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Abstract

When objects are occluded, many shape recognition
methods that use global information will fail. To recog-
nize partially occluded objects, we represent each object
by a set of “landmarks.” The landmarks of an object are
points of interest relative to the object that have impor-
tant shape attributes. Given a scene consisting of partially
occluded objects, a model object in the scene is
hypothesized by matching landmarks of the model to
those in the scene. A measure of similarity between two
landmarks, known as the sphericity, is used to perform
the matching.

A technique, known as hopping dynamic program-
ming, is described to guide the landmark matching. The
location of the model in the scene is estimated with a
least squares fit. A heuristic measure is then computed to
decide if the model is in the scene.

1.

Shape recognition is a important area in pattern
recognition and computer vision. We use the term shape
to refer to the invariant geometrical properties of the
relative distances among a set of static spatial features of
an object. These static spatial features are known as the
shape features of the object. After extracting the shape
features from a model and a scene, a similarity measure
must be used to compare the shape features. The similar-
ity measure is referred to as a shape measure. The shape
measure should be invariant when the object is viewed at
a different scale or orientation. This does not suggest that
size and orientation are not important for the shape
recognition task. They are in fact important attributes
that will be estimated either as a part of the shape recog-
nition system, or as a separate task. Shape measures
should thus be invariant to translation, rotation, and scal-
ing.

Introduction

The problem we address in this paper is that of
recognizing and locating planar objects that may be
occluded or touching each other. The literature on par-
tial shape recognition is extensive. A review can be found
in [1]. In our approach, the shape features of an object
are the landmarks associated with the object. We define
the landmarks of an object as the points of interest of the
object that have important shape attributes. Examples of
landmarks are corners, holes, protrusions, and high curva-
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ture points. They can be problem specific based on a
priori knowledge. One contribution of our approach is
the introduction of a local shape measure, sphericity. It
can be shown [1] that all invariant functions under simi-
larity transformations are functions of sphericity. Instead
of evaluating many feature values in order to characterize
the similarity between two features, we use sphericity to
discriminate the dissimilarity between two landmarks. In
contrast to some partial shape recognition methods [2-6],
our approach is not sensitive to scale variation.

2. Landmark Extraction

It is important to note that the entire contour of an
object is not needed to use landmarks to achieve recogni-
tion. The approach only requires knowledge of the posi-
tions of the landmarks of the object.

Among the extreme points, points with high curva-
ture along the object contour are features that are most
attractive. The contour, as in the case of a model, usually
represents one object. However, in a general scene, when
occlusion is allowed, the contour could represent merged
boundaries of several objects. In this paper, we will only
consider landmarks as points of high curvature along an
object contour. Other problem specific types of landmarks
will not be considered. Note that erroneous landmarks of
objects in a scene may occur due to occlusion or noise in
the scene.

Figure 1 shows the landmarks of various objects.
They correspond to the extreme curvature points of the
Gaussian smoothed object boundaries. Details of detect-
ing landmarks can be found in [7].

3. Sphericity

The sphericity of a triangular transformation which
maps a triangle to another triangle is a measure of simi-
larity between the two triangles. Under the triangular
transformation, the inscribed circle of one triangle is
mapped onto an inscribed ellipse of the other triangle. As
shown in Figure 2, the sphericity is defined as the ratio of
the geometric mean to the arithmetic mean of the lengths
of the principal axes of the inscribed ellipse; i.e., spheri-
city is (2\/d;d; )/(d; +dz). If the two triangles are simi-
lar, the sphericity is one. The less similar the two trian-
gles, the smaller is the value of the sphericity. If the ver-
tices of one triangle are taken to be the coordinates of
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Figure 1. The landmarks of a library of objects.
wire stripper. (b) wrench. (c) specialty plier.
needle-nose plier. (e) wire cutter. (f) spacecraft.

Island of Borneo. (h) Island of Halmahera. (i) Island
of Luzon. (j) Island of Mindanao. (k) Island of New

Guinea. (1) Island of Sulawesi
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Figure 2. A mapping from a triangle to another trian-
gle. (a) Original triangles. (b) Mapping from the
inseribed circle to an inscribed ellipse. (¢) Mapping of

the incipal axes. Sphericity is defined as
(2V dydg )/(d1 +dy)-

three consecutive landmarks belonging to the model, and
the vertices of the other triangle as those belonging to the
scene, the sphericity is’ thus a measure of similarity
between the model and scene landmarks.

The triangular transformation is uniquely defined by

an affine transform which is a mapping of x to u, where
x, u € R?, such that
u=Ax + bt,

where

_ b4 . u _ e _ a b
x—[y},U——[v},bt— f},A—L d],anddet(A);éO.

