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Abstract

The problem of optimal transport, which involves finding the most cost-efficient way of

transporting mass from one location to another, has been widely-studied, going back to the

late eighteenth century. Recent years have revealed numerous applications in areas such as

medical imaging, meteorology, cosmology, oceanography, and economics. Despite the im-

portance of optimal transport, the computation of solutions remains extremely challenging.

In the simplest case, where the cost function is quadratic, the problem takes on additional

structure. In this setting, the constraint that mass must be conserved can be expressed as a

fully non-linear partial differential equation known as the elliptic Monge-Ampère equation.

The numerical solution of the Monge-Ampère equation has received a great deal of

attention in recent years, yet the correct and efficient computation of solutions remains

a challenge. Because of the nonlinearity of the equation, solutions can be singular and

standard numerical approaches can fail. This means that novel solution techniques are

needed to correctly capture the behaviour of weak solutions. We describe a monotone finite

difference discretisation, which provably converges to the viscosity solution of the Monge-

Ampère equation. The accuracy of the discretisation is improved by combining higher-order

schemes with the monotone scheme needed to capture the correct behaviour of solutions near

singularities. In doing this, we provide a general result about the convergence of higher-

order finite difference methods for elliptic equations. The resulting nonlinear equations are

solved efficiently using Newton’s method.

To ensure that mass is mapped into the desired region, the Monge-Ampère equation

must be coupled to a transport boundary condition. This type of boundary condition is

non-standard, and previously has been implemented only in very simple cases (such as trans-

porting a square to a square). We propose a new method for implementing the transport

condition by solving a sequence of more tractable Monge-Ampère equations with Neumann

iii



boundary conditions. To demonstrate the effectiveness and efficiency of the resulting meth-

ods, we provide computational results for a number of challenging problems including the

recovery of inverse maps, mapping onto unbounded density functions, mapping from a dis-

connected domain, and mapping onto non-convex sets.

Keywords: Monge-Ampère; optimal transport; partial differential equations; viscosity so-

lutions; boundary conditions; finite difference methods
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Chapter 1

Introduction

The elliptic Monge-Ampère equation is a fully nonlinear Partial Differential Equation (PDE)

first described in the late eighteenth century. Since then, the equation has arisen in a number

of important applications and the associated regularity theory has received a great deal of

attention. Despite the importance of the Monge-Ampère equation, until recently, very little

progress had been made in actually solving the equation numerically.

The last several years have seen an explosion of interest in numerical methods for solv-

ing this and other fully nonlinear PDEs. For example, this topic was the focus of an

invited lecture at the 2007 International Congress on Industrial and Applied Mathematics

(ICIAM) [47]. Several methods have been developed for approximating solutions of the

Monge-Ampère equation. However, the richness and complexity of the equation also lead

to a number of important challenges that place limitations on these numerical methods.

Moreover, the type of boundary conditions that can be enforced using currently available

methods are typically quite different from the boundary conditions that arise naturally in

applications. Consequently, the development of numerical methods for this PDE remains a

challenging problem. The development of methods powerful enough to handle these chal-

lenges would have important implications for several interesting applications.

The goal of this thesis is to construct efficient and robust numerical methods for the

Monge-Ampère equation by bringing this PDE into the framework of modern finite difference

techniques and convergence theory. We are also interested in using the Monge-Ampère

equation to numerically compute solutions to the optimal mass transport problem. With

this in mind, we develop a novel method for implementing the unique transport boundary

condition that occurs naturally in many applications.

1



CHAPTER 1. INTRODUCTION 2

1.1 The Monge-Ampère Equation

The Monge-Ampère operator is given by

det(D2u(x))

where D2u is the Hessian of the function u.

We consider the equation in a convex bounded subset X ⊂ Rd with boundary ∂X. The

general form of a Monge-Ampère type equation is

det(D2u(x)) = F (x, u(x),∇u(x)), in Ω.

