
A Compressed and Dynamic-range-based Expression
of Timestamp and Period for Timestamp-based Schedulers *

Dong Wei†, Nirwan Ansari†, and Jianguo Chen‡
† Advanced Networking Lab

New Jersey Institute of Technology
‡ Bell Labs

Lucent Technologies

* This work has been supported in part by the New Jersey Commission on Science and Technology via the NJ Center for Wireless
Telecommunications, and the New Jersey Commission on Higher Education via the NJ I-TOEWR project.

Abstract – Scheduling algorithms are implemented in high-
speed switches to provision Quality-of-Service guarantees in
both cell-based and packet-based networks. Being able to
guarantee end-to-end delay and fairness, timestamp-based fair
queuing algorithms have received much attention in the past few
years. In timestamp-based fair queuing algorithms, the size of
timestamp and period determines the supportable rates in terms
of the range and accuracy. Furthermore, it also determines the
scheduler’s memory in terms of access bandwidth and storage
space. An efficient expression can reduce the size of the
timestamp and period without compromising the supportable
rate range and the accuracy. In this paper, we propose a
compressed and dynamic-range-based expression of the
timestamp and period, which can be readily implemented in
hardware for both high-speed packet-based and cell-based
schedulers. As compared to fixed-point and floating-point
number expression, when the size is fixed, the proposed
expression has a better accuracy. Regarding to efficiency and
relative error consistency, it is even better than our earlier
proposal.

I. INTRODUCTION

The current high-speed, service-integrated and packet-
switched networks are able to support many kinds of services
simultaneously. Packet switches are required to support a
large number of sessions with diverse bandwidth
requirements; for example, the supportable rate can go as low
as 4 Kbits/s and as high as even 10Gbits/s (OC192). Packet
switches are also required to support a wide range of packet
sizes, from 40 bytes (such as TCP/IP ACK packets) to 64
Kbytes (such as maximum IP packet). Three important issues
should be considered in the design of a scheduler: 1) end-to-
end delay, 2) fairness, and 3) implementation complexity.

Based on the architecture of the schedulers, packet
switches are classified into two types [1]: 1) frame-based, 2)
sorted priority. Recently, sorted priority algorithms, also
known as packet fair queuing (PFQ), have received much
attention because they can approximate the idealized
generalized processor-sharing (GPS) algorithm, which has
desirable properties in terms of end-to-end delay and fairness
[2].

In a PFQ algorithm, there is a global variable called virtual
time, associated with outgoing sessions being scheduled. The
virtual time is updated when a packet receives service. Each
packet has its own timestamp in the system. All packets are

sorted by their timestamps. Timestamp sorted algorithms [1]-
[2] include weighted fair queuing (WFQ), self-clocked fair
queuing (SCFQ), and worst-case weighted fair queuing such
as WF2Q and WF2Q+. The virtual start time and the virtual
finish time are the typical timestamps used in PFQs. Service
interval is the time interval that the packet should stay in the
scheduler. Given a virtual start time, the service interval is
used to calculate the virtual finish time, and vice versa.

The size of the timestamp and period determines the
supportable rate in terms of range and accuracy. In this sense,
it seems to be tempting to use a larger size to represent them.
However, the size of the timestamp and period determines the
system memory in terms of bandwidth required to access and
space to store. In this regard, the smaller size the better. To
resolve this trade-off, an optimal representation of the
timestamp and period, which can meet the required accuracy
in the smallest size, is required. Note that it is very difficult to
use normal fixed-point or floating-point to represent the large
range of both the packet size and service rate efficiently. By
allocating a range number to accommodate different ranges
of service rates, we have developed a better representation in
terms of accuracy and the size of timestamp and period
(instead of the service interval in [2]). This representation is
generically applicable to any timestamp-based scheduling
algorithm.

The rest of the paper is organized as follows. Section II
presents the background of timestamp and period of PFQs,
analyzes the performance of fixed-point expression and
floating-point expression in terms of accuracy and the total
number of bits to represent timestamp and period. Our
proposed expression for packed-based schedulers is discussed
in Section III. The proposed expression is extended for cell-
based (ATM) schedulers in Section IV. Implementation
issues are discussed in Section V. This paper ends with some
concluding remarks in Section VI.

