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    Abstract-We present features of next generation SONET, 
focusing particularly on path management. Factors such as QoS 
metrics and path protection are keys to realize automatic and 
dynamic path management. Two algorithms (the sequential 
algorithm and the parallel algorithm) to provide QoS and 
protection path in SONET are proposed and discussed in details. 
They balance the network load by circumventing heavily loaded 
links, and reduce the network resource consumption by selecting 
the shortest paths. Simulation results demonstrate that they are 
practical solutions for path management of next generation 
SONET.  

I. INTRODUCTION 

SONET (Synchronous Optical NETwork) is a standard 
formulated by American National Standards Institute (ANSI). 
It defines optical carrier (OC) levels and electrically 
equivalent synchronous transport signals (STSs) for the fiber-
optic-based transmission hierarchy [11]. SONET has been 
deployed in almost every carrier’s network for about 20 years 
as a layer one transport mechanism to deliver voice traffic, 
and has proven to be very reliable in delivering voice service.  

In response to the Internet boom, a turning point occurred 
over the past years: data surpassed voice traffic. The Internet 
boom changes the characteristics of service on SONET from 
voice traffic into data traffic. Voice traffic is delay sensitive, 
and therefore fixed bandwidth assignment is desired 
regardless of the actual usage. Data traffic is bursty, and 
therefore fixed bandwidth assignment creates enormous 
wastage of bandwidth. Static path assignment does not satisfy 
the real-time bursty data traffic requirement, thus leading to 
inefficient network resource utilization and bad service for 
customers. In this paper, we provide solutions for path 
management in SONET that contribute to the main feature of 
next generation SONET. In Section II, some limitations of 
today’s SONET network are discussed. Solutions for these 
drawbacks comprising the basic functions of next generation 
SONET are presented in Section III. In Section IV, we focus 
on path management for next generation SONET. The 
purpose is to find the QoS guaranteed path with protection. 
Two practical algorithms to find such paths are proposed, and 
their effectiveness is demonstrated by simulation results.  
 

II. LIMITATION OF TODAY’S SONET 

* This work has been supported in part by OpenCon Communication 
Systems, Inc., the New Jersey Commission on Higher Education via the 
NJI-TOWER project, and the New Jersey Commission on Science and 
Technology via the NT Center for Wireless Telecommunications. 

As indicated above, one of the major problems with today’s 
SONET is the inefficiency associated with transporting data 
traffic. The major limitations that SONET is unfit for 
Internet-based communications are:  
• Static provision: In today’s SONET networks, 
bandwidth is allocated between two end points. Bandwith  
allocated to a path cannot be reused for other purpose until 
the path is released, regardless of its usage. This static 
provisioning results in enormous wastage of bandwidth. 
• Low bandwidth utilization: Today’s SONET 
bandwidth allocation requires manual intervention. Network 
engineers usually over-engineer the network to leave a 
margin even during peak traffic periods. The average circuit 
utilization rate is very low, 5 to 10 percent in the access 
network, and 20 to 30 percent in the core. During a busy 
period, the peak utilization rate might reach 50 to 70 percent. 
• Long time to provision: It takes days or weeks to 
provision a path from one end point to another end point in 
today’s SONET network. The process is manual, error prone 
and very costly.  
 

