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Abstract | The enhanced Birkho�-von Neumann

decomposition (EBVND) algorithm, a new class of

scheduling algorithms for input queued (IQ) switches,

is introduced. Theoretical analysis shows that the

performance of EBVND is better than the Birkho�-

von Neumann decomposition algorithm in terms of

throughput and cell delay, and can also provide rate

and cell delay guarantees. Wave front Birkho�-von

Neumann decomposition (WFBVND) algorithm and

its simpli�ed version WFBVND with logN iterations

(WFBVND-logN), the special cases of EBVND, are

also introduced and evaluated. Simulations show that

WFBVND and WFBVND-logN have much lower av-

erage cell delay as compared to the Birkho�-von Neu-

mann decomposition algorithm.

I. Introduction

The input-queued (IQ) switching architecture has been

adopted for high speed switch implementation owing to its
scalability. Employing virtual output queueing (VOQ)[1][2],
in which multiple VOQs directed to di�erent outputs are

maintained at each input, IQ switches without speedup
can avoid the head-of-line (HOL) blocking which limits the
throughput of the IQ switch using a single FIFO queue in

each input to approximately 58:6% [3]. Simulations show
that IQ switches with VOQs using wrapped wave front arbiter
(WWFA) [4] or parallel iterative matching (PIM) algorithm

[2] can reach an asymptotic 100% throughput without the re-
striction of HOL blocking. Later, theoretical analysis shows
that the longest queue �rst (LQF) [5] and the oldest cell �rst
(OCF) [5] algorithms can achieve 100% throughput under all

admissible and independent arrival processes. Though high
throughput can be reached, none of the above algorithms can
provide delay bound. Recently, Chang et al. proposed [6]

the Birkho�-von Neumann decomposition algorithm, which
can provide rate and cell delay guarantees, based on a decom-
position result by Birkho� and von Neumann for a doubly

stochastic matrix.

II. Enhanced Birkhoff-von Neumann

Decomposition Algorithm

Consider an N � N input-queued switch consisting of N in-

puts, N outputs, and a non-blocking switch fabric such as
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crossbar. The packets, which may have variable length, are

broken into �xed length cells when they arrive in the inputs.
After the cells crossed the fabric, they are reassembled to the
original variable length packets. Time slot is de�ned as the

time required transmitting a cell at the line rate. The VOQ
directed to output j at input i is denoted by Qi;j . If Qi;j is
not empty, there will have a request from input i to output

j. The basic objective of scheduling an IQ switch is to �nd a
contention free match based on the connection requests, i.e.,
at most one input can be matched to each output, and vice

versa.

Denote ri;j as the arrival rate of VOQ Qi;j . The input

traÆc is said to be admissible if the following inequalities are
satis�ed:

N�1X
j=0

ri;j � 1; 8i; (1)

N�1X
i=0

ri;j � 1; 8j: (2)

The matrix R = (ri;j) satisfying Eq. (1) and (2) is said to
be doubly substochastic. For any doubly substochastic ma-

trix R, there exists [6] a doubly stochastic matrix ~R = (~ri;j)
such that ri;j � ~ri;j ; 8i; j. An algorithm to construct dou-
bly stochastic matrix ~R from doubly substochastic matrix R

is also provided in [6] with a computational complexity of
O(N3). In this paper, we introduce the weighted rate �lling
algorithm (WRFA) to perform this task:

Weighted Rate Filling Algorithm (WRFA)

1. De�ne pi = 1 �
PN�1

j=0
ri;j. Calculate pi for all i.

2. De�ne qj = 1�
PN�1

i=0
ri;j. Calculate qj for all j.

3. Calculate � = N �
PN�1

i=0

PN�1

j=0
ri;j.

4. Let ~ri;j = ri;j +
piqj

�
.

The complexity of WRFA is O(N2) which is smaller than
the original one; furthermore, WRFA can share the unreserved

rate more fairly among the VOQs. For example, when R =2
64

0:2 0:2 0:2 0:2

0:2 0:2 0:2 0:2
0:2 0:2 0:2 0:2
0:2 0:2 0:2 0:2

3
75, the original algorithm constructs

the doubly stochastic matrix ~R =

2
64

0:4 0:2 0:2 0:2
0:2 0:4 0:2 0:2

0:2 0:2 0:4 0:2
0:2 0:2 0:2 0:4

3
75.
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Using WRFA, we get ~R =

2
64

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

0:25 0:25 0:25 0:25

3
75. Ap-

parently, WRFA shares the unreserved rate among the VOQs

more fairly.