II. BACKGROUND

PFQ algorithms are used to approximate the idealized
generalized processor-sharing (GPS) algorithm. All PFQ
algorithms have similar sorted-queue architecture. They
differ in two aspects [2]: virtual time function and packet-
selection policy.
A. Notation

2353

0-7803-7206-9/01/$17.00 © 2001 IEEE

Z(.) – the number of bits
P – the idealized period with infinite bit expression
P – actual period representation with finite bit expression
r – the idealized service rate with infinite bit expression
r – actual service rate with finite bit expression
rmax – maximum supportable service rate
rmin – minimum supportable service rate
ri – required service rate for session i
rLC – link capacity of the scheduling system
ε(α) – the relative error of α

 ε(α)=
α
αα −

T – timestamp
Iα – integer part of α
Fα – fractional part of α
Mα – mantissa part of α
Eα – exponent part of α
L– the packet size
M- number of bits to represent virtual system time
N- total number of bits of timestamp and period

B. PFQ Algorithms
PFQ algorithms have a global variable – system virtual

time V(.), which is defined differently for different PFQ
algorithms. They also maintain a virtual start time and a
virtual finish time for each session. When the kth packet of
session i arrives, the virtual start time Si(.), virtual finish time
Fi(.) and the service interval Φ of this packet are updated
as follows:

k
i

)1(
.)(

,))(),(max(
)(1





−

−
=

− servicefinishedptF

serviceinisessiontFtV
tS k

ii

i
i

)2(.)()(k
iii tStF Φ+=

k

)3(.
i

ik
i r

L
=Φ

where is the size of the kth packet of session i and ri is the
required service rate of session i..

k
iL

The worst-case fair index (WFI) [3] was introduced to
characterize the fairness performance of PFQ algorithms. It
was shown that PFQ algorithms with two tags (the virtual
start time and the virtual finish time) could achieve better
fairness performance than those with only a single tag.
C. Expression of Timestamp and Period

Let Lmin be the minimum supportable packet size. In a
packet scheduling system, the concept of time slot is
introduced to normalize the time interval. One time slot τ
equals to the time interval required to transmit a packet with
the minimum supportable packet size at link rate rLC:

.min

LCr
L

=τ (4)

Usually, rmax = rLC.

The system virtual time V(t) is defined differently from one
scheduling algorithm to another. V(t) is expressed in the unit
of time slot; for example, V(t) is nothing but a counter in the
virtual clock scheduling scheme, and it is incremented by one
when a single packet with the minimum supportable packet
size is sent out. The period of session i is defined as follows:

i
i r

rP max= .

The period of a session is unit-less quantity. A session with
P=3 means that the session should receive service of one
time slot in every three time slots. The service interval and
period are related as follows:

)5(.
min

max

max

min

min
i

k
i

i

k
i

i

k
ik

i P
L
L

r
r

r
L

L
L

r
L

τ===Φ

Denote k
iΦ k

iΦ as the normalized value of . That is,

)6(.

max

min
r

L
r

L
i

k
ik

ik
i =

Φ
=Φ

τ

The period is stored in a processing table for each session
and the timestamp is assigned for each packet. Using the
virtual start time as the timestamp, the normalized service
interval can be calculated from (3) and (6), and thus we can
derive the virtual finish time; using the virtual finish time as
the timestamp, the virtual start time can be similarly
computed.

Modular comparison is used to select 1) packets eligible to
enter the scheduler; 2) packets which should receive service.

Packets are allowed to enter the sorted-queue of the
scheduler by comparing the system virtual time and their
virtual start time. Packets are scheduled for transmission
based on the virtual finish time.

