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Abstract – Scheduling algorithms are implemented in high-
speed switches to provision Quality-of-Service guarantees in 
both cell-based and packet-based networks. Being able to 
guarantee end-to-end delay and fairness, timestamp-based fair 
queuing algorithms have received much attention in the past few 
years. In timestamp-based fair queuing algorithms, the size of 
timestamp and period determines the supportable rates in terms 
of the range and accuracy. Furthermore, it also determines the 
scheduler’s memory in terms of access bandwidth and storage 
space. An efficient expression can reduce the size of the 
timestamp and period without compromising the supportable 
rate range and the accuracy. In this paper, we propose a 
compressed and dynamic-range-based expression of the 
timestamp and period, which can be readily implemented in 
hardware for both high-speed packet-based and cell-based 
schedulers. As compared to fixed-point and floating-point 
number expression, when the size is fixed, the proposed 
expression has a better accuracy. Regarding to efficiency and 
relative error consistency, it is even better than our earlier 
proposal. 

I.  INTRODUCTION 

The current high-speed, service-integrated and packet-
switched networks are able to support many kinds of services 
simultaneously. Packet switches are required to support a 
large number of sessions with diverse bandwidth 
requirements; for example, the supportable rate can go as low 
as 4 Kbits/s and as high as even 10Gbits/s (OC192). Packet 
switches are also required to support a wide range of packet 
sizes, from 40 bytes (such as TCP/IP ACK packets) to 64 
Kbytes (such as maximum IP packet). Three important issues 
should be considered in the design of a scheduler: 1) end-to-
end delay, 2) fairness, and 3) implementation complexity.  

Based on the architecture of the schedulers, packet 
switches are classified into two types [1]: 1) frame-based, 2) 
sorted priority. Recently, sorted priority algorithms, also 
known as packet fair queuing (PFQ), have received much 
attention because they can approximate the idealized 
generalized processor-sharing (GPS) algorithm, which has 
desirable properties in terms of end-to-end delay and fairness 
[2].  

In a PFQ algorithm, there is a global variable called virtual 
time, associated with outgoing sessions being scheduled. The 
virtual time is updated when a packet receives service. Each 
packet has its own timestamp in the system. All packets are 

sorted by their timestamps. Timestamp sorted algorithms [1]-
[2] include weighted fair queuing (WFQ), self-clocked fair 
queuing (SCFQ), and worst-case weighted fair queuing such 
as WF2Q and WF2Q+. The virtual start time and the virtual 
finish time are the typical timestamps used in PFQs. Service 
interval is the time interval that the packet should stay in the 
scheduler. Given a virtual start time, the service interval is 
used to calculate the virtual finish time, and vice versa.  

The size of the timestamp and period determines the 
supportable rate in terms of range and accuracy. In this sense, 
it seems to be tempting to use a larger size to represent them. 
However, the size of the timestamp and period determines the 
system memory in terms of bandwidth required to access and 
space to store. In this regard, the smaller size the better. To 
resolve this trade-off, an optimal representation of the 
timestamp and period, which can meet the required accuracy 
in the smallest size, is required. Note that it is very difficult to 
use normal fixed-point or floating-point to represent the large 
range of both the packet size and service rate efficiently. By 
allocating a range number to accommodate different ranges 
of service rates, we have developed a better representation in 
terms of accuracy and the size of timestamp and period 
(instead of the service interval in [2]). This representation is 
generically applicable to any timestamp-based scheduling 
algorithm. 

The rest of the paper is organized as follows. Section II 
presents the background of timestamp and period of PFQs, 
analyzes the performance of fixed-point expression and 
floating-point expression in terms of accuracy and the total 
number of bits to represent timestamp and period. Our 
proposed expression for packed-based schedulers is discussed 
in Section III. The proposed expression is extended for cell-
based (ATM) schedulers in Section IV.  Implementation 
issues are discussed in Section V. This paper ends with some 
concluding remarks in Section VI. 

