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Abstract— As the DiffServ architecture is gaining ground,
traffic engineering requires major adjustments. In addition, the
measurement-based strategy has been widely adopted owing to its
advantages of flexibility and easy adaptation. This article reviews
measurement-based dropping schemes. Based on the definition
and investigation of the “packet shortage” phenomenon, an
enhanced dropping scheme for the proportional differentiated
packet loss, referred to as “debt-aware,” is proposed. Simulation
results show that the scheme partially curbs negative effects of
“packet shortage” and closely approximates loss differentiation
parameters, as compared to a typical proportional dropping
mechanism. More simulations have been applied to demonstrate
the merits of this improved method.

I. INTRODUCTION

As compared to Integrated Service (IntServ), the Differ-
entiated Service (DiffServ) model defines an architecture for
implementing the scalable service differentiation in the Inter-
net. It achieves scalability by implementing the classification
function only at network boundary nodes, and by applying Per-
Hop Behaviors (PHBs) to traffic aggregates which have been
marked using the Differentiated Services (DS) field in Internet
Protocol (IP) headers [1]. The shift from the individual packet
flow-oriented IntServ to traffic aggregate-oriented DiffServ
model has had wide effects on traffic engineering, such as
buffer management.

A generic buffer/queue management system handles delay
and delay jitter with scheduling strategies, and guarantees
packet/cell loss criteria with dropping mechanisms. Most drop-
ping strategies require a priori knowledge about characteristics
of all traffic streams, such as the sustained rate, peak rate, or
burst length, and how they interact with each other. One type of
dropping strategy, referred to as measurement-based, becomes
rather attractive because of two major factors. First, with the
booming of Internet services and changing of users’ surfing
patterns, a traffic model, which can be used to analyze preset
parameters for traffic engineering, demands significant pre-
ciseness and may not be effective. Second, making dropping
decisions by measured data, not by the statistical analysis and
estimation, the measurement-based dropping strategy may be
incorporated with any scheduling mechanism. Under certain
circumstances, therefore, the measurement-based dropping is
more flexible and robust as compared to others.

The intent of this article is to discuss the class-oriented and
measurement-based dropping for proportional differentiated

packet loss guarantees. In Section II, background related to
the proportional dropping is presented. System and traffic
models are given in Section III. Based on the “packet short-
age” phenomenon defined and investigated in Section IV, an
enhanced proportional dropping scheme, referred to as “debt-
aware,” is proposed. As compared to a typical proportional
dropping scheme, its performance is then intensively simulated
and evaluated in Section V. Concluding remarks are given in
Section VI.

II. MEASUREMENT-BASED DROPPING MECHANISMS

Previous work [2][3][4][5][6] on the measurement-based
dropping strategy has been proposed for IntServ, where Qual-
ity of Service (QoS) criteria are quantified by the explicit
end-to-end delay and packet/cell loss. Corresponding to the
absolute QoS provided by IntServ, a proportional differentia-
tion service model was suggested [7] to provide the relative
QoS. This model groups network traffic into M service classes
which are ordered, such that class i is better or at least no
worse than class i − 1 for 1 < i ≤ M , in terms of per-hop
metrics such as queuing delay and packet loss. Considering
the loss aspect of the proportional differentiation model, a
dropping strategy [8] was proposed to target for a controllable,
predictable, and differentiated packet loss guarantee. It states
that even in short time scales, per-hop packet drops should be
proportional to the corresponding differentiation parameters
chosen by network engineers, such that li

lj
= δi

δj
, 1 ≤ i, j ≤

M , where li is the average loss rate for class i, and δi, i =
1, 2, ...,M, are differentiation parameters in terms of the loss
rate, ordered as δ1 > δ2 > δ3 > ... > δM > 0.

Two Proportional Loss Rate (PLR) droppers, namely
PLR(∞) and PLR(M), were introduced [8] to closely ap-
proximate the loss differentiation parameters δi. In PLR(∞),
the loss rate estimation li is the long-term fraction of packets
that have been dropped from class i, being measured by
counters for arrivals and drops in each class. Denote Ai,
Di, and B(t) as the counter of packet arrivals for class i,
the counter of packet drops from class i, and the set of
backlogged classes at time t, respectively. Whenever the buffer
overflows, PLR(∞) drops a packet from the class whose
index is determined by mini∈B(t)( Di

δiAi
) (i.e., mini∈B(t)( li

δi
)).

Instead, in PLR(M), the loss rate of class i is estimated as the
fraction of dropped packets from class i in the last M arrivals.
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Fig. 1. The buffer/queue system model.

Its dropping mechanism is the same as PLR(∞) except with
different parameter values.

III. SYSTEM AND TRAFFIC MODELS

It is assumed that a buffer/queue manager supports m (m =
3 in this article) service classes, one for each class selection
PHB, as depicted in Fig.1. A dropping module decides when
and which packets to be dropped. In addition, a First In First
Out (FIFO) module determines which class shall be served
next.