III. NEXT GENERATION SONET 

Growing popularity of new applications such as live 
videoconference require next generation SONET to find 
innovative solutions to meet the increasing demand for more 
bandwidth and provide the necessary quality of service on a 
per application basis. Next generation SONET must be a 
smart one with such basic smart functions as the followings:  
• QoS path provision: Path provision in next generation 
SONET will be automated. SONET network will support 
protocols that enable it to discover the network topology and 
network resources of the incident links. In addition to 
automatic resources discovery, next generation SONET will 
have to support signaling protocols such as RSVP-TE 
(Resource reSerVation Protocol with Traffic Engineering 
extensions) [3] and CR-LDP (Constraint-based Routed Label 
Distribution Protocol) [1] to automate path set up and tear 
down. Such path is quality guaranteed with at least one QoS 
metric. In other words, the dynamic path can transmit diverse 
data traffic in response to all kinds of real-time requirements. 
• Efficient path protection: Service protection in SONET 
transmission is largely concerned with providing redundancy 
to increase the overall availability of end-to-end paths. This is 
necessary because the net availability performance obtained 
by cascading a large number of network elements is 
incompatible with the expectation of many customers. Path 
protection contributes to network fault tolerance.  
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• High bandwidth utilization: Since data traffic is 
essentially bursty, allocating fixed bandwidth with a static 
path is highly inefficient. In order to reduce under utilization 
of bandwidth, next generation SONET network must support 
statistical multiplexing of traffic from data ports to increase 
bandwidth utilization through over subscription. 
• Migration strategy: The network will evolve from 
SONET based network to full photonic network based on 
WDM (Wavelength Division Multiplexing). Next generation 
SONET network must be positioned to facilitate migration to 
full photonic network. It should provide such optical 
modules, mapping the traffic onto one of the wavelengths 
supported by WDM or DWDM (Dense WDM) [4]. 
 

IV. PATH MANAGEMENT IN NEXT GENERATION SONET 
Path management in next generation SONET is composed 

of three major components: link state information, path 
computation, and path protection. Link state information 
component collects information about SONET network 
topology, bandwidth availability, and other network resources 
availability. Extensions to network layer routing protocols 
such as IS-IS (Intermediate System to Intermediate System) 
or OSPF (Open Shortest Path First) [9] can be used for this 
purpose. In this paper, we focus on the latter two functions, 
with the purpose of providing QoS constrained path and path 
protection for customers. Providing path with QoS guarantee 
and with protection is a traffic engineering mechanism, which 
focuses on minimizing the network resource consumption and 
balancing the network load. QoS path and protection path 
provide major performance improvement for path 
management of next generation SONET, and are the basis to 
other smart functions such as dynamic bandwidth allocation 
and high bandwidth utilization.  
 
A. QoS Path Provision and Path Protection 

Packets entering into SONET by the edge nodes are routed 
to their destination based on the destination address. From 
routing point of view, the egress ports are STS-N level paths. 
To realize quality guarantee, each packet must meet its 
bandwidth, delay, and delay jitter requirements.  

Service requirements have to be expressed as measurable 
QoS metrics such as bandwidth, delay, jitter, and loss rate. 
Different metrics may have different features. There are three 
types of metrics: additive, multiplicative, and concave [5]. 
Examples of additive metrics are delay, jitter, and hop-count; 
an example of multiplicative metrics is loss rate; bandwidth is 
an example of concave metrics. 

Path computation involves identifying one or more paths 
through SONET network that satisfy a set of QoS parameters 
such as loss rate, delay, and delay jitter. Selecting a path that 
satisfies all the QoS parameters is an NP-complete problem 
[12]. Therefore, generally the path computation module 
simplifies the problem by searching for paths that can satisfy 
just one or two QoS parameters at the most. 

Note that SONET is a TDM system with a time slot of 
125µs. The delay and delay jitter can be easily bounded by 
statistics of the data, and thus bandwidth should be the first 
consideration and has the highest priority among all QoS 
metrics in SONET.  

Another characteristics of SONET QoS metrics is: the 
allocated bandwidth in SONET network is discrete with the 

basic granularity of VT1.5, STS-1 (OC-1), STS-3 (OC-3), 
STS-12 (OC-12), STS-24 (OC-24), STS-48 (OC-48), and 
STS-192 (OC-192). To overcome the drawback of today’s 
SONET, bandwidth must be dynamically allocated according 
to this granularity. Customer’s request imposes a minimum 
bandwidth requirement on the path that will ensure QoS 
guarantee. When data enter SONET, they carry the bandwidth 
requirement information, and report it to the edge nodes. 