In order for the equation to be elliptic, which is important both for uniqueness and to ensure

that solutions have a meaningful physical interpretation, we must also impose the convexity

constraint

u is convex. (1.1)

In the simplest case F (x, u(x),∇u(x)) ≡ f(x) is a continuous function, f ∈ C(X), and

f is bounded away from zero, f(x) ≥ µ > 0. These conditions, combined with suitable

conditions on the domain, ensure uniform ellipticity of the PDE and improve the regularity

of solutions. In the most general case, the right-hand side can be a measure [48]. We

consider the case

F (x,∇u(x)) ≥ 0,

which permits singular solutions.

Much of the work on numerics for the Monge-Ampère equation has concentrated on the

simple Monge-Ampère equation of the form

det(D2u(x)) = f(x). (1.2)

To keep the key ideas of this thesis clear, we will begin by considering only this simple form.

However, later in the thesis, we will also consider the numerical solution of the more general

equation

det(D2u(x)) = F (x,∇u(x)). (1.3)

The dependence of the right-hand side on gradients introduces additional challenges in

correctly approximating this equation.
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1.2 Applications

Part of the beauty of the Monge-Ampère equation lies in its relationship to so many different

applications.

The most direct application, and the one considered by Monge and Ampère, is the

problem of optimal mass transport [2, 21, 33, 88]. The problem here is to find a mapping

s(x) that transports the source density f(x) to the target density g(y) and minimises the

cost functional ∫
Rd
c(x, s(x))f(x) dx

where c : Rd × Rd → [0,∞) is some cost function. When the cost is quadratic, the opti-

mal mapping is simply the gradient of a convex function that satisfies the Monge-Ampère

equation

det(D2u(x)) = f(x)/g(∇u(x)).

One recent application of the Monge-Ampère equation and optimal mass transport is in

the generation of equidistributing meshes [13, 82]. This enables other equations to be solved

on meshes that concentrate grid points in regions of high activity, which allows sharp fronts

to be more accurately and inexpensively resolved.

The Monge-Ampère operator can also appear in inequality constraints in other varia-

tional problems for optimal mappings, where the cost may not be the usual transportation

cost. For example, mapping problems arising in areas such as image registration [49, 50, 51,

85] and computer graphics [24, 53, 63, 64] involve the minimisation of some metric on

dist(X, s(X))

subject to the constraint that s(x) is a mapping between the sets X and Y . Here dist is some

metric between images; an example is the disparity of grayscale levels. For a combination of

modeling and mathematical reasons, it is often natural to restrict to diffeomorphisms with

prescribed or bounded Jacobian

λ ≤ det(∇s) ≤ Λ.

In the case where the mapping is cyclically monotone [7, 78], this mapping s(x) is the

gradient of a convex potential function u(x) and we recover an inequality involving the

Monge-Ampère operator,

λ ≤ det(D2u) ≤ Λ.
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Another natural application of Monge-Ampère equations is in geometric problems in-

volving the construction of surfaces with prescribed metrics or curvatures, as well as the

associated existence and uniqueness results. For example, the equation describing a con-

vex surface (x, u(x)) in Rd+1 with prescribed Gaussian curvature κ(x) is of Monge-Ampère

type [88]:

det(D2u(x)) = κ(x)(1 +
∣∣∇u(x)

∣∣2)
d+2
2 . (1.4)

Other recent applications include dynamic meteorology [52, 56], oceanography [27], as-

trophysics [37], elasticity [80], economics and traffic flow [79], and geometric optics [44, 45,

89, 90, 91].

1.3 Boundary Conditions

Perhaps the simplest setting for a Monge-Ampère equation is in a periodic domain Td. In

this case, the PDE is expressed in the form:det(I +D2u(x)) = f(x) x ∈ Td

|x|2
2 + u is convex.

Here the function u must be periodic; aside from this constraint, there are no boundary

effects to worry about.

In the non-periodic setting, some type of boundary condition is necessary to ensure

that the equation is well-posed. In addition to introducing extra constraints that must be

satisfied, boundary effects can cause solution regularity to break down, which can in turn

result in the poor performance of failure of many numerical methods.