A typical deployment scenario is that an Internet Service
Provider (ISP) classifies the traffic at the core edge by ap-
plication types, customer service requirements, etc. When the
load of aggregates is low, all classes experience the same level
of QoS; otherwise, the differentiated QoS (e.g., packet loss in
this article) have to be maintained by ISP. Provided with a
means of monitoring the service performance, users can either
adjust their service criteria or switch to another class.

To model popular self-similar traffic aggregates (e.g., Eth-
ernet traffic), it is assumed that each traffic class is aggregated
by Pareto-distributed ON-OFF sources, respectively. A scale
parameter of 1.2, which was suggested [9][10] by early empir-
ical studies, is applied to all classes. Moreover, the minimum
values of ON and OFF time periods for the three respec-
tive classes of traffic, are defined as 0.5ms, 1ms, 1.5ms and
1.61ms, 2.9ms, 4.85ms, respectively. Traffic aggregate traces
generated under these assumptions, which are not shown here
due to the limited space, exhibit the self-similar characteristic
at different time scales and easily pass the “visual” test.

IV. “PACKET SHORTAGE” AND AN ENHANCED DROPPING

METHOD

A. The “packet shortage” phenomenon

With the normalized traffic load distribution of three classes
(L0, L1, L2) = (56%, 30%, 14%), PLR(∞) closely approxi-
mates differentiation parameters δ0 : δ1 : δ2 = 4 : 2 : 1, as
shown in Fig. 2(a). Assuming a 10% QoS deviation defined in
Service Level Agreement (SLA), we show that the agreement
will be violated under certain circumstances. For instance,
when picking up another load distribution (L0, L1, L2) =
(14%, 30%, 56%), the ratios l0

l1
and l0

l2
of PLR(∞) exhibit a
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(a) P LR(∞) with a normalized load (L0, L1, L2) = (56%, 30%, 14%).
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(b) P LR(∞) with a normalized load (L0, L1, L2) = (14%, 30%, 56%).
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(c) “Debt-aware” with a normalized load (L0, L1, L2) = (14%, 30%, 56%).

Fig. 2. “Packet shortage” phenomenon: (a) with an appropriate traffic load
distribution, PLR(∞) approximates its differentiated ratios well; (b) “packet
shortage” caused by another traffic load distribution, however, induces an
about 12.5% deviation to both rate ratios of PLR(∞); (c) alleviating the
“packet shortage” problem, “debt-aware” closely approximates the required
rate ratios.

12.5% deviation from δ0
δ1

and δ0
δ2

, respectively, as illustrated
in Fig. 2(b). The obvious cause is that in the latter case,
the load distribution does not synchronize with differentiation
parameters, that is, classes with bigger differentiation param-
eters (i.e., higher tendency to have smaller values of li

δi
and

therefore heavier dropping demands) have lighter traffic loads
as compared to others. Referred to as “package shortage,” this
problem has two possible consequences: the dropping module
may not be able to drop a packet from a designated class
if this class happens to be lightly loaded; it in turn induces
unnecessary losses of other backlogged classes, although rate
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ratios among classes may be regained after several rounds
of overflows. All these are against the original goal of the
differentiated dropping: closely approximate differentiation
parameters even at short time scales.

Seeking to alleviate the negative effects of “packet short-
age,” enlarging the buffer size is considered as a potential
solution. Being long enough, a buffer shall more likely be able
to accommodate packets from every class, and therefore help
the dropping module identify packets to drop at the moment
of overflow.

Assume there are m traffic classes, each of which is
superpositioned by n ON-OFF sources. The ON and OFF
periods of source j in class i are Pareto distributed with the
scale parameter αi,j , and lower cut-offs of boni,j

and boffi,j
,

respectively. Then Probability Density Functions (PDFs) of an
ON period Xoni,j

and an OFF period Xoffi,j
follow

fXon
(xoni,j

) =
αi,j(boni,j

)αi,j

(xoni,j
)αi,j+1 , xoni,j

≥ boni,j
(1)

and

fXoff
(xoffi,j

) =
αi,j(boffi,j

)αi,j

(xoffi,j
)αi,j+1 , xoffi,j

≥ boffi,j
, (2)

respectively, where i = 1, 2, ...,m, j = 1, 2, ..., n. Denote Li,j

and Ri,j as the average load and peak rate of the jth ON-OFF
source in class i, respectively. It can be shown that the buffer
length B, which is sufficient to hold at least one ON period
(i.e., one burst) from every class, is

B ≥ max
i

min
j

(boni,j
+ boffi,j

) ×
∑

i
j=arg min

j
(boni,j

+boffi,j
)