II. BACKGROUND 

PFQ algorithms are used to approximate the idealized 
generalized processor-sharing (GPS) algorithm. All PFQ 
algorithms have similar sorted-queue architecture. They 
differ in two aspects [2]: virtual time function and packet-
selection policy.  
A.   Notation 
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Z(.) –  the number of bits 
P  –  the idealized period  with infinite bit expression 
P – actual period representation with finite bit expression 
r  – the idealized service rate with infinite bit expression 
r – actual service rate with finite bit expression 
rmax – maximum supportable service rate 
rmin – minimum supportable service  rate 
ri – required service rate for session i 
rLC – link capacity of the scheduling system  
ε(α) – the relative error of α 

 ε(α)= 
α
αα −  

T – timestamp  
Iα – integer part of α 
Fα – fractional part of α 
Mα – mantissa part of α 
Eα – exponent part of α 
L– the packet size 
M- number of bits to represent virtual system time 
N- total number of bits of timestamp and period 

B.  PFQ Algorithms 
PFQ algorithms have a global variable – system virtual 

time V(.), which is defined differently for different PFQ 
algorithms. They also maintain a virtual start time and a 
virtual finish time for each session. When the kth packet of 
session i arrives, the virtual start time Si(.), virtual finish time 
Fi(.) and the service interval Φ  of this packet are updated 
as follows: 

k
i

)1(
.)(

,))(),(max(
)( 1





−

−
=

− servicefinishedptF

serviceinisessiontFtV
tS k

ii

i
i

 

)2(.)()( k
iii tStF Φ+=  

k

)3(.
i

ik
i r

L
=Φ  

where  is the size of the kth packet of session i and ri is the 
required service rate of session i.. 

k
iL

The worst-case fair index (WFI) [3] was introduced to 
characterize the fairness performance of PFQ algorithms. It 
was shown that PFQ algorithms with two tags (the virtual 
start time and the virtual finish time) could achieve better 
fairness performance than those with only a single tag.  
C.  Expression of Timestamp and Period 

Let Lmin be the minimum supportable packet size. In a 
packet scheduling system, the concept of time slot is 
introduced to normalize the time interval. One time slot τ  
equals to the time interval required to transmit a packet with 
the minimum supportable packet size at link rate rLC:  

.min

LCr
L

=τ    (4) 

Usually, rmax = rLC. 

The system virtual time V(t) is defined differently from one 
scheduling algorithm to another. V(t) is expressed in the unit 
of time slot; for example, V(t) is nothing but a counter in the 
virtual clock scheduling scheme, and it is incremented by one 
when a single packet with the minimum supportable packet 
size is sent out. The period of session i is defined as follows: 

i
i r

rP max=  . 

The period of a session is unit-less quantity. A session with 
P=3 means that the session should receive service of one 
time slot in every three time slots. The service interval and 
period are related as follows: 
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The period is stored in a processing table for each session 
and the timestamp is assigned for each packet. Using the 
virtual start time as the timestamp, the normalized service 
interval can be calculated from (3) and (6), and thus we can 
derive the virtual finish time; using the virtual finish time as 
the timestamp, the virtual start time can be similarly 
computed.  

Modular comparison is used to select 1) packets eligible to 
enter the scheduler; 2) packets which should receive service.  

Packets are allowed to enter the sorted-queue of the 
scheduler by comparing the system virtual time and their 
virtual start time. Packets are scheduled for transmission 
based on the virtual finish time.  

By employing modular comparison, two binary numbers 
represented by n+1 bits can be compared without ambiguity 
if the difference between them is less than 2n. Using the 
notation X[i:j] to represent the binary number extracted from 
the ith through jth bits of X, with the convention that the LSB 
bit is the 0th bit. For example, given X=1011101, 
X[5:2]=0111. A modular arithmetic comparison X>Y can be 
computed by the following pseudo code: 

Boolean Modular_Comparison (X,Y) 
1   if X[n-1:0] > Y[n-1:0] 
2 then result = TRUE 
3 else result = FALSE 
4 if X[n]=Y[n] 
5 then return result 
6 else return NOT result 

X[n-1:0] represents the binary number, and X[n] (the nth 
bit of X) is used to discern wraparound ambiguity [2][5]. The 
following condition must be satisfied: 

nYX 2<− . 
For example, when X=110 and Y=001, which represent 6 

and 1, respectively. Since the above condition must be met, 
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Y=X+011 rather than X=Y+101; in other words, Y>X. Thus, 
the result of Modular_Comparison(X,Y) is FALSE, implying 
that X is not greater than Y because of wraparound.  