Since SONET network path is mainly in the core or 
backbone of the whole network, the protection path is 
necessary to minimize or eliminate data loss even in the worst 
case of working path failure. If the working path fails in the 
situation such as node dropping and link failing, the data 
traffic must be switched to the protection path to continue the 
data flow. Also, the two paths should be disjoint in order to 
guarantee that the protection path works well in the worst 
case if all links or nodes along the working path fail for some 
reasons. This capability of path protection is the main feature 
of next generation SONET. The path protection is to 
provision fault-tolerance. This protection is employed 
effectively on a network-wide basis with the goal of 
providing a high level of path availability as perceived by the 
customers.  

  
B. QoS Provision with Path Protection Algorithms 

Finding a path with protection is one application of DPP 
(Disjoint Paths Problem). A number of research results on 
DPP have been reported in the literature. In [10] the authors 
developed a distributed asynchronous algorithm of shortest 
disjoint paths. It minimizes the total length of the two paths 
between the source and the destination. Reference [6] 
suggests the idea of spanning tree-based distributed 
algorithm. Torrieri [14] established a set of short disjoint 
paths in a communications network by using adjacency 
matrix to construct the optimal paths set. Taft-Plotkin et al. 
[13] proposed a QoS-based maximally disjoint paths 
algorithm for precomputing paths.  

All these reported algorithms address important issues of 
DPP. However, none of them present algorithms that are to 
find two disjoint paths between a pair of nodes on-demand 
such that both of the paths are guaranteed to satisfy the QoS 
requirement. In this section, we propose two algorithms to 
provide on-demand QoS path and protection path in SONET. 
Note that any two or more of hop-count, delay, delay jitter 
and loss rate in any combination as QoS metrics are NP-
complete. The only feasible combinations are bandwidth and 
one of the other four (hop-count, delay, delay jitter, and loss 
rate) [15]. Although these four are all very useful metrics, we 
believe that for the majority of applications in SONET, delay 
is comparatively more important and practical than the others.  

The bandwidth we are interested in here is the residual 
bandwidth that is available for new traffic. The bandwidth of 
a path is defined as the minimum of the residual bandwidth of 
all links on the path, or the maximal reservable bandwidth on 
the path. A path is feasible if the available or unreserved 
bandwidth of all links on the path is equal to or larger than the 
customer’s requested bandwidth.  

From the point of traffic engineering, a routing algorithm 
for SONET must balance the network load and limit the 
resource consumption [8]. The network load can be balanced 
by selecting the path with light traffic, while resource 
consumption can be reduced by restricting the length of the 
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selected path. Our algorithms limit resource consumption by 
choosing the shortest path, and balance network load by 
pruning heavily loaded links. 

Note that SONET is a TDM system with 125µs time slot, 
and the delay of a SONET path is proportional to the path 
length. Thus, the path with the shortest length achieves the 
least delay. In other words, our algorithms aim to find the 
shortest path with one protection path and with bandwidth 
guarantee. The following notations are adopted: 
W(N,L) ---- SONET network with node set N and link set L; 
(s, t) ---- a node pair with source s and target t; 
P(s,…,t) ---- a path with source node s and target node t; 
bi  ---- available bandwidth of link i, ∀ i∈ L; 
d ---- length of a path; 
b ---- bandwidth of a path, b=min{ bi | i∈ P}; 
br ---- bandwidth requirement for setting up a path.  
 
1) The Sequential Algorithm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The sequential algorithm finds two disjoint paths from 

source node s to destination node t sequentially. It can be 
simply described as: handle the concave constraint (i.e., 
bandwidth) by first pruning out all links that do not satisfy the 
constraint, and then find the shortest path as the working path 
Pw(s,…,t); prune the links and intermediate nodes of the 

working path from the network topology and find the shortest 
path of the reduced network as the protection path Pp(s,…,t).  

