
QoS Provision with Path Protection
for Next Generation SONET*

Nirwan Ansari†, Gang Cheng†, Stephen Israel±, Yuanqiu Luo†, Jonathan Ma± and Li Zhu†

† Advanced Networking Laboratory
Department of Electrical and Computer Engineering

New Jersey Institute of Technology
University Heights, Newark, NJ 07102

± OpenCon Communication Systems, Inc.
377 Hose Lane

Piscataway, NJ 08854

 Abstract-We present features of next generation SONET,
focusing particularly on path management. Factors such as QoS
metrics and path protection are keys to realize automatic and
dynamic path management. Two algorithms (the sequential
algorithm and the parallel algorithm) to provide QoS and
protection path in SONET are proposed and discussed in details.
They balance the network load by circumventing heavily loaded
links, and reduce the network resource consumption by selecting
the shortest paths. Simulation results demonstrate that they are
practical solutions for path management of next generation
SONET.

I. INTRODUCTION

SONET (Synchronous Optical NETwork) is a standard
formulated by American National Standards Institute (ANSI).
It defines optical carrier (OC) levels and electrically
equivalent synchronous transport signals (STSs) for the fiber-
optic-based transmission hierarchy [11]. SONET has been
deployed in almost every carrier’s network for about 20 years
as a layer one transport mechanism to deliver voice traffic,
and has proven to be very reliable in delivering voice service.

In response to the Internet boom, a turning point occurred
over the past years: data surpassed voice traffic. The Internet
boom changes the characteristics of service on SONET from
voice traffic into data traffic. Voice traffic is delay sensitive,
and therefore fixed bandwidth assignment is desired
regardless of the actual usage. Data traffic is bursty, and
therefore fixed bandwidth assignment creates enormous
wastage of bandwidth. Static path assignment does not satisfy
the real-time bursty data traffic requirement, thus leading to
inefficient network resource utilization and bad service for
customers. In this paper, we provide solutions for path
management in SONET that contribute to the main feature of
next generation SONET. In Section II, some limitations of
today’s SONET network are discussed. Solutions for these
drawbacks comprising the basic functions of next generation
SONET are presented in Section III. In Section IV, we focus
on path management for next generation SONET. The
purpose is to find the QoS guaranteed path with protection.
Two practical algorithms to find such paths are proposed, and
their effectiveness is demonstrated by simulation results.

II. LIMITATION OF TODAY’S SONET

* This work has been supported in part by OpenCon Communication
Systems, Inc., the New Jersey Commission on Higher Education via the
NJI-TOWER project, and the New Jersey Commission on Science and
Technology via the NT Center for Wireless Telecommunications.

As indicated above, one of the major problems with today’s
SONET is the inefficiency associated with transporting data
traffic. The major limitations that SONET is unfit for
Internet-based communications are:
• Static provision: In today’s SONET networks,
bandwidth is allocated between two end points. Bandwith
allocated to a path cannot be reused for other purpose until
the path is released, regardless of its usage. This static
provisioning results in enormous wastage of bandwidth.
• Low bandwidth utilization: Today’s SONET
bandwidth allocation requires manual intervention. Network
engineers usually over-engineer the network to leave a
margin even during peak traffic periods. The average circuit
utilization rate is very low, 5 to 10 percent in the access
network, and 20 to 30 percent in the core. During a busy
period, the peak utilization rate might reach 50 to 70 percent.
• Long time to provision: It takes days or weeks to
provision a path from one end point to another end point in
today’s SONET network. The process is manual, error prone
and very costly.

III. NEXT GENERATION SONET

Growing popularity of new applications such as live
videoconference require next generation SONET to find
innovative solutions to meet the increasing demand for more
bandwidth and provide the necessary quality of service on a
per application basis. Next generation SONET must be a
smart one with such basic smart functions as the followings:
• QoS path provision: Path provision in next generation
SONET will be automated. SONET network will support
protocols that enable it to discover the network topology and
network resources of the incident links. In addition to
automatic resources discovery, next generation SONET will
have to support signaling protocols such as RSVP-TE
(Resource reSerVation Protocol with Traffic Engineering
extensions) [3] and CR-LDP (Constraint-based Routed Label
Distribution Protocol) [1] to automate path set up and tear
down. Such path is quality guaranteed with at least one QoS
metric. In other words, the dynamic path can transmit diverse
data traffic in response to all kinds of real-time requirements.
• Efficient path protection: Service protection in SONET
transmission is largely concerned with providing redundancy
to increase the overall availability of end-to-end paths. This is
necessary because the net availability performance obtained
by cascading a large number of network elements is
incompatible with the expectation of many customers. Path
protection contributes to network fault tolerance.

