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ABSTRACT

Markov modulated self-similar processes are pro-
posed to model MPEG video sequences that can cap-
ture the LRD (Long Range Dependency) characteristics
of video ACF (Auto-Correlation Function). An MPEG
compressed video sequence is decomposed into three
parts according to different motion/change complexity
such that each part can individually be described by a
self-similar process. Beta distribution is used to char-
acterize the marginal cumulative distribution function
(CDF) of each self-similar processes, and Markov chain
is used to govern the transition among these three self-
similar processes. Network cell loss rate using our pro-
posed synthesized traffic is found to be comparable with
that using empirical data as the source traffic.

1. INTRODUCTION

The trend to transmit video over network, especially
over ATM, is emerging. Traffic models are important
to network design, performance evaluation, bandwidth
allocation, and bit-rate control. It has, however, been
observed that traditional models fall short in describ-
ing the video traffic because video traffic is strongly
autocorrelated and bursty [1]. To accurately model
video traffic, autocorrelations among data should be
taken into consideration. A considerable amount of ef-
fort on video modeling has been reported that include
MMRP [2], DAR(1) [3], Fluid Models [4], Markov Re-
newal Modulated TES Models [5], LRD [6], M /G /o
input process models [7], and GBAR Model (8.

The above models can be categorized into SRD and
LRD models. They are used to capture two statisti-
cal factors: marginal distribution (first-order statistics)
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and autocorrelation function (second-order statistics)
of traffic arrival times.

All these models can only capture the ACF of JPEG
video. The ACFs of MPEG videos are quite different
from these of JPEG videos. To overcome some short-
comings of video modeling, we propose to model an
MPEG compressed video sequence by Markov modu-
lated self-similar processes, in which the original se-
quence is decomposed into several sequences that can
be modeled by self-similar processes.

A Markov chain is then used to govern the transi-
tion among these self-similar processes. It has been
found that video traffic possesses self-similarity, and
thus it is natural to model video traffic by self-similar
processes. In addition, self-similar processes have sim-
ple ACF forms, hence allowing us to readily derive an
analytical model for our proposed approach. Our pro-
posed model is shown to be able to capture both the
long range dependency and marginal cumulative distri-
bution.

2. EMPIRICAL DATA AND ACF

We use MPEG-1 coded data of Star Wars' as the em-
pirical data. The source contains motions ranging from
low complexity/motion scenes to those with high and
very high actions.

The data file consists of 174,136 integers, whose val-
ues are frame sizes (bits per frame). The ACF of MPEG
coded Star War, shown in Fig. 1, is quite different from
that of JPEG coded sequence. The ACF of the MPEG
coded data fluctuates around an envelope, reflecting the
fact that, after the use of motion estimation techniques,
the dependency between frames is reduced. This char-
acteristic should be taken into consideration in mod-
eling MPEG coded video sequences. We propose to

1The MPEG-1 coded data were the courtesy of M.W.Garrett
of Bellcore and M.Vetterli of UC Berkeley.
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use self-similar processes with different ACF's to reflect
the fluctuation of ACFs. The basic idea behind this
method is to divide the sequence into three different
sequences, each modeled by a separate self-similar pro-
cess. The transition among these processes is governed
by a Markov chain, whose transition matrix can be ob-
tained from empirical data.

3. SRD, LRD, AND SELF SIMILARITY

Consider a stationary process X = {X,:n=1,2,...}
with mean p and variance o0?. The autocorrelation

function and the variance of X are denoted as:

T'(k) — E[(Xn - #l’(z‘Xn-%k - “)]

(1)

and
0? = E[(Xn — w7, (2)

X is said to be SRD if Zf___:ooo (k) is finite; otherwise,
the process is said to be LRD [9]. Let X defined above
has the following autocorrelation function:

r(k) ~ kPL(k),k = oo (3)

where 0 < 3 < 1, and L is a slowly varying function
as k — oo, i.e., limy_ o L(tz)/L(t) = 1 for all z > 0.
Consider the aggregated process

xm = {x{™y = {x{™, x5,
where

Xt(m)= (Xtm—m+1+"‘+Xtm)vtepvmep’ (4)

1
m
and P is a positive integer set. X is said to be exactly
second-order self-similar [9] if

varX™ = o*m="P (5)

and
r™ (k) = r(k) (6)

for all m € {1,2,3,---} and k£ € {0,1,2,---}. Here
(™) (k) is the autocorrelation function of X (™). In fact,
Eq. (5) is sufficient to define a self-similar process since
Eq. (3) and (6) can be derived from Eq. (5) [9].

