
ECET 310-001
Chapter 2, Part 3 of 3

W. Barnes, 9/2006, rev’d. 10/07
Ref. Huang, Han-Way, The HCS12/9S12: An Introduction to
Software and Hardware Interfacing, Thomson/Delmar.

2

In This Set of Slides:

1. Bit condition branch instructions
2. Shift and rotate instructions
3. Boolean logic instructions
4. Clocks and time delays

3

Bit Condition Branch Instructions
[<label>] brclr (opr),(msk),(rel) [<comment>]
[<label>] brset (opr),(msk),(rel) [<comment>]

where
opr specifies the memory location to be checked and must be specified using

either the direct, extended, or index addressing mode.

msk is an 8-bit mask that specifies the bits of the memory location to be checked.
The bits of the memory byte to be checked correspond to those bit positions
that are 1s in the mask.

rel the branch offset specified in the 8-bit relative mode, usually with a label

For example:
loop inc count

…
brclr $66,$e0,loop ;$E0 = %1110 0000, branches if all three upper bits are 0’s
…

BOTTOM LINE:
for brclr, put 1’s in bits where you are looking for 0’s and for brset, put 1’s where you are

looking for 1’s

4

Bit Condition Branch Instructions cont’d
Example 2.17 Write a program to compute the number of elements that are divisible by

4 in an array of N 8-bit elements. Use the repeat S until C looping construct.

Solution: A number divisible by 4 would have the two least significant bits both 0.

N equ 10
org $1500

total rmb 1
org $2000
clr total ; initialize total to 0
ldx #array
ldab #N ; use B as the loop count

loop brclr 0,x,$03,yes ; check bits 1 and 0 of M[x] for zeros
bra chkend ;unconditional branch to chkend

yes inc total
chkend inx

dbne b,loop
swi

array db 2,3,4,8,12,13,19,24,33,32
end

Discuss: is this really repeat S until C looping ?

5

Shift and Rotate Instructions
• Three 8-bit arithmetic shift left instructions:

[<label>] asl opr [<comment>] -- memory location opr is shifted left one place
[<label>] asla [<comment>] -- accumulator A is shifted left one place
[<label>] aslb [<comment>] -- accumulator B is shifted left one place

C 0b7 ----------------- b0

• One 16-bit arithmetic shift left instruction:

[<label>] asld [<comment>]

C 0b7 ----------------- b0 b7 ----------------- b0
accumulator A accumulator B

• Three arithmetic shift right instructions (no 16 bit asr instruction):

[<label>] arl opr [<comment>] -- memory location opr is shifted right one place
[<label>] asra [<comment>] -- accumulator A is shifted right one place
[<label>] asrb [<comment>] -- accumulator B is shifted right one place

Cb7 ----------------- b0

6

Shift and Rotate Instructions Cont’d.

• Logical shift instructions
– Shift left instructions (lsl opr, lsla, lslb,lsld) perform identical operation as

arithmetic shifts left
– Shift right instructions (lsr opr, lsra, lsrb, lsrd) are the same as the

arithmetic shifts right EXCEPT a 0 is shifted into the msb and there is an
lsrd (as opposed to asr which has no asrd)

• Note that the rotate instructions, unlike shift, form a LOOP and no
bits are lost

• Rotate instructions
– rol opr, rola, rolb

– ror opr, rora, rorb

Cb7 ----------------- b0

C b7 ----------------- b0

7

Shift and Rotate Instructions Cont’d.

Examples: Fill in shaded boxes

(2.22)

(2.21)

(2.20)

(2.19)

(2.18)

Ex.

[A] = $BE and C = 1rora

[B] = $BD, C = 1rolb

m[$1000] = $E7, C = 1lsr $1000

m[$800] = $ED, C = 0asr $800

[A] = $95, C = 1asla

Final ValuesInitial valuesInstruction

8

Shift and Rotate Instructions Cont’d.
Example 2.23 Write a program to count the number of 0s in the 16-bit number stored at

$1000-$1001 and save the result in $1005.