2152

0-7803-7400-2/02/$17.00 © 2002 IEEE

• High bandwidth utilization: Since data traffic is
essentially bursty, allocating fixed bandwidth with a static
path is highly inefficient. In order to reduce under utilization
of bandwidth, next generation SONET network must support
statistical multiplexing of traffic from data ports to increase
bandwidth utilization through over subscription.
• Migration strategy: The network will evolve from
SONET based network to full photonic network based on
WDM (Wavelength Division Multiplexing). Next generation
SONET network must be positioned to facilitate migration to
full photonic network. It should provide such optical
modules, mapping the traffic onto one of the wavelengths
supported by WDM or DWDM (Dense WDM) [4].

IV. PATH MANAGEMENT IN NEXT GENERATION SONET
Path management in next generation SONET is composed

of three major components: link state information, path
computation, and path protection. Link state information
component collects information about SONET network
topology, bandwidth availability, and other network resources
availability. Extensions to network layer routing protocols
such as IS-IS (Intermediate System to Intermediate System)
or OSPF (Open Shortest Path First) [9] can be used for this
purpose. In this paper, we focus on the latter two functions,
with the purpose of providing QoS constrained path and path
protection for customers. Providing path with QoS guarantee
and with protection is a traffic engineering mechanism, which
focuses on minimizing the network resource consumption and
balancing the network load. QoS path and protection path
provide major performance improvement for path
management of next generation SONET, and are the basis to
other smart functions such as dynamic bandwidth allocation
and high bandwidth utilization.

A. QoS Path Provision and Path Protection

Packets entering into SONET by the edge nodes are routed
to their destination based on the destination address. From
routing point of view, the egress ports are STS-N level paths.
To realize quality guarantee, each packet must meet its
bandwidth, delay, and delay jitter requirements.

Service requirements have to be expressed as measurable
QoS metrics such as bandwidth, delay, jitter, and loss rate.
Different metrics may have different features. There are three
types of metrics: additive, multiplicative, and concave [5].
Examples of additive metrics are delay, jitter, and hop-count;
an example of multiplicative metrics is loss rate; bandwidth is
an example of concave metrics.

Path computation involves identifying one or more paths
through SONET network that satisfy a set of QoS parameters
such as loss rate, delay, and delay jitter. Selecting a path that
satisfies all the QoS parameters is an NP-complete problem
[12]. Therefore, generally the path computation module
simplifies the problem by searching for paths that can satisfy
just one or two QoS parameters at the most.

Note that SONET is a TDM system with a time slot of
125µs. The delay and delay jitter can be easily bounded by
statistics of the data, and thus bandwidth should be the first
consideration and has the highest priority among all QoS
metrics in SONET.

Another characteristics of SONET QoS metrics is: the
allocated bandwidth in SONET network is discrete with the

basic granularity of VT1.5, STS-1 (OC-1), STS-3 (OC-3),
STS-12 (OC-12), STS-24 (OC-24), STS-48 (OC-48), and
STS-192 (OC-192). To overcome the drawback of today’s
SONET, bandwidth must be dynamically allocated according
to this granularity. Customer’s request imposes a minimum
bandwidth requirement on the path that will ensure QoS
guarantee. When data enter SONET, they carry the bandwidth
requirement information, and report it to the edge nodes.

Since SONET network path is mainly in the core or
backbone of the whole network, the protection path is
necessary to minimize or eliminate data loss even in the worst
case of working path failure. If the working path fails in the
situation such as node dropping and link failing, the data
traffic must be switched to the protection path to continue the
data flow. Also, the two paths should be disjoint in order to
guarantee that the protection path works well in the worst
case if all links or nodes along the working path fail for some
reasons. This capability of path protection is the main feature
of next generation SONET. The path protection is to
provision fault-tolerance. This protection is employed
effectively on a network-wide basis with the goal of
providing a high level of path availability as perceived by the
customers.

