
ECET 310-001
Chapter 2, Part 1 of 3

W. Barnes
9/2006; rev. 10/07

2

In This Set of Slides:

1. An Instruction’s (or Directive’s) Four Fields
2. Assembler Directives
3. SW Development Process
4. RISC vs. CISC Instruction Sets
5. Simple Arithmetic Programs
6. Using the carry flag
7. Multi-byte Addition & Subtraction
8. Multiplication and Division
9. Binary BCD/ASCII

3

Assembly Language Program Structure

• Programs consist of:
Assembler Directives, Instructions, Comments

• Instruction format has four fields:

Label : Operation Operand ;Comment

↑ ↑(optional but, if used, label doesn’t have to start in col. 1)
Must be in col. 1 even if using a colon (some assemblers more flexible)

4

Examples of the four fields of an instruction

• loop adda #$40 ; add 40 to accumulator A

(1) “loop” is a label, may use a colon as in loop: but must start in column 1
(2) “ADDA” is an instruction mnemonic
(3) “#$40” is the operand
(4) “;add #$40 to accumulator A” is a comment

• movb 0,X,0,Y ; memory to memory copy

(1) no label field,
(b) “movb” is an instruction mnemonic and cannot start in column 1
(c) “0,X,0,Y” is the operand field
(d) “; memory to memory copy” is a comment

5

Examples of the four fields of an
assembler directive

• count equ 25 ; assigns 25 to count
(1) “count” is a label and must start in column 1
(2) “equ” is a directive mnemonic
(3) “25” is the operand
(4) “;assigns 25 to count” is a comment

• org $1800 ;set location counter to $1800
(1) no label field,
(b) “org” is a directive instruction mnemonic, and can’t start in col. 1
(c) “$1800” is the operand field
(d) “; set location …” is a comment

6

Assembler Directive Examples
• dc.b (define constant byte), db (define byte), fcb (form constant byte)

– These three directives define the value of a byte or bytes that will be stored.
– Often preceded by the org directive.
- For example,

org $800
array dc.b $11,$22,$33,$44 ;stores these numbers at $800 thru $803

• dc.w (define constant word), dw (define word), fdb (form double bytes)
– These three directives define the value of a word or words that will be stored.
– For example,

org $900
vec_tab dc.w $1234, %11 1110 1111 11000 ;results below

F409 03

3E09 02

3409 01

1209 00

Contentslocation

7

Assembler Directive Examples cont’d.
• fcc (form constant character)

– Used to define a string of characters (a message)
– The first character (and the last character) is used as the delimiter and must

be the same (usually “ ”)
– The delimiter must not appear in the string and can’t be space
– Each character is represented by its ASCII code.

EXAMPLE
org $1500

greeting: “hello” ; storage shown below

o$6F1504

l$6C1503

l$6C15 02

e$6515 01

h$6815 00

8

Assembler Directive Examples cont’d.
• fill value, count

org $1800
space_line: fill $20,40 ; fill 40 locations w/$20 starting at $1800

Zeros: fill 0 , 20 ;fill 20 locations w/0 starting at $1800 + 40
(can also store zeros using zmb XX or bsz XX)

• ds (define storage), rmb (reserve memory byte), ds.b (define storage
bytes)

buffer ds 100 ; reserves 100 bytes
outbuf rmb 100 ; same (Preferred)

• ds.w (define storage word), rmw (reserve memory word)

dbuf ds.w 20 ;reserves 20 words (40 bytes)
Inbuf rmw 10 ;reserves 10 words (20 bytes)

9

Assembler Directive Examples cont’d.

• equ (equate)
This directive assigns a value to a label and makes a program more readable.

arr_cnt equ 100 ;arr_cnt is now a constant with a value of decimal 100
oc_cnt equ 50

• Loc discussed in book but not recommended for use

10

Assembler Directive Examples cont’d.
Macro: A name assigned to a group of instructions

Use macro and endm to define a macro.