It is apparent that a self-similar process is a kind
of LRD process. Since empirical video traffic exhibits
self-similarity and long range dependency, it is intuitive
to use self-similar processes to model video traffic. It is
one of the most often used processes to capture LRD of
video traffic.

Hurst parameter H = 1—/2(0 < 8 < 1) is used to
measure the similarity of a process. It is the only pa-
rameter needed to describe a second-order self-similar
process. For self-similarity processes, 1/2 < H < 1.
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4. CLASSIFICATION OF MPEG DATA

It is apparent that ACF of MPEG compressed video
traffic cannot be approximated by a single function
r(k) = k~? because this kind of function decreases
monotonically, while ACF of a MPEG compressed video
traffic fluctuates a lot. We therefore suggest to di-
vide the traffic data into three different parts—inactive
part, active part, and the most active part (authors
in [2] also pointed out that a video bit rate process has
three main components: a slowly changing component,
a more quickly changing component, and an impulsive
component). Suppose f(7) is the number of bits in the
ith frame. The video traffic can be classified as follows

1. If fG+1)/f(d) >T,i=2,3,---, then f(i+1) be-
longs to the non-inactive part; otherwise, f(i +1)
belongs to the inactive part, where T is a thresh-
old value.

2. Similarly, the non-inactive part can be classified
into the active and most active part.

Taking these three data sets as three different random
processes, we can calculate their ACFs.

5. MODELING OF CLASSIFIED DATA

The ACF of each process is very different from that
of the original sequence. For example, Fig. 2 shows
the ACF of the active part 2. The fluctuation is no
longer as big. We have used k=2, e=% and e #Vk,
corresponding to the ACFs of a self-similar process, a
Markov process and an M /G /oo input process, respec-
tively, to approximate ACFs of these three processes.
It becomes evident that k~? is a better approximation
of ACFs of these classified data, and we therefore use
self-similar processes s, s2, and s3 to model these pro-
cesses.

Using the least squares method, we obtained 3 =
0.3321, 0.3069, and 0.4396 for the active, inactive, and
the most active part, respectively. The corresponding
Hurst parameters for these processes are H = 0.8339,
0.8465, and 0.7802. Beta distribution [11] was used
to model the marginal distributions of these processes.
The probability density function of a Beta process has
the following form:

f(Z', 7377’#07/1'1)
I(y+ T— _ - _
1 (v n))(m_;;fo)w 1(1 T—po ) 1

p1—po T(7)T(n K1 —Ho
= po <z <p,0<7,0<n (7)
0 otherwise

20wing to the limited space, the ACFs of the other two parts,
not shown here, can be found in [10].
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where v and 7 are shape parameters, and [po, p1] is the
domain where the distribution is defined. Beta distribu-
tion is quite versatile and can be used to model random
processes with quite different shapes of marginal distri-
butions. The following formulae [11] are used to derive
the parameters of Beta distribution:

= a1 - 2) - ] Q
§= 12 )
where
1 N
i= Nin, (10)
Nyl et - (T, 5)
o= N(N-(-l) ) ’ (1)

and N is the number of data in the data set. Using
the classified data sets, 4 = 1.6179, 77 = 13.7810 for the
inactive process, ¥ = 1.7977, /7 = 12.1980 for the active
process, and 4 = 5.3550, 7j = 11.4134 for the most ac-
tive process. The marginal distributions of active part
and its corresponding Beta distributions are shown in
Fig. 3.

6. MODELING THE MPEG DATA

To model the whole data set, we need a process to gov-
ern the transition among the processes s;, sz, and s3
obtained above. Markov chain is often used owing to
its simplicity.