B. QoS Provision with Path Protection Algorithms

Finding a path with protection is one application of DPP
(Disjoint Paths Problem). A number of research results on
DPP have been reported in the literature. In [10] the authors
developed a distributed asynchronous algorithm of shortest
disjoint paths. It minimizes the total length of the two paths
between the source and the destination. Reference [6]
suggests the idea of spanning tree-based distributed
algorithm. Torrieri [14] established a set of short disjoint
paths in a communications network by using adjacency
matrix to construct the optimal paths set. Taft-Plotkin et al.
[13] proposed a QoS-based maximally disjoint paths
algorithm for precomputing paths.

All these reported algorithms address important issues of
DPP. However, none of them present algorithms that are to
find two disjoint paths between a pair of nodes on-demand
such that both of the paths are guaranteed to satisfy the QoS
requirement. In this section, we propose two algorithms to
provide on-demand QoS path and protection path in SONET.
Note that any two or more of hop-count, delay, delay jitter
and loss rate in any combination as QoS metrics are NP-
complete. The only feasible combinations are bandwidth and
one of the other four (hop-count, delay, delay jitter, and loss
rate) [15]. Although these four are all very useful metrics, we
believe that for the majority of applications in SONET, delay
is comparatively more important and practical than the others.

The bandwidth we are interested in here is the residual
bandwidth that is available for new traffic. The bandwidth of
a path is defined as the minimum of the residual bandwidth of
all links on the path, or the maximal reservable bandwidth on
the path. A path is feasible if the available or unreserved
bandwidth of all links on the path is equal to or larger than the
customer’s requested bandwidth.

From the point of traffic engineering, a routing algorithm
for SONET must balance the network load and limit the
resource consumption [8]. The network load can be balanced
by selecting the path with light traffic, while resource
consumption can be reduced by restricting the length of the

2153

selected path. Our algorithms limit resource consumption by
choosing the shortest path, and balance network load by
pruning heavily loaded links.

Note that SONET is a TDM system with 125µs time slot,
and the delay of a SONET path is proportional to the path
length. Thus, the path with the shortest length achieves the
least delay. In other words, our algorithms aim to find the
shortest path with one protection path and with bandwidth
guarantee. The following notations are adopted:
W(N,L) ---- SONET network with node set N and link set L;
(s, t) ---- a node pair with source s and target t;
P(s,…,t) ---- a path with source node s and target node t;
bi ---- available bandwidth of link i, ∀ i∈ L;
d ---- length of a path;
b ---- bandwidth of a path, b=min{ bi | i∈ P};
br ---- bandwidth requirement for setting up a path.

1) The Sequential Algorithm

The sequential algorithm finds two disjoint paths from

source node s to destination node t sequentially. It can be
simply described as: handle the concave constraint (i.e.,
bandwidth) by first pruning out all links that do not satisfy the
constraint, and then find the shortest path as the working path
Pw(s,…,t); prune the links and intermediate nodes of the

working path from the network topology and find the shortest
path of the reduced network as the protection path Pp(s,…,t).

The sequential algorithm consists of the following major
phases, and its pseudo code is shown in Fig. 1.
• Pruning links: before finding the working path, prune all
links with available bandwidth less than br (customer’s
bandwidth requirement) from the network topology. Before
finding the protection path, prune all intermediate links and
nodes on the working path to ensure that the protection path is
disjoint from the working path.
• Finding the shortest path: find the shortest path from s to
t in the pruned network topology by Bellman-Ford algorithm.
The selected shortest path can guarantee the shortest delay.
• Reserving path: reserve customer’s requested bandwidth
br along all links of the selected path (working path or
protection path). Owning to the stale network information, the
seemingly feasible path in Bellman-Ford algorithm may not
afford br on all its links. This path cannot be reserved. In such
cases, we must update the link state information and
reconfigure the path using the new link state information. Sequential Algorithm

Input: W(N,L), source s, target t, bandwidth requirement br,
 redo times nw and np
Output: 1, if two disjoint paths are found: working path Pw(s,…,t),

 protection path P (s,…,t) p
 0, if fail to get Pw(s,…,t) and Pp(s,…,t)
begin
 for k = 0 to nw
 for all link i in L
 if (bi < br)
 remove link i from W(N,L);
 end if
 end for // prune links
 Pw(s,…,t) = Bellman-Ford(W(N,L),s,t); // working path
 if (Reserve(Pw(s,…,t))) // reserve br
 for all intermediate nodes j in P (s,…,t) w
 remove node j and its connection links from W(N,L);
 end for
 for m = 0 to np
 P (s,…,t)= Bellman-Ford(W(N,L),s,t); // protection path p
 if (Reserve(Pp(s,…,t))) // reserve br
 return 1;
 else
 updateinfor(); // update information
 end if
 end for
 return 0;
 else
 updateinfor(); // update information
 end if
 end for
 return 0;
end

function: Bellman-Ford(W(N,L),s,t)
returns: the shortest path P(s,…,t)
function: Reserve(P(s,…,t))
returns: 1, if successfully reserve br along path P
 0, if fail to reserve br along path P
function: updateinfor()
returns: update link state information

• Updating information: update link state information,
especially the information of available bandwidth, so that the
next calculation is based on the new link state information.