Example of Defining and Invoking a macro

sumOf3 macro arg1,arg2,arg3 ; this line defines name and no. of arguments
ldaa arg1 ; these three lines are the actual code of macro
adda arg2
adda arg3
endm ; tells assembler this is the end of the macro

sumOf3 $1000,$1001,$1002 ; invoking the macro in the program

ldaa $1000 ;assembler replaces the invocation with these lines
adda $1001 ; when program is assembled
adda $1002

Notes: (1) each time macro is invoked, the assembler inserts the code
(2) compare and contrast a macro with a subroutine

11

Software Development Process

1. Problem definition: Identify what should be
done.
– Develop the algorithm.

• Algorithm is the overall plan for solving the problem at hand.
• Next is a step by step approach (or pseudo code) and/or

flow chart

2. Convert the pseudo code or flowchart into programs.
3. Program testing

– simulation (CodeWarrior)
– Downloading into DeBug12 and execution

4. Program maintenance (revisions, additions, etc.)

12

Flowchart Symbols
(not particularly useful for large programs)

Terminal

Process

Input or
output

Decision
yes

no

Subroutine

A

B

A

on-page connector

off-page connector

Figure 2.1 Flowchart symbols used in this book

13

RISC vs. CISC

• Reduced Instruction Set Computer (RISC)
– Minimal instruction set for fast execution
– PIC 16F877 has 35 instructions

• Complex Instruction Set Computer (CISC)
– Number of instructions in hundreds
– More complex, costly, but more flexible
– HSC12 operand can be two bytes

• The first byte of a two-byte opcode is always $18.
• Thus, 2*(256) = 512 possible instructions

14

Simple Arithmetic Programs
(actually using “snippets”: parts of programs that are not

assembly ready)
Example 2.4 Write a program to add the values of memory locations at $1000, $1001, and $1002,

and save the result at $1100.
Solution: noting we cannot add numbers in memory, following is the step-by-step pseudo code
Step 1
A ⇐ m[$1000]
Step 2
A ⇐ A + m[$1001]
Step 3
A ⇐ A + m[$1002]
Step 4
$1100 ⇐ A
The snippet is:

org $1500 ;start program at this location
ldaa $1000 ;assuming sum will not exceed 8 bits & numbers present in memory
adda $1001
adda $1002
staa $1100
end

EXERCISE: draw a flow chart for the above snippet (next slide has a revised program’s fc).

15

Simple Arithmetic Programs cont’d.

• Example 2.4A Revise ex. 2.4 to add contents of locations $1000 and $1002 and
subtract contents of $1005. The results are to be stored in location $1010.

org $1500

ldaa $1000

adda $1002

suba $1005

staa $1010

end

16

Simple Arithmetic Programs cont’d.

• Example 2.6 Write a program to add
two 16-bit numbers that are stored at
$1000-$1001 and $1002-$1003 and
store the sum at $1100-$1101.

Solution:
org $1500
ldd $1000 ; D m[$1000:$1001]
addd $1002 ; D [D] + [$1002:$1003]
std $1100 ; $1100:$1101 [D]
end

NOTE: MS Byte is in the lower address.
2A 15 + 49 E0 = 73 F5

Q: What if a carry was generated?

Example w/data

F51101XX1101

E01003E01003

491002491002

731100XX1100

151001151001

2A10002A1000

Cont.Loc.Cont.Loc.

AfterBefore

17

Using the carry flag
1. Located in bit 0 of the CCR register

2. Useful in multi-precision arithmetic

3. Will be set to 1 if the addition operation produces a carry, otherwise cleared

4. Set to 1 when the subtraction operation produces a borrow, otherwise cleared

5. Carry/borrow flag is affected by both 8-bit addition/subtraction (registers A or
B gets result) and 16-bit addition/subtraction (register D gets result)

6. Carry can be included only in 8-bit addition/subtraction, therefore:
– Add with carry or borrow available with A & B
– Add with carry or borrow not available with D

7. Note that, because of # 5 and # 6, for multi-byte operations we usually start
with D but then continue with A and B.

8. See examples on subsequent slides.

18

Multi-byte addition
Example 2.7 Write a program to add two 4-byte numbers that are stored at $1000-$1003 and $1004-

$1007, and store the sum at $1010-$1013.