R
i,j
Li,j , (3)

where i = 1, 2, ...,m, j = 1, 2, ..., n.
For the jth source in class i, moreover, the traffic load

and the length of a pair of ON and OFF periods are Li,j =
Xoni,j

Xoni,j
+Xoffi,j

and Zi,j = Xoni,j
+Xoffi,j

, respectively. Since
both the ON and OFF periods have the same scale parameter,
the function of the buffer size B, which has at least one ON
period from every class, can be accordingly expressed as:

FB(Zi,j , Li,j) = max
i

min
j

Zi,j ×
∑

i
j=arg min

j
zi,j

R
i,j
Li,j . (4)

Given an upper bound of the buffer size x, the probability
of at least one ON period from every class accommodated in
the buffer is derived as the following:

P (B ≤ x) =
∫ x

0
fB(x)dx. (5)

This expression is based on the availability of a closed form of
fB(x), the PDF of FB(Zi,j , Li,j). The characteristic function
of the Pareto distribution, however, is not integrable in a
closed algebraic form [11][12]; thus, inversion methods of
obtaining fZ(x) and fL(x), that is, PDFs of Zi,j and Li,j ,
are not immediately applicable. This rules out an explicit
expression of fB(x). In other words, “packet shortage” cannot
be eliminated by simply enlarging the buffer.

Di: the number of packets dropped from class i.
Ai: the number of packet arrivals of class i.
δi: the loss differentiation parameter of class i.
di: the “drop debt” carried by class i.

A class i packet arrives, Ai + +;
if (the buffer overflows)
{ sort Di

δiAi
, i = 1, 2, ..., m, in an ascending order;

find an eligible class j, j = arg mini∈B(t)(
Di

δiAi
), where

i = 1, 2, ..., m, and B(t) is the set of backlogged classes;
update the “drop debt” counters, that is, dk + +, where
k = 1, 2, ..., j − 1;
drop the packet at the tail of class j, Dj + +;

}
else
{ looping through “drop debt” counters, pick up class k

which is backlogged;
dk − −;
drop the packet at the tail of class k, Dk + +;

}
Accept the incoming packet;

Fig. 3. The pseudo code of “debt-aware.”

B. An enhanced “debt-aware” dropping scheme

The previous discussion and analysis highlight three features
an enhanced dropping method shall have: closely approximat-
ing loss differentiation parameters by relieving the “packet
shortage” phenomenon, dropping packets whenever it is nec-
essary, not just at overflow moments, and still being based on
simple on-line measurements.

The enhanced proportional dropping method with a “drop
debt” memory, referred to as “debt-aware,” is therefore sug-
gested. Instead of only considering backlogged classes, this
method monitors all classes and adopts corresponding actions.
Its pseudo code is listed in Fig. 3. Taking the cheap memory
and the fast access speed of digital circuits nowadays into con-
sideration, the complexity of the system does not significantly
increase, with an extra register for each of the limited number
of service classes.

Before looking into simulation results, essential charac-
teristics and advantages of “debt-aware” are summarized as
follows: first, it expands the reach of the dropping module
to incoming packets as well as backlogged ones, and thus
partially curbs the adverse effect of the traffic load on the
system performance. Second, in addition to overflow moments,
a necessary dropping takes place when there is a “debt.” This
“debt” memory is exactly the effort to immediately identify
packets which stay in the buffer but are eventually pushed
out. Dropping these packets at an earlier stage can not only
avoid causing the loss of other packets, but can also improve
the queuing delay performance, as will be demonstrated in the
following section.

V. SIMULATIONS AND DISCUSSION

Unless otherwise noted, all simulations utilize a buffer
length B = 2K packets. All packets have a constant length
of 1K bits. The link utilization, which is defined as the ratio
of the aggregated traffic arrival to the service rate, is denoted
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Fig. 4. Snapshots demonstrating the excess queuing delay which can be
regained by “debt-aware.”

as ρ and given in each figure. All samples are measured based
on a window of 100K packets.

As compared to PLR(∞) that only drops backlogged
packets when buffer overflows, “debt-aware” provides more
“operation space.” It remembers packets which are supposed
to be dropped, and blocks out the eligible one when it comes
in. With the same load distribution that induces a 12.5%
performance deviation of PLR(∞) in Fig. 2(b), “debt-aware”
curbs the rate ratios back to their criteria, as shown in Fig. 2(c).
Furthermore, “debt-aware” is able to achieve the equivalent
performance of PLR(∞) under normal load distribution. The
corresponding simulation result is not shown due to the limited
space.

One may argue that “debt-aware” drops packet too aggres-
sively; this is not completely true. Since both PLR(∞) and
“debt-aware” aim to curb loss rate ratios even at a short time
scale, PLR(∞) will eventually push out whatever is supposed
to be dropped. Therefore, we argue that “debt-aware” does not
over-drop, but just do so at an earlier stage. For the policing
purpose, PLR(∞) may not be strict enough because a biased
ratio can go on for an unknown period of time until it is
regulated in one of the succeeding overflow moments or a
subscriber changes its service class, whichever comes first.