Using Markov chain as the dominating process, our
model for MPEG video traffic can be described by the
state diagram shown in Fig. 4, where state S1, S2, and
S3 correspond to the three respective self-similar pro-
cesses. At state S;, bit rates are generated by process
s;. The transition probability from S; to S; can be
estimated from the empirical data as follows:

N, .
pij = ]\; ) (12)

i

where N; is the total number of times that the system
goes through state S;, and Nj; is the number of times
that the system make transition to state S; from state
S;. For the Star Wars video, the following transition
matrix

R 0.0002 0.9998 0
P= 0.1174 0.5232 0.3594
0.0209 0.9791 0

is obtained. This matrix is useful for the synthesis of
video traffic.
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7. VIDEO TRAFFIC SYNTHESIS

To synthesize video traffic using our model requires self-
similar traffic generator. Some methods are available
to generate approximate self-similar traffic. Two of the
most frequently used methods are exactly self-similar
fractional Gaussian noise(FGN) [12] and asymptotically
self-similar fractional autoregressive integrated moving
average (F-ARIMA) process [12]. F-ARIMA can be
used to match any kind of ACF. It takes a long time to
generate the video traffic since F-ARIMA is an iterative
process. The F-ARIMA process can be generated by
the following algorithm [6]:

1. Generate Xy from a Gaussian distribution N (0, vp).
Set initial values Ng = 0,Dp =1

2. Fork=1,2,---,N-1, calculate ¢%;,j = 1,2,---,k
iteratively using the following formulae

k-1
Ny = r(k) = oe-1yr(k—j) (13)
i=1

Dy = Dy_1— N}_ /Dr (14)
¢xe = Ni/Dy (15)
ki = Pk-1,j — PkkPr—1,k—j>
k
me = Y kX (17)
=1
e = (1= ¢h)ve— (18)

Finally, each X} is chosen from N (myg, vx). In this way,

we obtain a process X with ACF approximating to (k).
To generate a self-similar process approximately, au-

tocorrelation function can be calculated in a recursive

way as

k+d

—r

r(0) =1,r(k+1) = 1

(k) (19)
where d = H — 0.5.

ACFs of F-ARIMA and FGN generated traffic are
less than k7 for small k. To compensate for the under-
estimation of ACFs of a self-similar process, Eq. (19)
used to generate F-ARIMA traffic can be enlarged for
small k. New self-similar traffic generators need to be
devised so that more exact self-similar traffic can be
generated.

Distribution of these data is Gaussian. For data to
be Beta distributed, the following mapping can be used

Ye = F;' (Fn(Xk)), k>0 (20)
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where X}, is a self-similar Gaussian process, Fyy is the
normal cumulative distribution function, and Fj bis
the inverse of the cumulative distribution function of
the Beta model.

Video traffic can be synthesized by a combination of
the three obtained self-similar processes via a Markov
process, whose transition matrix was given in the last
section.

8. NETWORK CELL LOSS RATE

Cell Loss Rate (CLR) is an important queuing perfor-
mance of an ATM network. To justify the queuing per-
formance of our model, our synthetic traffic was used
as the source traffic to an ATM switch with a limited
buffer size. The performance is compared to the same
system using empirical data as the source traffic. A
single arrival process is assumed in our simulation, and
its service rate is assumed to be constant. To simplify
the simulation process, the time is sliced. Every slice
is used to transmit one cell (48 bytes of payload per
cell). We also assume that cells in a frame must arrive
at the switch during the period of this frame. This cor-
responds to the case that no traffic shaping is applied.
Cells are dropped when the switch buffer overflows.

Based on the switch model, performance at different
service rates and buffer sizes is examined. Simulation
results using empirical data and traffic model are shown
in Table 1. The results show that the CLRs obtained
using video trace and our proposed model are very close
for both high and low service rates.

9. CONCLUSIONS

In this paper, we have proposed a Markov modulated

self-similar process for modeling MPEG compressed video

sequences. Compared with other methods, the pro-
posed model is easy to analyze, and it is able to capture
the LRD of video ACF. An analytical solution may be
obtained for this model because of its simple ACF form.
Queuing performance for small and large buffers under
different traffic intensity using our proposed model is
compatible with that using empirical data.
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Table 1: CLRs for different service rate and buffer size

Buffer size(cells) 4000cells/s 6000cells/s 9000cells/s

Trace Model Trace Model Trace Model
20 2.24E-2 | 9.95E-2 | 2.09E-3 | 2.30E-2 | 1.50E-4 | 4.25E-4
40 1.24E-2 | 7.43E-2 | 1.36E-3 | 1.34E-2 | 8.07E-5 | 1.34E-4
60 6.81E-3 | 5.44E-2 | 9.72E-4 | 9.25E-3 | 7.19E-6 | 2.28E-5
100 2.30E-3 | 2.72E-2 | 4.57TE-4 | 2.91E-3 | O 0
200 3.55E-4 | 4.22E-3 | 1.00E-5 | 3.40E-5 | O 0
400 6.14E-5 | 6.40E-4 | 0 0 0 0
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