The sequential algorithm consists of the following major 
phases, and its pseudo code is shown in Fig. 1. 
• Pruning links: before finding the working path, prune all 
links with available bandwidth less than br (customer’s 
bandwidth requirement) from the network topology. Before 
finding the protection path, prune all intermediate links and 
nodes on the working path to ensure that the protection path is 
disjoint from the working path. 
• Finding the shortest path: find the shortest path from s to 
t in the pruned network topology by Bellman-Ford algorithm. 
The selected shortest path can guarantee the shortest delay. 
• Reserving path: reserve customer’s requested bandwidth 
br along all links of the selected path (working path or 
protection path). Owning to the stale network information, the 
seemingly feasible path in Bellman-Ford algorithm may not 
afford br on all its links. This path cannot be reserved. In such 
cases, we must update the link state information and 
reconfigure the path using the new link state information.   Sequential Algorithm 

  
Input:   W(N,L), source s, target t, bandwidth requirement br,  
             redo times nw and np 
Output: 1, if two disjoint paths are found: working path Pw(s,…,t), 

 protection path P (s,…,t) p
             0, if fail to get Pw(s,…,t) and Pp(s,…,t) 
begin 
         for k = 0 to nw 
              for all link i in L  
                    if ( bi < br ) 
                       remove link i from W(N,L); 
                    end if 
               end for                             // prune links  
               Pw(s,…,t) = Bellman-Ford(W(N,L),s,t);   // working path 
               if (Reserve(Pw(s,…,t)))                              // reserve br  
                   for all intermediate nodes j in P (s,…,t) w
                        remove node j and its connection links from W(N,L);  
                   end for 
                   for m = 0 to np 
                       P (s,…,t)= Bellman-Ford(W(N,L),s,t); // protection path p
                        if (Reserve(Pp(s,…,t)))        // reserve br 
                            return 1; 
                        else 
                            updateinfor( );                // update information 
                        end if 
                   end for 
                   return 0; 
               else 
                    updateinfor( );                        // update information 
               end if 
         end for 
         return 0; 
end 
    
function: Bellman-Ford(W(N,L),s,t) 
returns:    the shortest path P(s,…,t) 
function: Reserve(P(s,…,t)) 
returns:    1, if successfully reserve br along path P 
                0, if fail to reserve br along path P 
function: updateinfor( ) 
returns:    update link state information 

• Updating information: update link state information, 
especially the information of available bandwidth, so that the 
next calculation is based on the new link state information. 

The sequential algorithm terminates when it finds the two 
paths (working path and protection path) and successfully 
reserves br along them. If it cannot reserve br for the stale 
network information, this algorithm allows recomputing the 
working path at most nw times and the protection path at most 
np times. The complexity of the Bellman-Ford algorithm [2] is 
O(ne), where n is the number of nodes and e is the number of 
links in the network. The worst case computational 
complexity of the sequential algorithm is O(ne(nw+ np)), 
where nw is the largest allowable “redo” trials to find the 
working path, and np is the largest allowable “redo” trials to 
find the protection path.   

 
2) The Parallel Algorithm  

Instead of finding and reserving the paths one by one, we 
can use the parallel algorithm to compute both paths 
simultaneously.  The parallel algorithm can be described as 
follows: start from the source node s (i.e., path P(s,…,s)), 
expand it to its incident links, then, all the paths from s to t 
can be reached; however, by pruning insufficient links, only 
the paths within which each link has equal or more available 
bandwidth than br are expanded. The candidate paths, 
CandidateList (all paths expanded from source s not reaching 
t), are sorted properly, such that the candidate path with the 
shortest length is selected and expanded first. Form the 
feasible paths, PathList (all paths from s to t which have 
sufficient bandwidth), choose the shortest one as the working 
path Pw(s,…,t), choose another one disconnected from the 
working path as the protection path Pp(s,…,t).  