With this property, Reference [4] suggests that the size of 
timestamps has to be at least one bit larger than the largest 
normalized service interval 
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bits to represent the integer part of the period must satisfy  
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In a cell-based scheduling system, it is tempting to use an 
integer representation of the timestamp, so that the system 
virtual time is simply increased by one each time a cell is 
transmitted. However, this would adversely affect the 
provisioning of those sessions with high bandwidth 
requirement. In a scheduling system with integer 
representation of virtual time, the period of 1,2,3 … 
represents service rate of 1, 1/2, and 1/3… times the link 
capacity. As a result, session rates between 1 and 1/2, 1/2 and 
1/3 of the link capacity cannot be represented. Therefore, we 
need more bits after the decimal point to represent the 
timestamp and period of high-rate sessions. 

The relative error of the service rate can be expressed in 
terms of the period representation with finite bits as follows: 
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Define ε  as the approximation of relative error of Pi )(ˆ iP
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Thus,    )9(.)()(ˆ ii rP εε =
Therefore, to guarantee the accuracy of the service rate we 

need to maintain the accuracy of the approximation of the 
period . The timestamp and period are stored and used 
together for each packet in the system. The accuracy of both 
of them determines the accuracy of the service rate.  

)(ˆ iPε

(1) The Fixed-Point Expression 
Using the fixed-point expression, the minimal number of 

bits to represent the timestamp and period ((7) and (8)) are: 
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Since scheduling involves arithmetic operations on both 
timestamp and period, they should maintain the same 
accuracy, thus having the same number of fractional bits. 

)()( TP FZFZ =  .  (12) 
Therefore, the generalized accuracy of the fixed-point 

expression is: 
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The total number of bits to represent the timestamp and 
period is:       (14) )()()()( PPTT FZIZFZIZN +++=

Consider a packet scheduling system S, which is required 
to support service rates from 4 Kbits/s to 622 Mbits/s, and the 
packet size ranged from 40 bytes to 64 Kbytes. Then, Z(IT) = 
29 and Z(IP) = 18. With Z(FT) = Z(FP) = 2, i.e., N = 51, the 
maximum relative error of the service rate is shown in Fig. 2. 
(2) The Floating-Point Expression 

Similarly, in order to achieve unambiguous modular 
comparison, the following inequality must be satisfied: 
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Let δ be the number of additional bits: 
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To maintain the same degree of accuracy of the timestamp, 

)17(.log)(
min

max
2 δ+








=

r
rMZ P

 

Thus, 
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The size of the binary equivalent of the timestamp and 

period are Z(MT)+1 and Z(MP)+1, respectively. The values of 
ET and EP determine how many bits the decimal point should 
shift from the position just after the most significant bit. 
Denote λ(P)=Z(MP)-EP and λ(T)=Z(MT)-ET . λ(P) and λ(T) 
are the number of bits after the decimal point in the period 
and timestamp, respectively. Thus, the relative error can be 
expressed as: 

)21(
.

22)(

2

),()(
22)(

2

)(ˆ

1)(

)()(

)(

1)()(

1)(

0

)(

1















+⋅

≤
+⋅

=

∑

∑

−

−=

−−

−

=

−

else
MB

TPif
MB

P

P
P

P
P

MZ

TPi

MZi
Pi

TP

MZ

i

MZi
Pi

λλ

λλ

λλ

ε

 

With λ(T)< λ(P), if the timestamp has more bits after the 
decimal point, the accuracy of the period is higher. The value 
of the timestamp ranges from 0 to 

maxΦ , implying that λ(T) 

ranges from δ to Z(MT). The worst case, corresponding to 
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λ(T) = λmin(T) = Z(MT)-δ, yields the following largest relative 
error: 
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Consider the same packet scheduling system S as before. 
Using (18) and (19), we have Z(ET) =Z(EP) =5 . 

With (Z(MT) = 33, Z(MP) = 4), i.e., N= 47, δ=4, the 
maximum relative error of the service rate using the floating-
point expression is shown in Fig. 2. 
(3) Our Earlier Proposed Expression 

We have developed an expression [6], which is more 
efficient than the fixed-point and floating-point expressions. 
However, the performance in terms of number of bit can still 
be improved. 