A doubly stochastic matrix ~R can be expressed as the lin-

ear combination of permutation matrices [6], ~R =
P

k
�kPk,

where Pk is a permutation matrix, and 0 < �k � 1 such thatP
k
�k = 1.

The Birkho�-von Neumann decomposition algorithm

schedules the cells by setting the connection of the crossbar

according to the permutation matrix Pk with probability �k

[6]. Let Ci;j(n) be the cumulative number of time slots for

transmission that are assigned to Qi;j by time slot n. Denote

Ai;j(n) as the total number of cells arrived inQi;j at the end of

time slot n. Then the Birkho�-von Neumann decomposition

algorithm can guarantee

Ci;j(m)� Ci;j(n) � (m� n)ri;j � ui;j ; (3)

for all i, j, m > n, where ui;j is a real number less than or

equal to N2 � 2N + 2, if Eq. (1) and (2) are satis�ed [6]. Eq.

(3) implies that if Ai;j(n) conforms to (�i;j ; ri;j), i.e.,

Ai;j(m)�Ai;j(n) � (m� n)ri;j + �i;j ; (4)

then the cell delay from input i to output j is bounded by

d(�i;j +ui;j)=ri;je using the Birkho�-von Neumann decompo-

sition algorithm [6]. The o�-line and on-line computational

complexity of this algorithm is O(N4:5) and O(logN), respec-

tively [6].

We observed that the Birkho�-von Neumann decomposi-

tion algorithm is not eÆcient enough because it pays no at-

tention to the current occupancy of VOQs. For example,

the connection requests at the current time slot is shown in

Fig 1(a), where the non-empty VOQs are �lled with crosses.

Suppose the non-zero elements of the permutation matrix se-

lected by the Birkho�-von Neumann decomposition algorithm

at the current time slot are represented by circles in Fig.

1(a). Among all the VOQs selected by P, only VOQ Q0;1

is non-empty which is shown by thick border box in Fig. 1(a).

Hence, the Birkho�-von Neumann decomposition algorithm

can schedule only one cell in current time slot. However, two

more VOQs, such as Q1;2 and Q2;3, can actually send cells

across the fabric in the current time slot without removing

the cells scheduled by the Birkho�-von Neumann decomposi-

tion algorithm.

Based on the above observation, the enhanced Birkho�-von

Neumann decomposition (EBVND) algorithm matches the in-

puts and outputs which are not matched by the Birkho�-von

Neumann decomposition algorithm, and attempts to make a

maximal match in every time slot. Many algorithms such

as WWFA and PIM can be used to �ll the \holes" left by

the Birkho�-von Neumann decomposition algorithm. Thus,

EBVND will have a higher on-line computational complexity

than the Birkho�-von Neumann decomposition algorithm, but

expects to have better performance.

Suppose IQ switch B uses the Birkho�-von Neumann de-

composition algorithm while IQ switch E uses EBVND. De-

note Q
B
i;j and Q

E
i;j as the Qi;j of switch B and E, respec-

tively. Denote LEi;j(n) and L
B
i;j(n) be the length of QE

i;j and

Q
B
i;j by the end of time slot n, respectively. Let T

B
i;j(n)

be the cumulative number of cells dequeued from Q
B
i;j by

the end of time slot n, and T
E
i;j(n) be that of QE

i;j . De�ne

Ti;j(n;m) = Ti;j(m) � Ti;j(n). The following can be readily

derived:

Lemma 1 For any integer m > n, if both Q
B
i;j and Q

E
i;j are

constantly backlogged from time slot n+1 to time slot m, then

T
E
i;j(n;m) � T

B
i;j(n;m).

Theorem 1 If the exactly same traÆc is fed into switch B

and E concurrently and no cell is dropped, then L
E
i;j(n) �

L
B
i;j(n) for any i, j, and n.