The parallel algorithm grows a path list (PathList), which 
contains feasible paths from s to t. The path list is ordered 
such that the shortest one is at the head. Another path list 
(CandidateList) includes the extended paths from s that do 
not reach t. All the extended paths that cannot guarantee the 
bandwidth requirement are pruned from the CandidateList 
before further expansion. The CandidateList is sorted such 
that the shortest extended path is at the head. When the 
extended path reaches t, remove it from the CandidateList, 

Fig. 1.  Pseudo-code of the Sequential Algorithm 
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and move it into the PathList. All feasible paths are in the 
PathList when the CandidateList is empty.  

The pseudo-code of the parallel algorithm is shown in Fig. 
2, and includes the following major steps: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parallel Algorithm 
  
Input:   W(N,L), source s, target t, bandwidth requirement b redo times nr   r, 
Output: 1, if two disjoint paths are found: working path Pw(s,…,t),  
                  protection path Pp(s,…,t) 
             0, if fail to get Pw(s,…,t) and Pp(s,…,t) 
begin 
        for k = 0 to nr 
             CandidatList←P(s,…,s);              // initialize CandidateList              
             while(CandidateList is not empty) 
                       sort (CandidateList); 
                       get and remove first path Pf from CandidateList; 
                       if (P  reaches t ) f
                           insert Pf  into PathList; 
                           continue; 
                       end if                                  // if reaches t, insert it into PathList
                       while (incident links of P not empty) f  
                               for all incident links i 
                                   if ( bi< br ) 
                                      continue; 
                                   end if 
                  insert the extension path into CandidateList; 
                               end for                       // expand candidate path  
                       end while 
            end while 
            sort (PathList) ; 
            Pw(s,…,t) = first path in PathList;                     // working path 
            P (s,…,t) = finddisjoint (P (s,…,t), PathList);  // protection path p w
            if (Reserve(Pw(s,…,t) && Pp(s,…,t)))               // reserve br 
                return 1; 
            else 
                updateinfor();       // update information                                            
            end if 
       end for    
       return 0;   
end  
 
function: sort(PathList) 
returns:    a path list such that the shortest path is at the head of the list 
function: finddisjoint (P(s,…,t), PathList) 
returns:    the shortest path in PathList which is disjoint from P(s,…,t) 
function: updateinfor( ) 
returns:    update link state information 

 
 
 

• Expanding path: remove and expand the first path in the 
CandidateList one step further to get all possible extended 
paths. Initially, the only path in the CandidateList is P(s,…,s). 
• Inserting path: if the expanded path reaches t, insert it  
into the PathList, otherwise insert it into the CandidateList. 
• Sorting paths: sort all paths in the 
CandidateList/PathList so that the first one is the shortest 
path. The first path in the PathList will be selected as the 
working path. The first one in the CandidateList will be 
expanded first. 
• Finding two disjoint paths: in the PathList, let the first 
shortest one be the working path Pw(s,…,t), and choose 
another one disjoint from the working path with the shortest 
length as the protection path Pp(s,…,t). 
• Reserving: reserve br along the two chosen paths 
simultaneously. When the link state information is stale, the 
working path or the protection path may not be really 
feasible, for one or more links on the paths may have 
available bandwidth less than br. In such cases, link state 
information must be updated. 

• Updating information: update link state information, 
especially the information of available bandwidth, so that the 
next calculation is based on the new link state information. 

This algorithm is similar to the A* search strategy widely 
used in Artificial Intelligence, but with some pruning 
constraints [7]. Here, links with insufficient available 
bandwidth are pruned before further expansion. The 
algorithm terminates when two disjoint paths with sufficient 
bandwidth are found and reserved simultaneously. Otherwise, 
it recomputes the PathList at most nr times. The complexity is 
O(nrg2kh(h+1+log(kgh))), where g is the average number of 
connectivity of a node in the network, k is the number of 
paths in the PathList, h is the length of the protection path, 
and nr is the largest allowable “redo” trials to find the paths if 
the network information is stale. 
 