Many properties of the sphericity such as maximal invari-
ance under similarity transformations are discussed in [1].

The hypothesis of a model object in the scene is
made by matching the model landmarks to the scene
landmarks. The location of the object in the scene is then
estimated by a least squares fit.

4. Hopping Dynamic Programming

Let {(xh y1)s (Xos ¥2)s 7 (Xa» yn)} be the coor-
dinates of a sequence of landmarks associated with a
model, and {(u, v1), (uz, va), **° , (Wm, Vm)} be those
associated with the scene. The goodness of match
between the ith model landmark and the jth scene land-
mark is given by the sphericity derived from the triangu-
lar transformation mapping
b {(xi—la Yi—l)y (xi: Yi)i (Xi+1, yi+l)}

0

{(uj~1! Vj—l)’ (uj, vi)s (9j415 Vj+1)}'
A mapping is said to be sense reversing [8] if the Jacobian
of the mapping is negative. To account for the sense of a
mapping, sphericity is negative if the triangular transfor-
mation is sense reversing.

A table of compatibility is constructed between the
model and scene landmarks. The row index i corresponds
to a model landmark while the column index j
corresponds to a scene landmark. The (i, j) entry of the
table is the sphericity value of the triangular transforma-



tion mapping the ith model landmark and its two adja-
cent landmarks to the jth scene landmark and its two
respective adjacent landmarks. Consider a simple exam-
ple of a scene where there are two objects overlapping
each other as shown in Figure 3. A table of compatibility
between the wire stripper and the scene is shown in Table
I. Since the landmarks of an object are obtained by trac-
ing sequentially along the object boundary, it is likely
that matches between the model and scene landmarks
correspond to a sequence of high-valued entries that are
diagonal to each other in the table. A brute-force
approach to finding such a sequence is impractical. We
will instead formulate a dynamic programming procedure
to achieve the matching.

Figure 3. A scene which consists of an overlapping
wire stripper and wrench. Each landmark is labeled
and indicated by an “X.”

Our matching procedure is somewhat similar to the
feature matching algorithm of Gorman and Mitchell [6).
They used backward dynamic programming to find a
minimum distance path from the first column to the last
column of their augmented inter-segment distance table.
Their assumption that the path must make use of all the
scene features is inadequate because the scene may have
extraneous or missing features due to occlusion. Instead of
this assumption, we will only require that our path covers
the range of either all the model landmarks or all the
scene landmarks. Neither the starting point nor the des-
tination point of a path which corresponds to a sequence
of matches between the scene and model landmarks is
known. Instead, a support entry, which is an entry in the
table that provides strong evidence of a true match
between a model and a scene landmark, is used to guide
the matching. The evidence is strong if the entry as well
as its diagonal neighboring entries have sphericity values
close to one. That is, the model landmark and its neigh-
boring landmarks match well locally with the scene land-
mark and its neighboring landmarks. Denote s(i, j) as the
sphericity value at the (i, j) entry of the table. The (i, j)
entry of the table is said to be the support entry of the
table if the sum s(i—1, j—1)+s(i, j)+s(i+1, j+1) is max-
imum. In the example shown in Table I, the support

833

entry can either be entry (3, 12) or (4, 1). Since the
sphericity is a local similarity measure, the overall good-
ness of the match between the model and the scene is
determined by the sum of the sphericity values of those
landmarks that match each other. The sequence of
matches should correspond to a path in the table that
passes through the support entry and maximizes the sum
of the sphericity values of the path with the following two
constraints:

(1) A model landmark cannot match to more than one
scene landmark, and

(2) A scene landmark cannot match to more than one
model landmark.

By the above two constraints, a vertical or a horizontal
transition of the path should not be considered as a
match between the model and the scene landmark.

Unlike the classical shortest path problem [9], we
desire to find a path that passes through the support
entry, rather than from a starting point to a destination
point, or vice versa. Here, the support entry is treated as
both a starting and a destination point. That is, we work
both forward and backward from the support entry. Let
(k, 1) be the support entry, ap(i, j) is the accumulated
sum of sphericity values from the (k, I) to (i, j) entry in
the backward procedure, and a¢(i, j) is the accumulated
sum of sphericity values from the (k, 1) to (i, j) entry in
the forward procedure.

Treating the support entry as the destination point, we
have the following set of transition rules for the backward
procedure:

(1) ab(i“lyj_‘l) =max{ab (irj)ﬁ(i_lyj_l)rab(i_lyj)’ ab(i)j_l)}

(2) ap(i—1,1) =max{s(i,1),s(i—1,1)}

(3) ab(k,j—l)=max{s(k,j),s(k,j——1)}

(4) ap(k,1) =s(k,1).