Solution: (Addition must start with the LSB and proceed toward MSB!)

1. org $1500
2. ldd $1002 ; add and save the least significant two bytes (words)
3. addd $1006 ; “
4. std $1012 ; “

; now we start working with one byte at a time while using the C flag

5. ldaa $1001 ; add and save the second most significant bytes
6. adca $1005 ; “
7. staa $1011 ; “
8. ldaa $1000 ; add and save the most significant bytes
9. adca $1004 ; “
10. staa $1010 ; “
11. end

Notes: (1) stdd (and staa) and lda instructions do not affect the carry flag, so we can depend on the
fact that ‘C’ flag in line 6 still reflects condition created by line #3, etc.

(2) Create a table to show how contents of memory are affected

19

Multi-byte Subtraction

• Example 2.8 Write a program to subtract the hex number stored at $1004-$1007
from the hex number stored at $1000-$1003 and save the result at $1100-$1103.

• Solution: (The subtraction starts from the LSBs and proceeds toward the MSBs.)

1. org $1500
2. ldd $1002 ; subtract and save the least significant two bytes
3. subd $1006 ; “
4. std $1102 ; “

;now we start working with one byte at a time while using the C flag

5. ldaa $1001 ; subtract and save the difference of the second to most
6. sbca $1005 ; significant bytes
7. staa $1001 ; “
8. ldaa $1000 ; subtract and save the difference of the most significant
9. sbca $1004 ; bytes
10. staa $1100 ; “
11. end

Note: recall that sta (and staa) and lda instructions do not affect the carry flag so ‘C’ flag
in line 6 still reflects condition created by line #3, etc.

20

Multiplication and Division
[Pay Attention To: (a) signed/unsigned, (b) 8bit/16bit,

(c) locations of factors and results]

Table 2.1 Summary of HCS12 multiply and divide instructions
Mnemonic
emul
emuls
mul

ediv

edivs

fdiv

idiv

idivs

Function
unsigned 16 by 16 multiply
signed 16 by 16 multiply
unsigned 8 by 8 multiply

unsigned 32 by 16 divide

signed 32 by 16 divide

16 by 16 fractional divide

unsigned 16 by 16 integer
divide
signed 16 by 16 integer
divide

(D) × (Y) Y:D
(D) × (Y) Y:D
(A) × (B) A:B
(Y:D) ÷ (X)
quotient Y
remainder D
(Y:D) ÷ (X)
quotient Y
remainder D
(D) ÷ (X) X
remainder D
(D) ÷ (X) X
remainder D
(D) ÷ (X) X
remainder D

Operation

21

Multiplication and Division cont’d.
(examples using actual numbers on slide 22 & 23)

• Example 2.10 Write a snippet to multiply the 16-bit numbers stored at
$1000-$1001 and $1002-$1003 and store the 32-bit product at $1100-$1103.
Solution:

ldd $1000 ; load first word
ldy $1002 ; load second word
emul ; Y:D D*Y
sty $1100 ; store MSW at $1100:$1101
std $1102 ; store LSW at $1102:$1103

• Example 2.11 Write a snippet to divide the 16-bit number stored at $1020-
$1021 into the 16-bit number stored at $1005-$1006 and store the 16-bit
quotient and 16-bit remainder at $1100 and $1102, respectively.
Solution:

ldd $1005
ldx $1020
idiv ; X D/X and D Rem
stx $1100 ; store the quotient at $1100:$1101
std $1102 ; store the remainder at $1102:$1103

22

Multiplication and Division cont’d.
(examples using actual numbers on slide 22 & 23)

• Example 2.10A Write an instruction sequence (snippet) to multiply the
signed 16-bit numbers stored at $1000-$1001 and $1002-$1003 and store
the 32-bit product at $1100-$1103.
Solution:

ldd $1000 ; load first word
ldy $1002 ; load second word
emuls ; Y:D D*Y (Only change)
sty $1100 ; store MSW at $1100:$1101
std $1102 ; store LSW at $1102:$1103