The simplest boundary condition, and the one considered in the first part of this thesis,

is the Dirichlet boundary condition

u(x) = φ(x), x ∈ ∂Ω. (1.5)

Alternatively, we could choose to specify normal derivatives at the boundary using a

Neumann boundary condition

∇u(x) · n(x) = φ(x), x ∈ ∂Ω (1.6)

where n(x) denotes the unit outward normal to the boundary ∂X. In very simple mapping

problems, this boundary condition is natural.
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In many applications, the gradient of the solution defines a map from its domain to its

range. Often, the range of the map is pre-specified, which leads to the transport boundary

condition

∇u : X → Y. (1.7)

Although this condition is very natural in mapping applications, very little progress has

been made on its numerical implementation.

1.4 Related Work

In the last several years, a number of methods have been proposed for the numerical solution

of the Monge-Ampère equation. We make a distinction between methods for the PDE itself

and methods that address the transport boundary condition, which has received much less

attention from a numerical standpoint. We also distinguish between methods that provably

converge to a weak solution of the equation, and other methods that provide no guarantee

of convergence.

An early work by Oliker and Prussner [76] introduced a discretisation based on a geo-

metric interpretation of the solutions [3]. In two dimensions, this method converges to the

Aleksandrov solution.

Another convergent method for the equation was presented by Oberman [74]; this in-

volves a wide-stencil finite difference discretisation of the two-dimensional Monge-Ampère

equation. While this method is proven to converge to the viscosity solution of (1.2), the

scheme introduces an additional discretisation error related to the stencil width. The asso-

ciated CFL condition also limits the speed of this method.

Dean and Glowinski et al. [28, 29, 30, 31, 46] have investigated Lagrangian and least

squares methods for the numerical solution of the Monge-Ampère equation. These methods

perform well when the solutions are in H2. However, the authors point out that for solutions

with less regularity the methods may fail. In [29] they give an example of a solution that is

not in H2, for which their method diverges.

Feng and Neilan [34, 35] solve second order equations (including the Monge-Ampère equa-

tion) by adding a small multiple of the bilaplacian. The bilaplacian term introduces an

additional discretisation error and additional boundary conditions, which may not be com-

patible with the weak solution of the equation; this introduces a boundary layer into the

computed solution.
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Sulman et. al. [83] and Budd and Williams [12] have solved the Monge-Ampère equation

by seeking the steady-state solution of different parabolic forms of the equation. If the data

is smooth enough, the (continuous) parabolic equation will converge to the solution of the

elliptic Monge-Ampère equation. Convergence of the discretised problem is not addressed.

Böhmer has studied the consistency and stability of certain finite element approximations

to fully nonlinear elliptic equations [8]. Stable finite element approximations of the Monge-

Ampère equation in two- and three-dimensions have been also been constructed by Brenner

et. al. [10, 11]. These finite element approximations all require solutions to be smoother

than H2.

In the periodic setting, Loeper and Rapetti [65] solve the equation using Newton’s

method. They prove convergence of the Newton algorithm for the continuous problem

(though not the discretised problem) to the solution of (1.2). However, they restrict them-

selves to the case where the source term f is strictly positive. The work of Frisch et. al. [92]

studies the case of periodic boundary conditions in an odd dimensional space. Several

different formulations of the equation appear, including a Fourier integral form.

Much less work has been done on the full L2 optimal transport problem. An early work

by Knott and Smith used techniques from complex analysis to construct optimal maps be-

tween uniform densities in two dimensions [59]. Another approach to the optimal transport

problem involves re-framing it as a fluid flow problem. This approach was introduced by

Benamou and Brenier [5] and has been further developed by Haber et. al. [49]. However, it

is computationally expensive as it requires introducing an additional dimension to the prob-

lem. We also mention the work of Delzanno et. al. [32, 36], which involves discretising (1.2)

using the natural finite difference discretisation and solving the resulting system using an

inexact Newton-Krylov method. Under some assumptions about the boundary conditions,

they are able to map from a rectangular domain into a region with four (possibly curved)

sides.