The sequential algorithm terminates when it finds the two
paths (working path and protection path) and successfully
reserves br along them. If it cannot reserve br for the stale
network information, this algorithm allows recomputing the
working path at most nw times and the protection path at most
np times. The complexity of the Bellman-Ford algorithm [2] is
O(ne), where n is the number of nodes and e is the number of
links in the network. The worst case computational
complexity of the sequential algorithm is O(ne(nw+ np)),
where nw is the largest allowable “redo” trials to find the
working path, and np is the largest allowable “redo” trials to
find the protection path.

2) The Parallel Algorithm

Instead of finding and reserving the paths one by one, we
can use the parallel algorithm to compute both paths
simultaneously. The parallel algorithm can be described as
follows: start from the source node s (i.e., path P(s,…,s)),
expand it to its incident links, then, all the paths from s to t
can be reached; however, by pruning insufficient links, only
the paths within which each link has equal or more available
bandwidth than br are expanded. The candidate paths,
CandidateList (all paths expanded from source s not reaching
t), are sorted properly, such that the candidate path with the
shortest length is selected and expanded first. Form the
feasible paths, PathList (all paths from s to t which have
sufficient bandwidth), choose the shortest one as the working
path Pw(s,…,t), choose another one disconnected from the
working path as the protection path Pp(s,…,t).

The parallel algorithm grows a path list (PathList), which
contains feasible paths from s to t. The path list is ordered
such that the shortest one is at the head. Another path list
(CandidateList) includes the extended paths from s that do
not reach t. All the extended paths that cannot guarantee the
bandwidth requirement are pruned from the CandidateList
before further expansion. The CandidateList is sorted such
that the shortest extended path is at the head. When the
extended path reaches t, remove it from the CandidateList,

Fig. 1. Pseudo-code of the Sequential Algorithm

2154

and move it into the PathList. All feasible paths are in the
PathList when the CandidateList is empty.

The pseudo-code of the parallel algorithm is shown in Fig.
2, and includes the following major steps:

Parallel Algorithm

Input: W(N,L), source s, target t, bandwidth requirement b redo times nr r,
Output: 1, if two disjoint paths are found: working path Pw(s,…,t),
 protection path Pp(s,…,t)
 0, if fail to get Pw(s,…,t) and Pp(s,…,t)
begin
 for k = 0 to nr
 CandidatList←P(s,…,s); // initialize CandidateList
 while(CandidateList is not empty)
 sort (CandidateList);
 get and remove first path Pf from CandidateList;
 if (P reaches t) f
 insert Pf into PathList;
 continue;
 end if // if reaches t, insert it into PathList
 while (incident links of P not empty) f
 for all incident links i
 if (bi< br)
 continue;
 end if
 insert the extension path into CandidateList;
 end for // expand candidate path
 end while
 end while
 sort (PathList) ;
 Pw(s,…,t) = first path in PathList; // working path
 P (s,…,t) = finddisjoint (P (s,…,t), PathList); // protection path p w
 if (Reserve(Pw(s,…,t) && Pp(s,…,t))) // reserve br
 return 1;
 else
 updateinfor(); // update information
 end if
 end for
 return 0;
end

function: sort(PathList)
returns: a path list such that the shortest path is at the head of the list
function: finddisjoint (P(s,…,t), PathList)
returns: the shortest path in PathList which is disjoint from P(s,…,t)
function: updateinfor()
returns: update link state information

• Expanding path: remove and expand the first path in the
CandidateList one step further to get all possible extended
paths. Initially, the only path in the CandidateList is P(s,…,s).
• Inserting path: if the expanded path reaches t, insert it
into the PathList, otherwise insert it into the CandidateList.
• Sorting paths: sort all paths in the
CandidateList/PathList so that the first one is the shortest
path. The first path in the PathList will be selected as the
working path. The first one in the CandidateList will be
expanded first.
• Finding two disjoint paths: in the PathList, let the first
shortest one be the working path Pw(s,…,t), and choose
another one disjoint from the working path with the shortest
length as the protection path Pp(s,…,t).
• Reserving: reserve br along the two chosen paths
simultaneously. When the link state information is stale, the
working path or the protection path may not be really
feasible, for one or more links on the paths may have
available bandwidth less than br. In such cases, link state
information must be updated.