By employing modular comparison, two binary numbers
represented by n+1 bits can be compared without ambiguity
if the difference between them is less than 2n. Using the
notation X[i:j] to represent the binary number extracted from
the ith through jth bits of X, with the convention that the LSB
bit is the 0th bit. For example, given X=1011101,
X[5:2]=0111. A modular arithmetic comparison X>Y can be
computed by the following pseudo code:

Boolean Modular_Comparison (X,Y)
1 if X[n-1:0] > Y[n-1:0]
2 then result = TRUE
3 else result = FALSE
4 if X[n]=Y[n]
5 then return result
6 else return NOT result

X[n-1:0] represents the binary number, and X[n] (the nth
bit of X) is used to discern wraparound ambiguity [2][5]. The
following condition must be satisfied:

nYX 2<− .
For example, when X=110 and Y=001, which represent 6

and 1, respectively. Since the above condition must be met,

2354

Y=X+011 rather than X=Y+101; in other words, Y>X. Thus,
the result of Modular_Comparison(X,Y) is FALSE, implying
that X is not greater than Y because of wraparound.

With this property, Reference [4] suggests that the size of
timestamps has to be at least one bit larger than the largest
normalized service interval

maxΦ .

.

max

min

min

max

max

r
L

r
L

=Φ

Therefore:
)7(.1loglog)(

min

max
2

min

max
2 +








+≥

L
L

r
rIZ T

The largest period is
min

max
max r

rp = . Thus, the number of

bits to represent the integer part of the period must satisfy

)8(.log)(
min

max
2 








≥

r
rIZ P

In a cell-based scheduling system, it is tempting to use an
integer representation of the timestamp, so that the system
virtual time is simply increased by one each time a cell is
transmitted. However, this would adversely affect the
provisioning of those sessions with high bandwidth
requirement. In a scheduling system with integer
representation of virtual time, the period of 1,2,3 …
represents service rate of 1, 1/2, and 1/3… times the link
capacity. As a result, session rates between 1 and 1/2, 1/2 and
1/3 of the link capacity cannot be represented. Therefore, we
need more bits after the decimal point to represent the
timestamp and period of high-rate sessions.

The relative error of the service rate can be expressed in
terms of the period representation with finite bits as follows:

.1

11

1)(
max

maxmax

i

ii

i

ii

i

ii

i

i
i P

PP

r
r

r
r

r
r

r

rr
r
rr −

=
−

=
−

=−=ε

Define ε as the approximation of relative error of Pi)(ˆ iP

.)(ˆ
i

ii
i P

PPP −
=ε

Thus,)9(.)()(ˆ ii rP εε =
Therefore, to guarantee the accuracy of the service rate we

need to maintain the accuracy of the approximation of the
period . The timestamp and period are stored and used
together for each packet in the system. The accuracy of both
of them determines the accuracy of the service rate.

)(ˆ iPε

(1) The Fixed-Point Expression
Using the fixed-point expression, the minimal number of

bits to represent the timestamp and period ((7) and (8)) are:





















=

+







+=

)11(.log)(

)10(.1loglog)(

min

max
2

min

max
2

min

max
2

r
rIZ

r
r

L
LIZ

P

T

Since scheduling involves arithmetic operations on both
timestamp and period, they should maintain the same
accuracy, thus having the same number of fractional bits.

)()(TP FZFZ = . (12)
Therefore, the generalized accuracy of the fixed-point

expression is:










≥

≤
=

+−

+−

).()(,2

),()(,2

)(ˆ
)1)((

)1)((

TP

FZ

TP

FZ

FZFZif
P

FZFZif
PP

T

p

ε (13)

The total number of bits to represent the timestamp and
period is: (14))()()()(PPTT FZIZFZIZN +++=

Consider a packet scheduling system S, which is required
to support service rates from 4 Kbits/s to 622 Mbits/s, and the
packet size ranged from 40 bytes to 64 Kbytes. Then, Z(IT) =
29 and Z(IP) = 18. With Z(FT) = Z(FP) = 2, i.e., N = 51, the
maximum relative error of the service rate is shown in Fig. 2.
(2) The Floating-Point Expression

Similarly, in order to achieve unambiguous modular
comparison, the following inequality must be satisfied:

)15(.1loglog)(
min

max
2

min

max
2 +








+≥

r
r

L
LMZ T

Let δ be the number of additional bits:

)16(.1loglog)(
min

max
2

min

max
2 δ++








+=

r
r

L
LMZ T

To maintain the same degree of accuracy of the timestamp,

)17(.log)(
min

max
2 δ+








=

r
rMZ P

Thus,
 )18(,)(log)(2 TT MZEZ =
 )19(,)(log)(2 PP MZEZ =

)20(.)()()()(PPTT EZMZEZMZN +++=
The size of the binary equivalent of the timestamp and

period are Z(MT)+1 and Z(MP)+1, respectively. The values of
ET and EP determine how many bits the decimal point should
shift from the position just after the most significant bit.
Denote λ(P)=Z(MP)-EP and λ(T)=Z(MT)-ET . λ(P) and λ(T)
are the number of bits after the decimal point in the period
and timestamp, respectively. Thus, the relative error can be
expressed as:

)21(
.

22)(

2

),()(
22)(

2

)(ˆ

1)(

)()(

)(

1)()(

1)(

0

)(

1















+⋅

≤
+⋅

=

∑

∑

−

−=

−−

−

=

−

else
MB

TPif
MB

P

P
P

P
P

MZ

TPi

MZi
Pi

TP

MZ

i

MZi
Pi

λλ

λλ

λλ

ε

With λ(T)< λ(P), if the timestamp has more bits after the
decimal point, the accuracy of the period is higher. The value
of the timestamp ranges from 0 to

maxΦ , implying that λ(T)

ranges from δ to Z(MT). The worst case, corresponding to

2355

λ(T) = λmin(T) = Z(MT)-δ, yields the following largest relative
error:

)22(
.

2
2

),()(
2

2

)(ˆ

)(

1)()(

min)(

1

max









≤

=
−−

−

else

TPif
P

P

P

MZ

TP

MZ

λλ

λλ
ε

Consider the same packet scheduling system S as before.
Using (18) and (19), we have Z(ET) =Z(EP) =5 .

With (Z(MT) = 33, Z(MP) = 4), i.e., N= 47, δ=4, the
maximum relative error of the service rate using the floating-
point expression is shown in Fig. 2.
(3) Our Earlier Proposed Expression

We have developed an expression [6], which is more
efficient than the fixed-point and floating-point expressions.
However, the performance in terms of number of bit can still
be improved.

III. THE PROPOSED EXPRESSION FOR PACKET-BASED
SCHEDULERS

By employing the modular comparison, we propose a new
expression by locating the decimal point according to the
range number C of a session. Each range number C
determines the decimal point, and thus the range of the
period. Let Ci denote the range number for session i.
A. The Compressed Timestamp Expression

For session i, the timestamp-based algorithms have the
globally bounded timestamp (GBT) [2]:

Si(t)+Li
k/ri ≥ V(t) ≥ Si(t)-Li

k/ri , if queue of session i is not
empty (23)

Thus (23) can be re-written as:
V(t) +Φi

k
 ≥ Si(t)≥ V(t)- Φi

k, if queue of session i is not
empty (24)

For example, consider session i which requires period
Pi=12.5. If Li

k = 2Lmin, then, Φ i
k= 2Pi=25. Assume at the

moment of V(t)= 200.75, this packet is allowed to enter the
queue. Then Si(t)=200.75 and Fi(t)=225.75.

0 0 1 1 0 0 1 0 0 0 . 1 1 0 0 V(t)
0 0 0 0 0 0 1 1 0 0 . 1 0 0 0 Pi
0 0 1 1 0 0 1 0 0 0 . 1 1 0 0 Si(t)
0 0 1 1 0 1 0 1 0 1 . 0 1 0 0 Fi(t)
9 8 7 6 5 4 3 2 1 0 . -1 -2 -3 -4
 x x x x x . x

Figure 1 The relationship of V(t), Si(t), Fi(t) and Pi
In Fig.1, note that only those bits marked ‘x’ (bit 4 to bit –

