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Searching for Optimal Frame Patterns in an
Integrated TDMA Communication System

Using Mean Field Annealing
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Abstract— In an integrated time-division multiple access
(TDMA) communication system, voice and data are multiplexed
in time to share a common transmission link in a frame format
in which time is divided into slots. A certain number of time
slots in a frame are allocated to voice and the rest are used to
transmit data. Maximum data throughput can be achieved by
searching for the optimal configuration(s) of relative positions of
voice and data transmissions in a frame (frame pattern). When
the problem size becomes large, the computational complexity in
searching for the optimal patterns becomes intractable. In this
paper, mean field annealing (MFA), which provides near-optimal
solutions with reasonable complexity, is proposed to solve this
problem. The determination of the related parameters are
addressed. Comparison with the random search and simulated
annealing algorithm is made in terms of solution optimality
and computational complexity. Simulation results show that the
MFA approach exhibits a good tradeoff between performance
and computational complexity.

Index Terms—Combinatorial optimization, energy function,
frame pattern, mean field annealing, neural networks, simulated
annealing, time division multiple access.

I. INTRODUCTION

T HE integration of data and voice in an integrated services
data network (ISDN) has received extensive attention

in recent years in order to efficiently share the system re-
sources such as transmission, switching and control functions.
Many research works have been directed to the time-division
multiple access (TDMA) strategy. In a TDMA system, the
time axis is divided into frames, and each frame consists
of a certain number of fixed-length slots. A certain portion
of the time slots in a frame is assigned to voice, and the
remaining portion is reserved for data. Many studies in the
literature model the voice traffic as a lossy system and data
as a queuing system. Therefore a voice traffic will be blocked
with no transmission if it cannot find an available time slot
at the instant of its arrival. For data traffic, arrivals form a
queue and are transmitted in any available data time slots
based on first-come first-serve order. Hence the objective of the
system design is to minimize the blocking probability of the
voice traffic as well as the queuing delay of data traffic. Two
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approaches, namely, fixed-length boundary (FB) and movable
boundary (MB), are generally used as shown in Fig. 1. In the
FB scheme, a TDMA frame is partitioned into two regions
consisting of a certain number of time slots, one for voice
traffic and the other for data traffic. The idle time slots assigned
to voice cannot be used to transmit data. Obviously, this
scheme does not fully utilize system facilities. In contrast,
the MB scheme can utilize any residual voice time slots to
transmit data. As a result, the queuing delay is expected to
decrease. Many multiplexing strategies have been proposed in
order to fully utilize the integrated system resources [1]–[5].

In [5], a slotted ALOHA random access protocol is em-
ployed for data transmission in a TDMA mobile commu-
nication system. Instead of forming a long queue, data are
retransmitted when they collide, i.e., when two or more data
packets are transmitted at the same time slot. It has been shown
[5] that the arrangement of relative positions of voice and
data within a frame (called frame pattern) may affect data
throughput. Searching for the optimal frame pattern to obtain
maximum data throughput is a combinatorial optimization
problem. Conventional methods for solving such an optimiza-
tion problem usually get stuck in local optima which may
be far from the globally optimal solution. Moreover, as the
problem size grows, the computational complexity for search-
ing global optima using these methods becomes incredibly
complicated. In [5], the stochastic simulated annealing (SA)
algorithm is applied in order to search for the optimal frame
pattern. SA is a powerful stochastic optimization method in
searching for global optimal solutions [6], but very time-
consuming. It has been shown that finite-time approximation
cannot guarantee convergence to an optimal solution [6].
Furthermore, for a large size problem, the state space is
too large that finding the exact global minimum becomes
intractable.

In this paper, a mean field annealing (MFA) algorithm is
presented to search for the optimal frame patterns. Instead of
the stochastic search process of SA, MFA performs thermal
averaging operations, which leads to an overall decrease in
computational effort. This paper is organized as follows. In
the next section, the problem is defined, and the corresponding
expression for data throughput is obtained. In Section III, MFA
is elaborated. In Section IV, the MFA algorithm to search for
the optimal frame patterns is derived. The energy function
reflecting both data throughput to be maximized and the
constraints are formulated. The determination of the related
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Fig. 1. Integrated voice and data TDMA frame format: (a) FB scheme. (b) MB scheme.

Fig. 2. A frame format.

parameters are discussed. In Section V, numerical examples
and simulation results are given, and conclusions are made.

