Annealing Schedule <enenn- Problem-dependent

® Critical Temperature

® Termination Criteria

k== k+1

T =Tk

!

Initialization

v;=0.5+md(3,-8)
i=1,2,...N

g . Problem-dependent

Print the SolutionJ

=1 | @

Iteration

hik)=hijk-1)+ At { } v (k-DTj+-h -1}

v;(k)=0.5[1+tanh(h; /T)] (i=1,2,..N)

Problem-dependent

1 : The 1-th sweep at temperature Ty

| l<--1+1 L : The number of sweeps performed at TemperatureT |

Fig. 3. The MFA iteration procedure.

and

and

si>1 Vi (29) 8; = Z sij -2 (31)
=1

where S is the set of feasible frame patterns. To map thﬁheresij € {0,1} Vi, 7 are binary neuronsyn = [log,(N —
optimization problem onto the MFA framework, we need toy, + 1)] + 1 and [z] is the ceiling ofz. For example, for

determine the following.

A. Energy Function

E(s):—EZG-si-

i=1

m

Ng
+ w3 Z Z Sij

i=1 j=1

=-—w - By +ws-

N =40, if Ny =9, thenm =5, and if Ny = 5, thenm = 6.
wy; > 0,1 =1,23, are called theveights
The interdistance between thiéh data slot and its first
successive data slot is denoted &y Sinces; is an integer
and1 < s; < N — Ny + 1, s; can be expressed in terms
Ng 2 of m binary neurons defined by (31). The first term in
<Z 8 — N) (30) is the negatively weighed data throughput, and therefore
i1 maximizing data throughput is equivalent to minimizing the
negative throughput. The second term introduces penalty for

—G-s, w2
6G57+—
2

(1—s4) constraint violation. If the constraint in (28) is satisfied, the

energy introduced by the second term is zero. The third term
Ey + w3 - B (30) equals to zero only if all neurons converge to either zero
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or one. If the weightgw:,w.,ws) are properly chosen, theUsing the fact that: - ¢=* < ¢~1, we have
annealing procedure will lead the system to a configuration

with the minimum energy corresponding to the optimal frame E(s') — E(s) > w2 Wi (1—eC). et >0.
pattern. 2 Ny
2
= wp = A (1—e"9) -t (35)
B. Determination of the Weights Na

Taking the derivative o, and setting it equal t0 zero  pare only one specific case is considered, indicating that the

selection ofw; andws, is related toG and V;. The adjustment
of the weights according t6 and IV, is required to obtain
better solutions. The termyws, is a weak constraint, and
Therefore, the frame patters = {s; = & Vi} provides w3 = 11n this paper.

the maximum throughpU,,.. = ¢~*. However, this frame

pattern may not satisfy the constraint of (28) and (29). QD. Critical Temperature

the other hand, the minimum value df, is zero when
> M s; = N, but not any valid combination of; would
achieve the maximum data throughput. Therefore, there exists

0FE,
8si

=(1-G-s))exp(—G-s;) =0.

According to (19) and (20), each neuron is updated as
OWS:

a profound relationship between; and ws-.

The annealing procedure attempts to relax the system into vi;(t + 6t) = % + %tanh[—%%} Vi, 5. (36)
a state with the minimum energy, and simultaneously with all Y
constraints satisfied. A state (frame pattesh)that violates where
the constraint should yield higher energy than a staténich
satisfies the constraints. Consider the situation that a state L ] ]
s satisfies the constraints (28), (29), and each neuron has vij =5 1<i<Ng, 1<js<m

converged to either zero or one. If a neighboring statef s
violates the constraint such that