Another enhancement of “debt-aware” is that it improves the
performance of packet queuing delay, by distinguishing certain
packets at an earlier stage. Since PLR(∞) only drops at the
moments of overflow, certain packets may stay in the buffer
and delay other packets during the interval of two successive
overflows, until they either are finally dropped or leave the
queue. Fig. 4 demonstrates three snapshots of a buffer, where
every packet is marked with its class index. In the snapshot
shown in Fig. 4(a), the arriving and serving processes are
keeping a dynamic balance, whereby the buffer is full but
does not overflow. Then a burst comes and an overflow is
about to happen, as shown in Fig. 4(b). Denote the service
time of one packet as d. Assume that the serving process of
the last packet has finished and class 0 has the minimum value
of Di

δiAi
, i = 1, 2, ...,m. Under this circumstance, the dropping
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Fig. 5. Packet queuing delay with different sample density for PLR(∞)
and “debt-aware”: (a) demonstrates individual packet queuing delay in a very
short but typical time period, where the trace of “debt-aware” is below that of
PLR(∞), and shows smaller queuing delay; (b) sparsely plots 70 samples
in a 700-second simulation period, where “debt-aware” frequently exhibits
smaller queuing delay than that of PLR(∞).

module of PLR(∞) will drop the tail packet of class 0; “debt-
aware” case, however, could have blocked out this very packet
upon its arrival, if class 0 carries a “debt.” The consequence of
the PLR(∞) scenario, as demonstrated in Fig. 4(b), is that all
packets behind the discarded one are penalized with an extra
delay of d. Before the overflow is over, the same situation
could happen again. As illustrated in Fig. 4(c), the tail packet
of class 2 happens to be the next one eligible to be dropped,
and therefore packets lining up behind this one suffer from
another queuing delay of d in the PLR(∞) case.

To further illustrate the regained delay, Fig. 5(a) plots the
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individual packet queuing delay in a very short but typical
period. Both traces are quite thick due to the very high
sample density. With its sample trace completely under that
of PLR(∞), “debt-aware” exhibits much less queuing delay
than PLR(∞) does, confirming to the previous explanation.
Another two traces with sparse samples are presented in Fig.
5(b), both of which contain 70 samples in a 700-second
simulation period. Frequently, “debt-aware” exhibits smaller
queuing delay as compared to PLR(∞), except at very few
sample points.

One may argue that the decreased queuing delay is just
resulted by a more aggressive dropping, instead of the early
stage dropping feature of “debt-aware.” However, the existence
of exceptional sample points in Fig. 5(b), although very few,
is exactly a good counterevidence: if the performance was
simply gained by an aggressive dropping, all queuing delay
values of “debt-aware” must have been lower than or at least
equal to those of PLR(∞). The possible reason of these few
exceptional values, moreover, can be explained as follows:
since “debt-aware” does the early dropping in a round robin
manner which treats all classes equally, it may not always
follow the dynamic dropping order among classes as PLR(∞)
does. Consequently, both schemes may see different buffer
contents at the same moment of overflow. Assume that “debt-
aware” picks up packet A and PLR(∞) chooses packet B
when the buffer overflows. If packet A is behind packet
B in the queue, all packets between packet A and B will
experience one more measure of queuing delay (i.e., d) in
“debt-aware;” this contributes to a longer delay experienced
by certain sample points in “debt-aware.”

It is worth mentioning that neither “debt-aware” nor
PLR(∞) can improve the situation when the overall (not
only backlogged) traffic load of a class is not sufficient to
approximate its loss rate ratios to other classes, as regulated
by differentiation parameters. This is the infeasible region
investigated in [8]. It implies that it is critical for ISPs and
users to be able to adjust differentiation parameters and service
criteria, respectively.

VI. CONCLUSIONS

This article discusses the dropping strategy for proportional
differentiated packet loss guarantees. The “packet shortage”
phenomenon, frequently revealed in classical proportional
dropping schemes, has been defined and investigated. Referred
to as “debt-aware,” an enhanced measurement-based dropping
method is then suggested and evaluated. By simply adding one
register/counter to each service class, “debt-aware” improves
the queuing delay performance, and partially curbs the “packet
shortage” phenomenon to closely approximate loss differenti-
ation parameters.

Future work could be threefold: besides different traffic
load distributions, the effects of the traffic load fluctuation
on the dropping performance need further investigation; when
coupling with other scheduling mechanisms rather than FIFO,
the overall performance could be different; the possible effects

of the restrict dropping in “debt-aware” on specific loss-
sensitive applications require additional attention.
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