1.5 Outline of This Thesis

In this thesis, we are concerned with building finite difference methods for solving Monge-

Ampère type equations and the related L2 optimal transport problem. The main contribu-

tions of this thesis are also presented in [6, 39, 40, 41, 42].

We begin by providing important background information about the theory of the
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Monge-Ampère equation. This material, presented in Chapter 2, serves to motivate and

guide the methods constructed in the remainder of the thesis. In view of our interest in

developing fast solution methods, we also describe Newton’s method for solving the PDE

and provide a convergence proof in the continuous setting.

In Chapter 3, we investigate the use of standard finite difference discretisations of the

Monge-Ampère equation. We describe several different solution methods and discuss both

their usefulness and their limitations.

In Chapter 4, we move on to the theory of convergent finite difference methods. We

describe a new characterisation of the Monge-Ampère equation which, together with the

general convergence theory, enables us to construct a new monotone finite difference method

and prove that it convergences to the weak (viscosity) solution of the equation.

In Chapter 5, we construct two hybrid finite difference methods that combine the best

features of the standard and convergent finite difference schemes. This allows us to improve

solution accuracy without sacrificing correctness and stability near singularities. For one

of these schemes, we prove convergence to the viscosity solution of the Monge-Ampère

equation. To accomplish this, we also prove a very general result about the convergence of

higher order finite difference methods for a class of degenerate elliptic PDEs.

In Chapter 6, we turn our attention to the problem of optimal transport. We propose

a new method for implementing the transport boundary condition by solving a sequence of

more tractable Monge-Ampère equations with Neumann boundary conditions. By solving

these sub-problems using the finite difference methods developed in this thesis, we produce

an efficient method for solving a wide range of challenging L2 optimal transport problems.

In Chapter 7, we summarise the contributions of this thesis. We also suggest several

possible directions for future research that extend naturally from this work.



Chapter 2

The Monge-Ampère Equation

The main purpose of this chapter is to present important background material on the Monge-

Ampère equation. To motivate our study of optimal transport boundary conditions, we

present a derivation of the Monge-Ampère equation in the setting of L2 optimal mass trans-

port.

Much of this chapter focuses on the theoretical background of the Monge-Ampère equa-

tion. In order to motivate and guide the methods developed in this thesis, we review several

important properties of the equation and its solutions. We go on to describe the use of

Newton’s method to solve this equation. As part of this discussion, we provide a proof that

Newton’s method converges (for the Dirichlet problem) if the problem is sufficiently regular.

We conclude this chapter by describing several numerical challenges associated with the

Monge-Ampère equation, which we intend to address in this thesis.

2.1 Optimal Transport

We begin by describing the problem of optimal mass transport and explaining how the

Monge-Ampère equation arises in this context.

2.1.1 Monge-Kantorovich Mass Transport

The problem originally considered by Monge is how to transport a given pile of sand into

a hole with minimum cost, where the original cost is simply the magnitude of the distance

the sand is transported (Figure 2.1). That is, the problem is to find a mapping s(x) from

8
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the original set X to the target set Y that minimises the cost functional

I[s] =
∫
X

∣∣x− s(x)
∣∣ dx. (2.1)

Figure 2.1: The mass transport problem.

The more general Monge-Kantorovich problem describes the transportation of mass

densities using more general cost functions. That is, we want to find a mapping that takes

the density f(x) in the space X into the density g(y) in space Y . We denote the set of such

functions as the admissible set A. We are also given a cost function c(x, y), which gives the

cost of transporting a unit of mass from location x to location y. The problem is then to

find a mapping s(x) ∈ A that minimises the cost functional

I[s] =
∫
X
c(x, s(x))f(x) dx. (2.2)
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Kantorovich contributed to the understanding of optimal transport by reformulating the

problem as a linear program and describing a simple dual formulation [54, 55]. While this

has made many theoretical questions easier to answer, this approach also effectively doubles

the dimension of the problem. Consequently, computing the solution to even a small-scale

problem is prohibitively expensive. This motivates the development of more sophisticated

methods that will enable the efficient computation of optimal maps.