Algorithm: The 16-bit number is shifted to the right 16 times and if the bit shifted out is a
0 then increment the 0s count by 1.

org $1000
db $23,$55 ; test data
org $1005

zero_cnt rmb 1
lp_cnt rmb 1

org $1500
clr zero_cnt ; initialize the 0’s count to 0
ldaa #16 ;initialize the
staa lp_cnt ; loop count
ldd $1000 ; place the number in D

loop lsrd ; shift the LSB of D into the C flag
bcs chkend ; branch if C flag a 1
inc zero_cnt ; otherwise inc. 0’s count

chkend dec lp_cnt ;
bne loop ; Done?

forever bra forever
end

9

Boolean Logic Instructions
(Useful for I/O Operations)

Table 2.8 Summary of Booleran logic instructions

Mnemonic Function

ANDA <opr>
ANDB <opr>
ANDCC <opr>
EORA <opr>
EORB <opr>
ORAA <opr>
ORAB <opr>
ORCC <opr>
CLC
CLI
CLV
COM <opr>
COMA
COMB
NEG <opr>
NEGA
NEGB

AND A with memory
AND B with memory
AND CCR with memory (clear CCR bits)
Exclusive OR A with memroy
Exclusive OR B with memory
OR A with memory
OR B with memory
OR CCR with memory
Clear C bit in CCR
Clear I bit in CCR
Clear V bit in CCR
One's complement memory
One's complement A
One's complement B
Two's complement memory
Two's complement A
Two's complement B

 Operation

A ← (A) • (M)
B ← (B) • (M)
CCR ← (CCR) • (M)
A ← (A) ⊕ (M)
B ← (B) ⊕ (M)
A ← (A) + (M)
B ← (B) + (M)
CCR ← (CCR) + (M)
C ← 0
I ← 0
V ← 0
M ← $FF - (M)
A ← $FF - (A)
B ← $FF - (B)
M ← $00 - (M)
A ← $00 - (A)
B ← $00 - (B)

10

Clocks and Time Delays

• The HCS12 uses the E clock as a timing reference.
• E clock frequency is half of that of the crystal oscillator.

• Many applications require the use of time delays.
• Two steps to create a time delay:

1. Select a sequence of instructions that takes a certain
amount of time to execute.

2. Repeat the selected instruction sequence for an appropriate
number of times based on the clock frequency.

11

Clocks and Time Delays Cont’d.

The routine below takes 4 E cycles to execute. By repeating this routine
a certain number of times, any time delay can be created. The ldy
instruction also take time but is relatively insignificant.

ldy #N
dly dey ; 1 cycle to execute the decrement

bne dly ; 3 cycles to execute the conditional branch

Example A
If the HCS12 has a crystal oscillator with a frequency of 20 MHz, then

f(E) = 20/2 = 10 MHz and T = 1/f = .1 µs = 100 ns. Therefore the
delay created will be:

(100 ns/E cycle)(4 E cycles) = 400 ns or .4 µs

If N equated to 1000 the total delay is: 1000●.4 µs = .4 ms

12

Clocks and Time Delays Cont’d.
Example B. Using the same frequency as the previous slide, what is the

maximum delay we can get out of this loop?

Solution: The largest number we can place in the 16 bit Y register is
$FFFF or 65,535. Rounding that off to 65,000 results in a maximum delay of
(65000)(.4 µs) = 26000 µs or 26 ms.

Example C. Based on the above, how can we get a delay of 1 s?

Solution: We will need an outer loop to multiply the basic delay. How
many times will the outer loop need to execute?

1 second/26 ms = 38.46 this won’t work too well. Let’s come up with a better
inner loop delay. How about 25 ms? Then 1s/25 ms= 40 for the outer loop.
Thus, inner loop: 25 ms/.4 µs = 62,500. Here’s our delay snippet:

ldx #40
outer ldy #62500 ; outer loop executes 40 times
inner dey ; inner loop executes 40 ● 62,500 times

bne inner
dbne x, outer

NOTE: there is some overhead in that the ldy and dbne instructions will be executed 40
times- if this is an issue that delay can be calculated and compensated for.

13

Clocks and Time Delays Cont’d.

• In class Exercise:

The Dragon12 board runs under a crystal oscillator with a frequency of
48 MHz. Recalculate the example in the last slide and make
changes in the numbers to end up with the same 1 second delay.
Suggestion: make the inner loop 1 ms.