• Example 2.11A Write a snippet to divide the signed 16-bit number stored
at $1020-$1021 into the signed 16-bit number stored at $1005-$1006 and
store the 16-bit quotient and 16-bit remainder at $1100 and $1102,
respectively.
Solution:

ldd $1005
ldx $1020
idivs ; X D/X and D Rem (Only change)
stx $1100 ; store the quotient at $1100:$1101
std $1102 ; store the remainder at $1102:$1103

23

Multiplication and Division cont’d.
Complete the following table for examples 2.10 and
2.10A and discuss in terms of decimal numbers

XX

XX

XX

XX

FD

FF

D8

FF
BeforeExample 2.10AAfter

XX$1103

XX$1102

XX$1101

XX$1100

FD$1003

00$1002

D8$1001

00$1000
AfterBeforeExample 2.10

24

Multiplication and Division cont’d.
Complete the following table for examples 2.11 and
2.11A and discuss in terms of decimal numbers

XX

XX

XX

XX

FD

00

D8

FF
BeforeExample 2.11AAfter

XX$1103

XX$1102

XX$1101

XX$1100

FD$1021

00$1020

D8$1006

FF$1005
AfterBeforeExample 2.11

25

BCD

• Binary Coded Decimal
– Useful in I/O operations
– Cumbersome in arithmetic operations (only addition is

worthwhile)
– Each decimal digit is replaced by a four digit binary

value, usually two packed into a byte

– Example:
• Given the decimal number 57
• In packed BCD: 0101 0111 or $57
• In binary: 0011 1001 or $39

26

BCD Numbers and Addition
• Two 4-bit digits are packed into one byte

• The addition of two BCD numbers requires binary addition and the
DAA instruction, which makes use of the H flag.

• DAA can be applied after the instructions ADDA, ADCA, and ABA.

• Simplifies I/O conversion

• For example, the instruction sequence
– LDAA $1000 ;get first packed BCD number
– ADDA $1001 ;add the second BCD number
– DAA ;adjust for errors created
– STAA $1002 ;store new packed BCD sum

• Show what happens for the case of 27 + 45

27

Converting a Binary Number to BCD/ASCII

• Algorithm
– Use repeated division by 10, saving the remainders to

form the BCD digits, but also keeping each new
quotient for the next division.

– The first division generates the LSD, the second
division by 10 obtains the second LSD, and so on.

– The largest 16-bit binary number is 65535 which has
five decimal digits.

– Add $30 to each BCD digit forming its ASCII value.

28

Code for Binary BCD/ASCII (1st part)

Example 2.13: Convert a 16 bit number (in $1000~$1001) to BCD and store in 5 bytes at
$1010~$1014.

1. org $1000
2. data dc.w 12345 ; data to be tested
3. org $1010
4. result ds.b 5 ; reserve bytes to store the result
5. org $1500
6. ldd data
7. ldy #result
8. ldx #10
9. idiv ;X D/10, D Rem (won’t exceed B, thus
10. addb #$30 ; convert first digit into ASCII code)
11. stab 4,Y ; save the least significant digit
12. xgdx ; get new quotient into D
13. ldx #10

Note the offset for Y, so that we end up with MSD at lowest address.

29

Code for Binary BCD/ASCII (2nd part)
1. idiv ; create second digit
2. adcb #$30 ;
3. stab 3,Y ; save the second to least significant digit
4. xgdx
5. ldx #10
6. idiv
7. addb #$30
8. stab 2,Y ; save the middle digit
9. xgdx
10. ldx #10
11. idiv
12. addb #$30
13. stab 1,Y ; save the second most significant digit
14. xgdx
15. addb #$30
16. stab 0,Y ; save the most significant digit
17. end

30

Example of Binary BCD

Note: 12345 = $3039

XX$1014

XX$1013

XX$1012

XX$1011

XX$1010

$39$1001

$30$1000

AfterBeforeLocation