III. THE PROPOSED EXPRESSION FOR PACKET-BASED 
SCHEDULERS 

By employing the modular comparison, we propose a new 
expression by locating the decimal point according to the 
range number C of a session. Each range number C 
determines the decimal point, and thus the range of the 
period. Let Ci denote the range number for session i.  
A. The Compressed Timestamp Expression 

For session i, the timestamp-based algorithms have the 
globally bounded timestamp (GBT) [2]:  

Si(t)+Li
k/ri ≥ V(t) ≥ Si(t)-Li

k/ri ,  if queue of session i is not 
empty   (23) 

Thus (23) can be re-written as: 
V(t) +Φi

k
 ≥ Si(t)≥ V(t)- Φi

k,  if queue of session i is not 
empty   (24) 

For example, consider session i which requires period 
Pi=12.5. If Li

k = 2Lmin, then, Φ  i
k= 2Pi=25. Assume at the 

moment of V(t)= 200.75,  this packet is allowed to enter the 
queue. Then Si(t)=200.75 and Fi(t)=225.75. 

0 0 1 1 0 0 1 0 0 0 . 1 1 0 0 V(t) 
0 0 0 0 0 0 1 1 0 0 . 1 0 0 0 Pi 
0 0 1 1 0 0 1 0 0 0 . 1 1 0 0 Si(t) 
0 0 1 1 0 1 0 1 0 1 . 0 1 0 0 Fi(t) 
9 8 7 6 5 4 3 2 1 0 . -1 -2 -3 -4  
     x x x x x . x     

Figure 1 The relationship of V(t), Si(t), Fi(t) and Pi  
In Fig.1, note that only those bits marked ‘x’ (bit 4 to bit –

1) in Si(t) and Fi(t) are different from those in V(t). The 
number of ‘x’ depends on the number of significant bits of Pi 
and packet size Li

k as well.  Intuitively, we only need to save 
those bits marked ‘x’ as the timestamp, and compare this 
timestamp with those corresponding bits of the virtual system 
time. The compressed timestamp expression is defined as 
follows [2]: 

If the period of session i is Pi and it is expressed with bits 
from bit m to n, the timestamp of packet k of this session can 
be expressed with bits from bit m+ l +1 to n+ l , where k

i
k

i









=

min
2log

L
Ll

k
ik

i

maxmax ˆ)( =r εε

)(* rε

. One extra bit in the timestamp is used to 

discern the wraparound ambiguity.  
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By using the compressed timestamp expression, the size of 
the timestamp can be reduced dramatically, especially for 
those sessions requiring higher service rates. T’ denotes the 
compressed timestamp expression. 
B. The Compressed Period Expression with Fixed-size 

If all bits of the period can determine the accuracy, 
implying that the timestamp maintains the same degree of 
accuracy, then the maximum relative error of this expression 
is 

)1)((2)( +−= PZP .  (25) 
Let  denote the acceptable relative error of the 

service rate. Select the number of bits of the period Z(P) such 
that the maximum relative error is less than ε , then the 
relationship between Z(P) and ε  is as follows: 

)(* r
)(* r

)(*
2 rε    (26) 

In a scheduler, period P must be larger than 1. Therefore, 
by using the hidden ‘1,’ which is used in IEEE floating-point 
expression, one more bit can be saved. P’ denotes the 
compressed period expression. Then  (23) can be rewritten as: 

 1)(*
2 −rε   (27) 

For example, if ε =1%, 5 bits are needed to represent 
the period. The relative error with 6 bits (including the hidden 
‘1’) expression < 2-7 = 0.78%. Note that in order to discern 
the wraparound ambiguity, Z(T) should be one bit larger than 
Z(P). To take the hidden ‘1’ into consideration, the number of 
bits to represent the timestamp can also be calculated as 

)(* r

Z(T’)=Z(P’)+2 .   (28) 
Note that using the compressed period instead of the 

service interval can reduce the access number of off-chip 
memory. When a session becomes active, the header of the 
newly packet is passed to network processor, with the period 
of this session, the interval can be computed and saved in on-
chip memory. 
C. Range Number 

When the timestamp and the period maintain the same 
degree of accuracy, the maximum relative error is consistent 
over the whole range of service rates. In order to generate the 
compressed timestamp, a range number is also needed to 
indicate the position of the decimal point of the timestamp 
and period. For example, when Ci=4, then 2 . Thus 
the maximum range number can be computed as 

54 2<≤ iP

Cmax= log2(rmax/rmin).   (29) 
Thus, the number of bits to represent the range number  
Z(C) = log2 Cmax .   (30) 

 can be obtained from  by right shifting the decimal 
point Ci bits.  The timestamp can be similarly obtained with 
its compressed form and packet size. With these properties, 
we 1) compute the period for each session and save it in the 

'iP
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compressed form, 2) compute the timestamp and save it in 
the compressed expression, 3) rebuild the timestamp to the 
complete form from the compressed expression, and 4) the 
scheduler sorts packets by comparing their complete 
timestamps.  