• Updating information: update link state information,
especially the information of available bandwidth, so that the
next calculation is based on the new link state information.

This algorithm is similar to the A* search strategy widely
used in Artificial Intelligence, but with some pruning
constraints [7]. Here, links with insufficient available
bandwidth are pruned before further expansion. The
algorithm terminates when two disjoint paths with sufficient
bandwidth are found and reserved simultaneously. Otherwise,
it recomputes the PathList at most nr times. The complexity is
O(nrg2kh(h+1+log(kgh))), where g is the average number of
connectivity of a node in the network, k is the number of
paths in the PathList, h is the length of the protection path,
and nr is the largest allowable “redo” trials to find the paths if
the network information is stale.

C. Simulation Results

The performance of the above two algorithms is evaluated
in the SONET network with 200 randomly distributed nodes.
It is a mesh architecture. Each link’s total capacity (i.e., the
reserved bandwidth and the unreserved bandwidth) is scaled
into 1000 units. For example, if the link is OC-196, which is
9953.280M, one unit equals 10M. The initial network load is:
20%, 30% and 50% of the network resources (i.e., bandwidth)
are used up, respectively. In other words, when the customer
requests to set up a QoS path with protection, the SONET
network has already used up 20%, 30% or 50% of the
network bandwidth resources, respectively.

The requested bandwidth is uniformly distributed from 50
units to 500 units. The traffic loads are evenly distributed; this
means that a new request selects with equal probability any
pair of nodes as its source and destination. A request can be
rejected either because such paths (one working path and one
protection path) do not exist, or because the customer’s
bandwidth requirement cannot be reserved along the elected
paths. The latter one can be caused by stale information.

Simulation results with three scenarios are presented in Fig.
3. Case with 20% bandwidth used in the initial network load
is the representative of an access network; 30% bandwidth is
normally used up in a core network; case with 50%
bandwidth occupied represents the busy period. Fig. 2. Pseudo-code of the Parallel Algorithm

In the simulation, as the bandwidth requirement increases,
the blocking rate in both algorithms increases gradually. With
the same initial state and same bandwidth requirement, the
blocking rate of the parallel algorithm is less than that of the
sequential algorithm. This is attributed by the fact that that the
parallel algorithm reserves the selected two paths
simultaneously whereas the sequential algorithm needs to
reserve the paths one by one. Also, the link state information
changes more often in the sequential algorithm since it takes
more time. The trade-off for decreased blocking rate in the
parallel algorithm is the more space requirement for storing
the parallel computation results of feasible paths.

Overall, the blocking rate is proportional to the initial
network load. When the initial network load is heavy, our
algorithms perform poorly because they tend to allocate long
expensive paths to guarantee the bandwidth requirement, thus
penalizing late arrival requests.

Finding paths with multiple constraints is an NP-complete
problem. Our algorithms first reduce the NP-complete
problem to a simpler one by pruning, and then solve the new

2155

problem by an extended Bellman-Ford algorithm (the
sequential algorithm) or a modified A* search algorithm (the
parallel algorithm) to find the shortest paths. Both the
proposed algorithms result in polynomial time computation.

Simulation results show that both of them can find the QoS
path with the necessary protection in normal cases as well as
in very busy network condition. The trade-off between the
two algorithms is the storage space and blocking rate: the
sequential algorithm needs less storage space (to store the two
selected paths) with a higher blocking rate while the parallel
algorithm needs more storage space (to store all the feasible
paths in the PathList) with a lower blocking rate.