A diagonal transition according to Rule (1) implies a pos-
sible match between the (i—1)th model landmarks and the
(j—1)th scene landmark, and hence the sphericity value at
(i—1,j—1) is added to the accumulated sum of the spheri-
city at (i, j) to produce the accumulated sum of the
sphericity at (i—1,j—1). Since a horizontal or vertical
transition does not constitute a match, the accumulated
sum of sphericity remains the same as before the transi-
tion. Rules (2) and (3) are the boundary conditions. Rule
(4) is the initial condition.

Treating the support entry as the starting point, we
similarly have the following set of transition rules for the
forward procedure:

(1) ag(i+1,j+1) =max{a;(i,5)+s(i+1,i+1),2¢(i+1,3), ¢ (1,5 +1)}
(2) a¢(i+1,1) =max{s(,1),s(i+1,1)}

(3) a.f(k,j+1)=max{s(k,j),s(k,j+1)}

(4) ar(k,) =s(k, ).

We need to address how to switch between the for-
ward and backward procedure. Let (j j) be the entry
which the backward procedure has reached at the present
stage, and (;, j) be the entry which the forward procedure
has reached at the present stage. We define the backward
average sphericity value at entry (3 j) as ap(}, j) divided by
the number of transitions made by the backward pro-
cedure traversing from entry (k, 1) to entry (i j) of the



Table I

An example of the landmark matching task between the
wire stripper and the scene shown in Figure 3. (a) The
table of compatibility. (b) The result of performing hop-
ping dynamic programming using (3, 12) as the support
entry. (c) The resulting path indicated by 1's is the max-
imum value path.

Model
1 0.07 -0.37 0.08 -0.20 0.04 0.04 -0.31
2 -0.18 0.94 -0.40 0.41 -0.20 -0.08 0.98 -
3 0.03 -0.44 0.21 -0.09 0.09 0.02 -0.28
4 1.00 -0.12 0.03 -0.58 0.02 0.72 -0.18
5 -0.12 1.00 -0.37 0.33 -0.17 -0.08 0.8 -
6 0.02 -0.15 0.60 -0.04 0.99 0.01 -0.15
1 2 3 4 5 8 7
Scene
(a)
Model
1 2.00 200 100 0.00 0.00 0.00
2 2.00 200 1.00 0.00 0.00 0.00
3 1.00 1.00 100 100 1.00 1.00
4 0.00 000 1.00 199 1.99 1.99
5 0.00 000 1.00 199 299 2.99
6 0.00 0.00 1.00 199 2.99 3.60
10 11 12 1 2 3
Scene
(b)
Model
1 1 [ 0o 0 o0 o
2 1 1 0 0 0 O
3 0 0 1 0o 0 0
4 0 o ¢ 1 0 O
5 0 0 0o 0 1 o0
6 0 [\] 0 0 0 1
10 11 12 1 2 3
Scene

table. The forward average sphericity value is similarly
defined. The procedure which has a larger average spher-
icity proceeds one stage. The algorithm continues in this
fashion until the combined path of both the forward and
backward procedures covers the range of either all the
model or all the scene landmarks. The combined path is
known as the mazimum value path. We call this pro-
cedure hopping dynamic programming (HDP). Using the
earlier example, and using entry (3, 12) as the support
entry, HDP yields the result shown in Table I.

After determining the path, several heuristics are
used to further refine the match between the model and
scene landmarks along the path. From the two con-
straints mentioned earlier, entries along the path that
result from horizontal or vertical transitions cannot be
considered as matches. Only entries along the path that
result from diagonal transitions are considered as possible
matches. We also require that the entries along the path
must be above a certain threshold before they can be con-
sidered as possible matches. A threshold value of 0.7 has
been empirically developed. In the above example shown

0.19
0.86
0.32
0.09
0.76
0.30

8
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0.17 -0.03 -0.31 0.16
-0.62 0.20 1.00 -0.34
0.12 -0.07 -0.34 1.00
0.30 -0.02 -0.15 0.03
-0.45 0.16 0.93 -0.48
0.08 -0.54 -0.17 0.07

9 10 11 12

in Table I, entries (2, 11), (3, 12), (4, 1), (5, 2) are con-
sidered as possible matches. Isolated entries that have
been considered as possible matches so far are then elim-
inated because they are not locally supported by their
neighbors. The example shown in Table I does not have
any isolated entry, and hence entries considered as
matches remain the same.