C. Simulation Results 

The performance of the above two algorithms is evaluated 
in the SONET network with 200 randomly distributed nodes. 
It is a mesh architecture. Each link’s total capacity (i.e., the 
reserved bandwidth and the unreserved bandwidth) is scaled 
into 1000 units. For example, if the link is OC-196, which is 
9953.280M, one unit equals 10M. The initial network load is: 
20%, 30% and 50% of the network resources (i.e., bandwidth) 
are used up, respectively. In other words, when the customer 
requests to set up a QoS path with protection, the SONET 
network has already used up 20%, 30% or 50% of the 
network bandwidth resources, respectively.  

The requested bandwidth is uniformly distributed from 50 
units to 500 units. The traffic loads are evenly distributed; this 
means that a new request selects with equal probability any 
pair of nodes as its source and destination. A request can be 
rejected either because such paths (one working path and one 
protection path) do not exist, or because the customer’s 
bandwidth requirement cannot be reserved along the elected 
paths. The latter one can be caused by stale information. 

Simulation results with three scenarios are presented in Fig. 
3. Case with 20% bandwidth used in the initial network load 
is the representative of an access network; 30% bandwidth is 
normally used up in a core network; case with 50% 
bandwidth occupied represents the busy period.  Fig. 2. Pseudo-code of the Parallel Algorithm 

In the simulation, as the bandwidth requirement increases, 
the blocking rate in both algorithms increases gradually. With 
the same initial state and same bandwidth requirement, the 
blocking rate of the parallel algorithm is less than that of the 
sequential algorithm. This is attributed by the fact that that the 
parallel algorithm reserves the selected two paths 
simultaneously whereas the sequential algorithm needs to 
reserve the paths one by one. Also, the link state information 
changes more often in the sequential algorithm since it takes 
more time. The trade-off for decreased blocking rate in the 
parallel algorithm is the more space requirement for storing 
the parallel computation results of feasible paths.  

Overall, the blocking rate is proportional to the initial 
network load. When the initial network load is heavy, our 
algorithms perform poorly because they tend to allocate long 
expensive paths to guarantee the bandwidth requirement, thus 
penalizing late arrival requests. 

Finding paths with multiple constraints is an NP-complete 
problem. Our algorithms first reduce the NP-complete 
problem to a simpler one by pruning, and then solve the new 
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problem by an extended Bellman-Ford algorithm (the 
sequential algorithm) or a modified A* search algorithm (the 
parallel algorithm) to find the shortest paths. Both the 
proposed algorithms result in polynomial time computation. 

Simulation results show that both of them can find the QoS 
path with the necessary protection in normal cases as well as 
in very busy network condition. The trade-off between the 
two algorithms is the storage space and blocking rate: the 
sequential algorithm needs less storage space (to store the two 
selected paths) with a higher blocking rate while the parallel 
algorithm needs more storage space (to store all the feasible 
paths in the PathList) with a lower blocking rate. 
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( a ) Initial network load 20% (access network) 
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( b ) Initial network load 30% (core network) 
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( c ) Initial network load 50% (busy period)   

 
 
 
 
 

V. CONCLUSIONS 

In this paper, necessary features of the next generation 
SONET that will overcome today’s limitation are discussed. 
Effective path management in the next generation SONET is 
the key point to realize traffic engineering and to incorporate 
smart functions such as dynamic bandwidth allocation and 
high bandwidth utilization. To guarantee QoS as well as to 
balance network resource utilization, our scheme is to provide 
bandwidth guaranteed path and one disjoint protection path. 
Two practical algorithms have been proposed. They minimize 
the resource consumption by choosing the shortest path, and 
balance the network load by selecting the lightly loaded links. 
The sequential algorithm modifies Bellman-Ford to find two 

disjoint shortest paths one by one; the parallel algorithm finds 
two disjoint paths by expanding candidate paths to the 
incident links with sufficient available bandwidth. Simulation 
results show that they work well in normal cases (normal 
access network and core network) as well as in busy period. 
The trade-off between the two algorithms is the storage space 
and blocking rate. To the best of our knowledge, our study is 
the first to evaluate the dynamic QoS path computation with 
path protection for next generation SONET. 
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