Denote DB
c as the delay of certain cell c in switch B, and

D
E
c as the delay in switch E.

Theorem 2 Assume all the VOQs in switch B and E are

FIFOs. If the exactly same traÆc is fed into switch B and E

concurrently and no cell is dropped, then D
E
c � D

B
c for any

cell c.

Theorems 1 and 2 imply that the performance of EBVND is

better than (in the worst case at least as good as) the Birkho�-

von Neumann decomposition algorithm in terms of through-

put and cell delay guarantees. Thus, EBVND does provision

QoS guarantees since the Birkho�-von Neumann decomposi-

tion algorithm was proven to provision QoS guarantees [6].

Wave front Birkho�-von Neumann decomposition (WFB-

VND) algorithm, which is a special case of EBVND, matches

the unmatched inputs and outputs using a method similar to

WWFA [4]. WFBVND divides a time slot into N phases.

Assume P is the permutation matrix selected by the Birkho�-

von Neumann decomposition algorithm in the current time

slot. In the lth phase, where 0 � l � N � 1, WFBVND calcu-

lates matrix Vl = (Vl;i;j), where Vl;i;j = P(i+l)modN;j . During

the lth phase, WFBVND checks the VOQs corresponding to

the non-zero elements of Vl, and adds the non-empty VOQs

in the match if both its input and output are unmatched.

Fig. 1(a)-(d) shows an example, where the VOQs �lled with

crosses indicate the non-empty VOQs, the VOQs �lled with

circles indicate that the corresponding elements of Vl are 1
0s,

and the VOQs with thick border indicate they are scheduled

to transmit cells. The on-line computational complexity of

WFBVND is O(N2).

The complexity of O(N2) may be costly for high-speed im-

plementation. WFBVND with logN iterations (WFBVND-

logN) is thus introduced as a simpli�ed version of WFBVND

in order to reduce the complexity. It di�ers from WFBVND

by only having the �rst logN phases of WFBVND. Since

WFBVND-logN runs less phases than WFBVND, its perfor-

mance is expected to be worse than WFBVND, but still be

better than the Birkho�-von Neumann decomposition algo-

rithm, because it is the special case of EBVND. The on-line

computational complexity of WFBVND-logN is O(NlogN).

III. Discussion and Simulations

The performance of the new and some other existing algo-

rithms was simulated in a 16 � 16 IQ switch. 256 i:i:d: 
ows,

each belonging to a di�erent input-output pair, were created

in the simulations. TraÆc Ai;j conforms to (�i;j ; ri;j) for all

i; j, where �i;j is set to be 1000ri;j . Thus, the delay bound

is 1000 + dui;j=ri;je time slots for the Birkho�-von Neumann

decomposition algorithm, WFBVND, and WFBVND-logN .

Fig. 2 shows the average cell delay of the Birkho�-von

Neumann decomposition, WFBVND, WFBVND-logN , and
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OCF versus the traÆc load under i:i:d: (�; r) traÆc. Fig. 3

shows the variance of cell delay versus the traÆc load under

the same traÆc model. Fig. 2 and 3 indicate that the aver-

age cell delay and variance of WFBVND is much smaller than

that of the Birkho�-von Neumann decomposition algorithm,

and close to OCF. With a reduced complexity, the average

delay and the delay variance of WFBVND-logN are also sig-

ni�cantly smaller than those of the Birkho�-von Neumann

decomposition algorithm.

IV. Conclusions

A new class of IQ scheduling algorithms with rate and delay

guarantees has been proposed in this paper. Speci�cally, the

performance of WFBVND and WFBVND-logN is compared

with OCF and the Birkho�-von Neumann decomposition al-

gorithm. It has been demonstrated both by simulations and

theoretical analysis that the new algorithms can achieve much

smaller average cell delay and delay variance, as well as pro-

vide QoS guarantees.
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Figure 1: WFBVND algorithm, (a) phase 0, (b) phase 1,

(c) phase 2, and (d) phase 3.
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Figure 2: Average cell delay vs. traÆc load under i:i:d:

(�; r) arrival.
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Figure 3: Variance of cell delay vs. traÆc load under

i:i:d: (�; r) arrival.
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