The final step is to check the values of the entries
that are considered as matches along the path. If the
entry has a value that is greater than 0.95, its adjacent
diagonal entries will also be considered as matches. In
Table I, since all entries that are considered as matches
between the model and scene landmarks have sphericity
value greater than 0.95, their respective adjacent diagonal
entries are considered as matches. Thus, entries (1, 10)
and (6, 3) are also considered as matches. In this example,
model landmarks 1, 2, 3, 4, 5, and 6 match to scene
landmarks 10, 11, 12, 1, 2, and 3, respectively.

5. Location Estimation and Match Verification

Location of the object in the scene is estimated by
finding a coordinate transformation consisting of transla-
tion, rotation, and scaling that maps the matched land-
marks of the model to the corresponding scene landmarks
in a least squares sense. A score based on the least
squared error of the mapping is used to quantify the
overall goodness of the match between the model and
scene.

The least squared error only quantify how well a por-
tion of the model landmarks match to the corresponding
scene landmarks. It does not, however, account for the
overall goodness of match. Let € be the least squared error
derived from the matched pairs of landmarks between the
model and the scene. To account for the overall goodness
of the match between the model and the scene, we use the
following heuristic measure which penalizes incomplete
matching of the landmarks of the model:

, 2

€

k—2

(1.0+(%)10g2( fork =

o

3’
(9)
for k =0,1,2.

where n is the total number of landmarks of the model, k
is the number of model landmarks that match the scene
landmarks, and € = ¢/(k(scale factor)), i.e., € is the nor-




malized least squared error. The scale factor is derived
from the coordinate transformation. The heuristic meas-
ure, ¢, is referred to as the match error. Note that when
k=n, ¢ =F; i.e., no penalty is added to the normalized
least squared error when all model landmarks match
those in the scene. The penalty is greater if k is smaller.
In the earlier example, since all the model landmarks
match those in the scene, the match error value of 0.62 is
the same as the least squared error. The hypothesis of the
model in the scene is finally determined by the value of
the match error with a small error we accept the
hypothesis while with a large error we nullify the
hypothesis. The decision strategy is thus a thresholding
operation. If a match error is above a threshold, the
match is considered correct; otherwise, the match is con-
sidered incorrect. In our study, this threshold is set empir-
ically.

6. Experimental Results

Consider again the scene shown in Figure 3, the
results of performing the landmark matching task
between the scene and each of the tool models shown in
Figure 1 are summarized in Table II. Models that match
well to the objects in the scene are those with the smallest
match errors. Though the wire cutter is not in the scene,
the match error between the wire cutter and the scene is
quite small. The reason for this is that the relative posi-
tions of the landmarks of the wire cutter are similar to
those of the wire stripper.

Table IT
The summary of the results of matching a
library of objects with the scene shown in Figure 3.

Models Total Number of | Match
Number of | matched Error
Model model
landmarks | landmarks
wrench 6 6 1.98
| needle-nose plier 4 2 00
wire cutter 6 5 7.39
specialty plier 6 2 00
wire stripper 6 6 0.62

Figure 4 shows a more complicated scene which con-
sists of six overlapping objects. Compared to their respec-
tive models, the objects in the scene have been rotated
and/or scaled. Compared to their respective model land-
marks, some of the object landmarks in the scene are
missing. With respect to each model, those landmarks in
the scene not belonging to the model are considered as
extraneous landmarks. The results of matching each
model object of the library to the scene are summarized
in Table III. Figure 5 shows the results of mapping the
island of Luzon into the scene. Additional experiments
involving noisy landmarks are described in (1].

Figure 4. A scene which consists of six overlapping
objects. Each landmark is labeled and indicated by

an ux‘n

Table I

The summary of the results of matching a
library of objects with the scene shown in Figure 4.

Models Total Number of | Match
number of | the model Error
model landmarks
landmarks | that match

with the
scene

wrench 6 4 0.74

| needle-nose plier 4 0 oQ
wire cutter 6 2 0
specialty plier 6 3 7.89
wire stripper 6 2 o
Borneo 7 5 11.75
8 6 0.57
| Luzon 18 14 0.78
Mindanao 13 3 54.59
| New Guinea 11 4 77.81
Sulawesi 9 4 18.08
spacecraft 7 5 0.55

e




Figure 5. The result of mapping Luzon into the scene
shown in Figure 4.

7. Conclusions

The experimental results have demonstrated that the
landmark matching task can handle occlusion reasonably
well. The performance depends on the quality of the
extracted scene landmarks, and the number of correct
landmarks in a scene that are detectable. When match-
ing landmarks of a model to those in a scene, at least
three landmarks in a scene that correspond to the model
must be detectable. In addition, part of the sequential
order of the detectable landmarks must be preserved.
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