1) in Si(t) and Fi(t) are different from those in V(t). The
number of ‘x’ depends on the number of significant bits of Pi
and packet size Li

k as well. Intuitively, we only need to save
those bits marked ‘x’ as the timestamp, and compare this
timestamp with those corresponding bits of the virtual system
time. The compressed timestamp expression is defined as
follows [2]:

If the period of session i is Pi and it is expressed with bits
from bit m to n, the timestamp of packet k of this session can
be expressed with bits from bit m+ l +1 to n+ l , where k

i
k

i









=

min
2log

L
Ll

k
ik

i

maxmax ˆ)(=r εε

)(* rε

. One extra bit in the timestamp is used to

discern the wraparound ambiguity.

 log)(PZ −=

 log)'(−=PZ

iP

By using the compressed timestamp expression, the size of
the timestamp can be reduced dramatically, especially for
those sessions requiring higher service rates. T’ denotes the
compressed timestamp expression.
B. The Compressed Period Expression with Fixed-size

If all bits of the period can determine the accuracy,
implying that the timestamp maintains the same degree of
accuracy, then the maximum relative error of this expression
is

)1)((2)(+−= PZP . (25)
Let denote the acceptable relative error of the

service rate. Select the number of bits of the period Z(P) such
that the maximum relative error is less than ε , then the
relationship between Z(P) and ε is as follows:

)(* r
)(* r

)(*
2 rε (26)

In a scheduler, period P must be larger than 1. Therefore,
by using the hidden ‘1,’ which is used in IEEE floating-point
expression, one more bit can be saved. P’ denotes the
compressed period expression. Then (23) can be rewritten as:

 1)(*
2 −rε (27)

For example, if ε =1%, 5 bits are needed to represent
the period. The relative error with 6 bits (including the hidden
‘1’) expression < 2-7 = 0.78%. Note that in order to discern
the wraparound ambiguity, Z(T) should be one bit larger than
Z(P). To take the hidden ‘1’ into consideration, the number of
bits to represent the timestamp can also be calculated as

)(* r

Z(T’)=Z(P’)+2 . (28)
Note that using the compressed period instead of the

service interval can reduce the access number of off-chip
memory. When a session becomes active, the header of the
newly packet is passed to network processor, with the period
of this session, the interval can be computed and saved in on-
chip memory.
C. Range Number

When the timestamp and the period maintain the same
degree of accuracy, the maximum relative error is consistent
over the whole range of service rates. In order to generate the
compressed timestamp, a range number is also needed to
indicate the position of the decimal point of the timestamp
and period. For example, when Ci=4, then 2 . Thus
the maximum range number can be computed as

54 2<≤ iP

Cmax= log2(rmax/rmin). (29)
Thus, the number of bits to represent the range number
Z(C) = log2 Cmax . (30)

 can be obtained from by right shifting the decimal
point Ci bits. The timestamp can be similarly obtained with
its compressed form and packet size. With these properties,
we 1) compute the period for each session and save it in the

'iP

2356

compressed form, 2) compute the timestamp and save it in
the compressed expression, 3) rebuild the timestamp to the
complete form from the compressed expression, and 4) the
scheduler sorts packets by comparing their complete
timestamps.

N= Z(C) + Z(P’) + Z(T’). (31)
Consider the same packet scheduling system S as before.

From (25)-(31), the relationship between the range number
and corresponding range of the period and the maximum
relative error are shown in TABLE I.

With Z(C) =5, Z(T’)=7, and Z(P’)=5 (i.e., N=17), the
maximum relative error of the service rate with the
compressed expression is shown in Fig. 2.