II. THE MULTIPLEXING SCHEME AND DATA THROUGHPUT

The same multiplexing strategy and assumption discussed in
[5] are adopted in this paper for the sake of comparison. Within
the TDMA link, a synchronous transmission is provided for
voice, and a contention scheme is used for data transmission.
The frame format is shown in Fig. 2. Each frame consists of

fixed-length time slots.
Denote the following.

: Number of time slots that can be used for data packets
at a given frame.

: Slot number of the th available data slot, where
, .

: Interdistance between theth data slot and its first
successor th data slot, where

if
if

is called aframe patternin the integrated
communication system.
Obviously

(1)

The same assumptions are made as in [5], i.e.,

1) The holding time of the voice call is much longer than
the frame time so that the queuing behavior of data for
a given frame pattern can reach steady state.

2) The slotted ALOHA random access protocol is assumed
for data transmission. The total data traffic, new and
retransmitted, constitutes aPoisson processwith mean
arrival rate packets/slot.

The probability of only one data packet is transmitted in
the interval is the one that no Poisson data packets are
generated during the time interval

(a packet transmitted in the time interval

(2)

The average number of packets successfully transmitted in
the time interval is

(3)

The average data throughput is

(4)

It can be seen that the relative positions of voice and data
will decide data throughput. For a given and , there
are frame patterns. For example, assuming
and , the total number of feasible frame patterns
is . The computational complexity using
exhaustive search for finding the optimal frame pattern among
the set of all frame patterns becomes intractable as the problem
size increases. In the next section, an MFA algorithm is
introduced to obtain the optimal frame pattern while reducing
the computational complexity.

III. SIMULATED ANNEALING

VERSUS MEAN FIELD ANNEALING

A. Statistical Mechanics

In statistical mechanics, a physical process calledannealing
is often performed in order to relax the system to the state with
the minimum free energy. In the annealing process, a solid in
a heat bathis heated up by increasing the temperature of the
bath until the solid is melted into liquid, then the temperature
is lowered down slowly. At each temperature, all particles
randomly arrange themselves until thermal equilibrium is
reached. If the cooling is slow enough to allow the solid
to reach thermal equilibrium at each temperature, the low
energy crystalline solid would be formed when the system
is frozen . However, if the annealing is too fast, the
solid may become glass with noncrystalline structure or the
defected crystal with meta-stable amorphous structures. If a
state is defined by the set of particle positions, then, at thermal
equilibrium, the probability of the system being in stateis
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represented by theGibbs distribution[6], [7]

(5)

where is called thepartition function,
is theBoltzmann constant, is the temperature, and

is the energy of state, and is the state space. It is easy
to find that [6]

(6)

implying that, at a very high temperature, all states are equally
probable. On the other hand, we have

if
otherwise

(7)

where and .
From this equation, we can see that, as the temperature
approaches zero, the system will converge to the states with
the minimum energy, i.e., the states with the minimum energy
are reached at lower temperature.

B. Simulated Annealing

Based on the annealing process in the statistical mechanics,
Kirkpatrick et al. [8] proposed an algorithm, namelysimu-
lated annealing(SA) for solving complicated combinatorial
optimization problems. In the SA algorithm, the simulation
of the annealing process is performed. The cost function
and configuration in optimization correspond to the energy
function and state of statistical physics, respectively. The
temperature is introduced as a control parameter.

Suppose that a cost function , ,
to be minimized is defined on some finite set. For each
configuration , there is a neighboring set ,
which is generated by a small perturbation of.

In SA, given the current state , a neighboring state
is randomly selected from , where is the th trial. The
transition probability from state to is given by the
Metropolis criterion [6], [9]

(8)

where

(9)

From (8), it can be seen that the Metropolis criterion while
performing the local search for the minimum cost at a fixed
temperature allows occasional transition from a lower
cost configuration to a higher cost configuration with certain
probability, thus preventing the system from getting stuck in
local minima. The random process
generated in SA can be characterized by a discrete time
homogeneous Markov chain [6]. The one-step transition matrix
is shown at the bottom of the page, where is the
probability of generating configurationfrom . If is
symmetric, the generation probability of any configurationis
uniformly distributed in its neighboring configuration set
and the configuration transition is based on (8). The resulting
Markov chains are irreducible, aperiodic, and recurrent [6].
Under these conditions, the stationary equilibrium distribution

for configuration exists after an infinite number of
transitions

(10)

From (7), we know that

if
otherwise.

(11)

Therefore

(12)

Equation (12) states that the SA algorithm asymptotically
converges to configurations with the minimum cost, i.e., if
the temperature is slowly lowered and at each temperature
the system performs a sufficient number of transitions, the
configurations (solutions) with the global minimum cost can
be found with probability one.