N= Z(C) + Z(P’) + Z(T’).  (31) 
Consider the same packet scheduling system S as before. 

From (25)-(31), the relationship between the range number 
and corresponding range of the period and the maximum 
relative error are shown in TABLE I.  

With Z(C) =5, Z(T’)=7, and Z(P’)=5  (i.e., N=17), the 
maximum relative error of the service rate with the 
compressed expression is shown in Fig. 2.   

TABLE I 
 RANGES OF THE PROPOSED EXPRESSION FOR SCHEDULER S 

Range #  C Pmin Pmax Z(P’) Z(T’) N εmax 
00000 1 2 5 7 17 2-7 
00001 2 4 5 7 17 2-7 
00010 4 8 5 7 17 2-7 
00011 8 16 5 7 17 2-7 
00100 16 32 5 7 17 2-7 
00101 32 64 5 7 17 2-7 
00110 64 128 5 7 17 2-7 
00111 128 256 5 7 17 2-7 
01000 256 512 5 7 17 2-7 
01001 512 1024 5 7 17 2-7 
01010 1024 2048 5 7 17 2-7 
01011 2048 4096 5 7 17 2-7 
01100 4096 8192 5 7 17 2-7 
01101 8192 16384 5 7 17 2-7 
01110 16384 32768 5 7 17 2-7 
01111 32768 65356 5 7 17 2-7 
10000 65356 130712 5 7 17 2-7 

 
Fig. 2 The comparison of various expressions in terms of the 

maximum relative error 

IV. THE PROPOSED EXPRESSION FOR CELL-BASED 
(ATM) SCHEDULERS 

The cell-based scheduler can be considered as a special 
case of the packet-based scheduler, with Lmax=Lmin= constant. 
Equations derived for the fixed-point, floating-point and our 

proposed shifting fixed-point representations still hold. Note 
that in this case, 

0log
min

max
2 =

L
L  and 

ii P=Φ . 

Equations (25)-(31) still hold. 
Suppose that the service rate of the cell-based scheduling 

system S’ ranges from 4kbps to 622Mbps and the cell size is 
40 bytes. Again, 1% relative error of service rate is 
considered acceptable. With Z(C) =5, Z(T’)=7, and Z(P’)=5  
(i.e., N=17), comparable result similar to the one shown in 
Fig. 2 is obtained, implying that the proposed expression has 
a higher accuracy for cell-based schedulers. 

 V. IMPLEMENTATION ISSUES 

In timestamp-based schedulers, there are always three 
arithmetic and relational operations: 1) addition, 2) modular 
comparison, and 3) multiplication and division. We introduce 
two more operation in the proposed method: 1) generating the 
compressed timestamp; 2) rebuilding the timestamp. With the 
fixed-point representation, it is very easy to perform 
operations such as addition and modular comparison. With 
the floating-point expression, we need to first shift mantissa 
of both timestamp and period, and then perform addition or 
comparison. The proposed expression uses two additional 
operations to adjust the decimal point by range number as 
compared to the fixed-point expression. This can be readily 
realized by hardware with some extra logic operations. 

VI. CONCLUSIONS 
In this paper, we have developed a more efficient 

expression, which can be implemented in high-speed 
switches, to represent timestamp and period in packet-based 
and cell-based scheduling systems. It is applicable to any 
timestamp-based scheduler.  

In comparison with the normal fixed-point, floating-point 
representations, and our earlier proposal, the newly proposed 
expression can achieve better performance in terms of the 
number of bits and accuracy. We have also derived the 
formula to calculate the minimum number of bits to represent 
the timestamp and period that meets the system requirement 
(i.e., εmax (r), Lmax, Lmin, rmax and rmin).  
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