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

Bandwidth Request (units)

B
lo

ck
in

g
R

at
e

(%
)

Sequential Algorithm
Parallel A lgorithm

(a) Initial network load 20% (access network)

50 100 150 200 250 300 350 400 450 500
0

5

10

15

Bandwidth Request (units)

B
lo

ck
in

g
R

at
e

(%
)

Sequential Algorithm
Parallel A lgorithm

(b) Initial network load 30% (core network)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Bandwidth Request (units)

B
lo

ck
in

g
R

at
e

(%
)

Sequential Algorithm
Parallel Algorithm

(c) Initial network load 50% (busy period)

V. CONCLUSIONS

In this paper, necessary features of the next generation
SONET that will overcome today’s limitation are discussed.
Effective path management in the next generation SONET is
the key point to realize traffic engineering and to incorporate
smart functions such as dynamic bandwidth allocation and
high bandwidth utilization. To guarantee QoS as well as to
balance network resource utilization, our scheme is to provide
bandwidth guaranteed path and one disjoint protection path.
Two practical algorithms have been proposed. They minimize
the resource consumption by choosing the shortest path, and
balance the network load by selecting the lightly loaded links.
The sequential algorithm modifies Bellman-Ford to find two

disjoint shortest paths one by one; the parallel algorithm finds
two disjoint paths by expanding candidate paths to the
incident links with sufficient available bandwidth. Simulation
results show that they work well in normal cases (normal
access network and core network) as well as in busy period.
The trade-off between the two algorithms is the storage space
and blocking rate. To the best of our knowledge, our study is
the first to evaluate the dynamic QoS path computation with
path protection for next generation SONET.

REFERENCES
 [1] J. Ash, M. Girish, E. Gray, B. Jamoussi, and G. Wright,
 “Applicability statement for CR-LDP,”IETF Internet
 Draft <draft-ietf-mpls-crldp-applic-01.txt>, July 2000.
 [2] R. E. Bellman, “On a routing problem,” Quality of
 Applied Mathematics, 1958, 16, pp. 87-90.
 [3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
 “Resource ReSerVation Protocol (RSVP)— version 1
 functional specification,” IETF RFC 2205, Sep. 1997.
 [4] D. Cavendish, “Evolution of optical transport
 technologies: from SONET/SDH to WDM,” IEEE
 Communications Magazine, vol. 38, no. 6, pp. 164-172,
 June 2000.
 [5] A. Fei and M. Gerla, “Smart forwarding technique for
 routing with multiple QoS constrains,” in Proceedings of
 IEEE GLOBECOM '00, vol. 1, 2000, pp. 599 –604.
 [6] K. Ishida, Y. Kakuda, and T. Kikuno, “A routing
 protocol for finding two node-disjoint paths in
 computer networks,” in Proceedings of IEEE
 International Conference on Network Protocols, 1995,
 pp. 340-347.
 [7] G. Liu and K. G. Ramakrishnan, “A* prune: an
 algorithm for finding k shortest paths subject to multiple
 constraints,” in Proceedings of IEEE INFOCOM '01,
 vol. 2, 2001, pp. 743-749.
 [8] Q. Ma and P. Steenkiste, “On path selection for traffic
 with bandwidth guarantees,” in Proceedings of 1997
 International Conference on Network Protocols, 1997,
 [9] J. Moy, “OSPF version 2,” IETF RFC 2178, July 1997.
[10] R. Ogier and N. Shacham, “A distributed algorithm for
 finding shortest pairs of disjoint paths,” in Proceedings
 of IEEE INFOCOM '89, vol. 1, 1989, pp. 173-182.
[11] M. Sexon and A. Reid, Transmission Networking:
 SONET and the Synchronous Digital Hierarchy. Artech Fig. 3. Simulation Results: (a) Initial network load 20% (access network),

(b) Initial network load 30% (core network),
(c) Initial network load 50% (busy period)

 House, Norwood, MA, 1992.
[12] J. Song, H. K. Pung, and L. Jacob, “A multi-constrained
 distributed QoS routing algorithm,” in Proceedings of
 IEEE International Conference on Networks, 2000, pp.
 165-171.
[13] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-of-
 service routing using maximally disjoint paths,” in
 Proceedings of IEEE IWQoS '99, 1999, pp. 119-128.
[14] D. Torrieri, “Algorithms for finding an optimal set of
 short disjoint paths in a communication network,” IEEE
 Transactions on Communications, vol. 40, no. 11, pp.
 1698-1702, Nov. 1992.
[15] Z. Wang and J. Crowcroft, “Quality-of-service routing
 for supporting multimedia applications,” IEEE Journal
 on Selected Areas in Communications, vol. 14, no. 7, pp.
 1228-1234, Sep. 1996.

2156

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