C. Mean Field Annealing

Even though SA is proven to be able to reach the global
optima asymptotically, it is time consuming to reach thermal
equilibrium at each temperature. Finite number of transitions at
each temperature cannot guarantee convergence to the global
optima. In statistical physics,mean fieldapproximation is often
used. MFA uses a set of deterministic equations to replace the
stochastic process in SA. It uses saddle point approximation

if and
if and

if
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in the calculation of the stationary probability distribution at
equilibrium, and reaches equilibrium at each temperature faster
than SA. Even though this approximation method may not
guarantee convergence to global minima, it does provide a
good approximation in finding near-optimal solutions with less
computing effort.

As shown in the previous section, the stationary probability
distribution at equilibrium for configuration is given by

where are configurations and is the set of integer.
For a large optimization problem, the direct calculation of the
partition function is prohibitive, and thus an approximation
method such as the saddle point approximation [11] is used.
Note that the Dirac delta function can be expressed as

(13)

where the integral is taken along the imaginary axis. Hence,

(14)

where

(15)

is a complex constant, and is called theeffective energy
in statistical mechanics. At saddle points,

and (16)

Therefore

(17)

where is the thermal average ofat temperature ,
In statistical physics, is called themean field.

If a configuration is represented by a
sequence of binary values, i.e., , then we have

and

(18)
where and .

For the binary system, we have the following MFA equa-
tions:

(19)

(20)

In 1982, Hopfield [12] defined the following energy function
of the Hopfield net for optimization:

(21)

where . In the Hopfield model, the system is
represented by a network composed ofneurons. Each neuron

can be represented by an operational amplifier,is the
output of neuron, and , which is symmetric ( and

), represents the synaptic connection between neuron
and . is the input current to amplifier. The stable states
of the network correspond to the corners of the hypercube

, the local minima of the energy function defined in
(21). For the MFA approximation, if the energy function is
formulated as (21), the mean field and the thermal average

become

(22)

(23)

In MFA, the iterative procedure to reach thermal equilibrium
at each temperature is calledrelaxation, in which the mean
field is updated by

(24)

Taking the limit, we have

(25)

or

(26)

The MFA relaxation operation at each temperature should lead
the system to stable equilibrium. The MFA procedure can be
summarized in the flow chart shown in Fig. 3.

IV. SEARCHING FOR THEOPTIMAL PATTERNS BY MFA

As shown in Section II, maximizing data throughput
is equivalent to finding a specific frame pattern

such that

(27)

subject to

where (28)
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Fig. 3. The MFA iteration procedure.

and

(29)

where is the set of feasible frame patterns. To map this
optimization problem onto the MFA framework, we need to
determine the following.

A. Energy Function

(30)

and

(31)

where are binary neurons,
and is the ceiling of . For example, for

, if , then , and if , then .
, are called theweights.

The interdistance between theth data slot and its first
successive data slot is denoted by. Since is an integer
and can be expressed in terms
of binary neurons defined by (31). The first term in
(30) is the negatively weighed data throughput, and therefore
maximizing data throughput is equivalent to minimizing the
negative throughput. The second term introduces penalty for
constraint violation. If the constraint in (28) is satisfied, the
energy introduced by the second term is zero. The third term
equals to zero only if all neurons converge to either zero
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or one. If the weights are properly chosen, the
annealing procedure will lead the system to a configuration
with the minimum energy corresponding to the optimal frame
pattern.

B. Determination of the Weights

Taking the derivative of and setting it equal to zero

Therefore, the frame pattern provides
the maximum throughput . However, this frame
pattern may not satisfy the constraint of (28) and (29). On
the other hand, the minimum value of is zero when

, but not any valid combination of would
achieve the maximum data throughput. Therefore, there exists
a profound relationship between and .

The annealing procedure attempts to relax the system into
a state with the minimum energy, and simultaneously with all
constraints satisfied. A state (frame pattern)that violates
the constraint should yield higher energy than a statewhich
satisfies the constraints. Consider the situation that a state

satisfies the constraints (28), (29), and each neuron has
converged to either zero or one. If a neighboring stateof
violates the constraint such that

if for a certain
except

(32)

then

and

(33)

(34)

According to the above statement, . Therefore,
from (33) and (34), we have

Using the fact that , we have

(35)

Here only one specific case is considered, indicating that the
selection of and is related to and . The adjustment
of the weights according to and is required to obtain
better solutions. The term, , is a weak constraint, and

in this paper.