TABLE I
 RANGES OF THE PROPOSED EXPRESSION FOR SCHEDULER S

Range # C Pmin Pmax Z(P’) Z(T’) N εmax
00000 1 2 5 7 17 2-7
00001 2 4 5 7 17 2-7
00010 4 8 5 7 17 2-7
00011 8 16 5 7 17 2-7
00100 16 32 5 7 17 2-7
00101 32 64 5 7 17 2-7
00110 64 128 5 7 17 2-7
00111 128 256 5 7 17 2-7
01000 256 512 5 7 17 2-7
01001 512 1024 5 7 17 2-7
01010 1024 2048 5 7 17 2-7
01011 2048 4096 5 7 17 2-7
01100 4096 8192 5 7 17 2-7
01101 8192 16384 5 7 17 2-7
01110 16384 32768 5 7 17 2-7
01111 32768 65356 5 7 17 2-7
10000 65356 130712 5 7 17 2-7

Fig. 2 The comparison of various expressions in terms of the

maximum relative error

IV. THE PROPOSED EXPRESSION FOR CELL-BASED
(ATM) SCHEDULERS

The cell-based scheduler can be considered as a special
case of the packet-based scheduler, with Lmax=Lmin= constant.
Equations derived for the fixed-point, floating-point and our

proposed shifting fixed-point representations still hold. Note
that in this case,

0log
min

max
2 =

L
L and

ii P=Φ .

Equations (25)-(31) still hold.
Suppose that the service rate of the cell-based scheduling

system S’ ranges from 4kbps to 622Mbps and the cell size is
40 bytes. Again, 1% relative error of service rate is
considered acceptable. With Z(C) =5, Z(T’)=7, and Z(P’)=5
(i.e., N=17), comparable result similar to the one shown in
Fig. 2 is obtained, implying that the proposed expression has
a higher accuracy for cell-based schedulers.

 V. IMPLEMENTATION ISSUES

In timestamp-based schedulers, there are always three
arithmetic and relational operations: 1) addition, 2) modular
comparison, and 3) multiplication and division. We introduce
two more operation in the proposed method: 1) generating the
compressed timestamp; 2) rebuilding the timestamp. With the
fixed-point representation, it is very easy to perform
operations such as addition and modular comparison. With
the floating-point expression, we need to first shift mantissa
of both timestamp and period, and then perform addition or
comparison. The proposed expression uses two additional
operations to adjust the decimal point by range number as
compared to the fixed-point expression. This can be readily
realized by hardware with some extra logic operations.

VI. CONCLUSIONS
In this paper, we have developed a more efficient

expression, which can be implemented in high-speed
switches, to represent timestamp and period in packet-based
and cell-based scheduling systems. It is applicable to any
timestamp-based scheduler.

In comparison with the normal fixed-point, floating-point
representations, and our earlier proposal, the newly proposed
expression can achieve better performance in terms of the
number of bits and accuracy. We have also derived the
formula to calculate the minimum number of bits to represent
the timestamp and period that meets the system requirement
(i.e., εmax (r), Lmax, Lmin, rmax and rmin).

REFERENCES

[1] A. Varma and D. Stiliadis, “Hardware Implementation of Fair Queuing
Algorithms for Asynchronous Transfer Mode Networks,” IEEE
Communication Magazine, December 1997, pp. 54-68.

[2] D.C. Stephens, J.C.R. Bennett and Hui Zhang, “Implementation
Scheduling Algorithms in High-Speed Networks,” IEEE Journal on
Selected Areas in Communications, Vol.17, No.6, June 1999, pp. 1145-
1158.

[3] J.C.R. Bennett and Hui Zhang, “WF2Q: Worst-case fair weighted
queuing,” Proc. IEEE INFOCOM’96, San Francisco, CA, pp. 120-128

[4] J.L. Rexford, A.G. Greenberg, and F.G. Bonomi, “Hardware-efficient
fair queuing architecture for high-speed networks," IEEE
INFOCOM'96, San Francisco, CA, pp. 638-646.

[5] G.R. Wright and W.R. Stevens, TCP/IP Illustrated Volume 2: The
Implementation, Reading, MA: Addison-Wesley, 1995, pp. 807-812.

[6] D. Wei, J. Chen and N. Ansari, “An Efficient Expression of Timestamp
and Period in Packet-based and Cell-based Schedulers,” to be presented
at ICC 2001, Helsinki, Finland, June 11-14, 2001.

2357