/ s —1 if ¢ =Fk, for a certaink, v=ivnvsouneh o= v, viz o Vi
s, = . . (32)
¢ 5 Vi excepti = k, . . .
The critical temperature is defined as the temperature at
then which the sharp state transition starts. That is, each neuron is
) likely pushed toward the “0” or “1” state. In (36), a very large
Na PN N value ofl" leads eachy;; to fluctuate arounc%, and the state
Zsi =N-1# transition is very slow. Therefore there must exist a critical
=t temperature at which quick state transitions are expected to
and start. In this paper, the critical temperature is obtained by
trial-and-error. That is, temperature is slowly decreased from
]\Td . .
N wr L _as | W a very high value. At each temperature, only one sweep is
E(s') = N, ZG s T 9 (33) taken, where one complete updating of all neurons at a fixed
Zfl temperature is referred to asaeepAt the end of each sweep,
< compute the average absolute error
Bls) =~ G s (34) © °
Ny -
=1 1 Ng m
According to the above statemet(s’) > E(s). Therefore, ‘TN, m D> it + 6t) — vi(B)] (37)
i=1 j=1

from (33) and (34), we have

E(s') — E(s) wheret stands for the time a sweep starts and 6t for the
N, N, time a sweep ends. Wheri> 0.1, the above procedure stops,
= _% Z G-shoe G4 % + % Z G.s; ¢~ and the corresponding temperature is the critical one.
4= 4=
_ % _ wEV G[S/‘ LGk gy o=G] D. Annealing Schedule
d The following annealing schedule is employed:
W2 WG G, 1) 6 g
9 N k k
| o (39)
el Ty = —2
> W2 WL =G — 1) ¢C — (s — 1)] T 1 ran
2 Ny
_w2 WG G (s —1)-[1 — 9] whereq is a small positive value, andis the iteration index.
2 Ny Other schedules [13] may be adopted.
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Fig. 4. One run and 100 iteration&& = 0.5).
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E. Convergence Criterion
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V. SIMULATION RESULTS

1) Termination of SweepsAt each temperature, each neu- Four instances withV, = 5,8,10,15, and N = 40 are
ron is updated according to (36). The sweep is terminated whested by using the MFA algorithm. To demonstrate the advan-
e < 61, whereé; is a small positive value. On the other handiage of the MFA scheme, a comparison with the random search
at some temperature, the condition may not be satisfied afteir@l the SA approach [5] is made in terms of computational
large number of sweeps. To avoid infinite sweeps, the sweegmplexity and throughput optimality.

procedure is forced to end after a fixed number of Sweeps,1) Random Search (RS): In random search, a frame pattern

Nsweep- 1hEN the temperature is further decreased, and a new

updating process begins.

2) Convergence CriterionAll »;; should converge to ei-
ther zero or one after the last iteration. Therefore, we define

the convergence criterion as

Ng m

Nd%mzzvij(l —v5) < 62

=1 j=1

(39)

where 62 is a small positive value. When the criterion is

satisfied, all neurons are clamped, and the interdistances for

the optimal frame pattern are found to be
s; :zmjzj-U vij -~
i=1 b2

(40)

where U(+) is a step function.

is randomly selected from the frame pattern space, and
the one that yields the largest throughput is kept until
termination. There is no fixed rule for terminating the
procedure. Usually, the procedure terminates after a
certain number of iterations. Here aeration consists of

a frame pattern generation and a throughput comparison.
Simulated Annealing: To make the comparison fair, an
iteration in [5] consists of a pattern generation and
transition test based on the Metropolis criterion.

Mean Field Annealing: In MFA, to exploit the par-
allelism of neural networks, synchronous updating is
adopted, i.e., the current value for each neuron is up-
dated by using the previous neurons’ values. Therefore,
neurons in the neural network operate in parallel, and
an iteration implies that the whole network is updated
once, i.e., all neurons are updated once.

The three algorithms are implemented and compared. Each
algorithm is executed for 1000 times, and the throughput
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. 813 S. Kirkpatrick, “Optimization by simulated annealingScience vol.

even better average throughput than its counterpart becal 220, pp. 671-680, 1983.
finite-time implementation (1000 iterations) of SA does not9] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,

; ; ic “Equation of state calculations by fast computing machindsChem.
guarantee convergence to global optima. The RS algorithm is Phys, vol. 21, pp. 1087-1002, 1953,
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