C. Critical Temperature

According to (19) and (20), each neuron is updated as
follows:

(36)

where

The critical temperature is defined as the temperature at
which the sharp state transition starts. That is, each neuron is
likely pushed toward the “0” or “1” state. In (36), a very large
value of leads each to fluctuate around , and the state
transition is very slow. Therefore there must exist a critical
temperature at which quick state transitions are expected to
start. In this paper, the critical temperature is obtained by
trial-and-error. That is, temperature is slowly decreased from
a very high value. At each temperature, only one sweep is
taken, where one complete updating of all neurons at a fixed
temperature is referred to as asweep. At the end of each sweep,
compute the average absolute error

(37)

where stands for the time a sweep starts and for the
time a sweep ends. When , the above procedure stops,
and the corresponding temperature is the critical one.

D. Annealing Schedule

The following annealing schedule is employed:

(38)

where is a small positive value, and is the iteration index.
Other schedules [13] may be adopted.
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Fig. 4. One run and 100 iterations(G = 0:5).

Fig. 5. One run and 1000 iterations(G = 0:5).

E. Convergence Criterion

1) Termination of Sweeps:At each temperature, each neu-
ron is updated according to (36). The sweep is terminated when

, where is a small positive value. On the other hand,
at some temperature, the condition may not be satisfied after a
large number of sweeps. To avoid infinite sweeps, the sweep
procedure is forced to end after a fixed number of sweeps,

. Then the temperature is further decreased, and a new
updating process begins.

2) Convergence Criterion:All should converge to ei-
ther zero or one after the last iteration. Therefore, we define
the convergence criterion as

(39)

where is a small positive value. When the criterion is
satisfied, all neurons are clamped, and the interdistances for
the optimal frame pattern are found to be

(40)

where is a step function.

V. SIMULATION RESULTS

Four instances with , and are
tested by using the MFA algorithm. To demonstrate the advan-
tage of the MFA scheme, a comparison with the random search
and the SA approach [5] is made in terms of computational
complexity and throughput optimality.

1) Random Search (RS): In random search, a frame pattern
is randomly selected from the frame pattern space, and
the one that yields the largest throughput is kept until
termination. There is no fixed rule for terminating the
procedure. Usually, the procedure terminates after a
certain number of iterations. Here aniterationconsists of
a frame pattern generation and a throughput comparison.

2) Simulated Annealing: To make the comparison fair, an
iteration in [5] consists of a pattern generation and
transition test based on the Metropolis criterion.

3) Mean Field Annealing: In MFA, to exploit the par-
allelism of neural networks, synchronous updating is
adopted, i.e., the current value for each neuron is up-
dated by using the previous neurons’ values. Therefore,
neurons in the neural network operate in parallel, and
an iteration implies that the whole network is updated
once, i.e., all neurons are updated once.

The three algorithms are implemented and compared. Each
algorithm is executed for 1000 times, and the throughput
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Fig. 6. Average throughputs for differentNd (1000 runs and 1000 iterations for each run).

is averaged over the 1000 runs. Eachrun is defined as
an execution of an algorithm. Fig. 4 shows the first 100
iterations of a run at the arrival rate . It can be
seen that the MFA approach reaches its steady throughput
within the first 100 iterations. Fig. 5 shows that, after 1000
iterations, all of the algorithms reach the steady throughput.
Fig. 6 shows the average throughput achieved by the three
algorithms over an ensemble of 1000 runs. It can be seen
that the average throughput achieved by both MFA and SA
are very close. At some arrival rates, MFA can achieve
even better average throughput than its counterpart because
finite-time implementation (1000 iterations) of SA does not
guarantee convergence to global optima. The RS algorithm is
not effective in searching for the optimal pattern. It can be
seen from these results that MFA achieves faster convergence
in terms of the number of required iterations than SA while
achieving suboptimal performance. In our simulations,

, , and when , and
when . , . . The critical
temperature .

VI. CONCLUSION

Searching for the optimal patterns in an integrated TDMA
communication system is a combinatorial optimization prob-
lem. As the problem size gets large, the computational com-
plexity becomes intractable. SA is a good algorithm in finding
global optimal solutions, but it is usually time-consuming.
MFA, which uses saddle point approximation, is proposed to
solve for the optimal patterns. It is computationally efficient,
and is able to acquire suboptimal solutions comparable to those
obtained by SA. The determination of related parameters are
addressed, and comparisons with the RS and SA approaches
are presented. Numerical results have shown that MFA needs
one order of magnitude less iterations than SA and at the same
time achieves comparable solutions.
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