2.1.2 Conservation of Mass

It is useful to consider in more detail the requirement that the minimiser of the cost (2.2)

must push the density f(x) in X entirely onto the density g(y) in Y . Since we require that

mass be conserved, the following equality must hold for any continuous function h(y):∫
X
h(s(x))f(x) dx =

∫
Y
h(y)g(y) dy.

By introducing the change of variables y = s(x) into the right-hand side of this equation we

obtain ∫
X
h(s(x))f(x) dx =

∫
X
h(s(x))g(s(x)) det(∇s(x)) dx.

Rearranged, this becomes∫
X

(
f(x)− g(s(x)) det(∇s(x))

)
h(s(x)) dx = 0.

Again, this holds for every continuous function h(x). Consequently, we obtain the equation

det(∇s(x)) = f(x)/g(s(x)).

2.1.3 Cyclical Monotonicity

The simplest and most widely studied cost function is the quadratic cost function

c(x, y) =
1
2
|x− y|2 .

With this cost, the Monge-Kantorovich problem becomes

minimise
∫
X

1
2

∣∣x− s(x)
∣∣2 f(x) dx

subject to det
(
∇s(x)

)
= f(x)/g(s(x)).

(2.3)
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It turns out that a solution of this problem must be cyclically monotone. Intuitively,

this means that mass is not being “twisted.” To see why, we assume that a minimiser s(x)

exists and choose any finite number N ∈ N of distinct points xk ∈ X. Then we denote by

Ek the ball of radius rk centred at xk. Here the rk are chosen so that all of the balls are

disjoint and contain the same total mass ε. That is, for every 1 ≤ k ≤ N ,∫
Ek

f(x) dx = ε. (2.4)

We also define the points and regions that the xk, Ek are mapped onto by

yk = s(xk), Fk = s(Ek).

We observe that the new regions Fk also contain mass ε since the mapping s(x) conserves

mass: ∫
Fk

g(y) dy =
∫
Ek

f(x) dx

= ε.

We can now define a new mapping s′(x) by cyclically permuting the images of Ek and

leaving the remainder of the mapping s(x) unchanged (Figure 2.2).

s′(x) =


s(x+ xk+1 − xk) x ∈ Ek, 1 ≤ k < N

s(x+ x1 − xN ) x ∈ EN

s(x) x ∈ X\
N⋃
k=1

Ek.

By design, this new mapping will also push the density f(x) entirely onto g(y).

We recall that s(x) is a minimiser of the cost functional in (2.3). This means that

I[s] ≤ I[s′].

Substituting in the quadratic cost we see that∫
X

∣∣x− s(x)
∣∣2 f(x) dx ≤

∫
X

∣∣x− s′(x)
∣∣2 f(x) dx.

Expanding the quadratic term, we obtain∫
X

(∣∣s(x)
∣∣2 − 2x · s(x)

)
f(x) dx ≤

∫
X

(∣∣s′(x)
∣∣2 − 2x · s′(x)

)
f(x) dx.
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(a)

(b)

Figure 2.2: (a) A mapping that minimises (2.3). (b) A cyclical permutation of the minimiser.
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Since both s(x) and s′(x) push the density f(x) onto g(y), and since these two mappings

are identical over much of the domain, this simplifies to

N∑
k=1

∫
Ek

x · (s′(x)− s(x))f(x) dx ≤ 0.

Dividing both sides by ε (that is, replacing the integrals by averages over the balls Ek) we

obtain
N∑
k=1

1
ε

∫
Ek

x · (s′(x)− s(x))f(x) dx ≤ 0.

In the limit as ε→ 0 this becomes

N∑
k=1

xk · (yk+1 − yk) ≤ 0.

This is exactly the statement that the mapping s(x) is cyclically monotone.

2.1.4 The Monge-Ampère Equation

The Monge-Ampère equation emerges from the Monge-Kantorovich mass transport problem

with quadratic cost function via a result proved by Rockafellar [78].

Theorem 2.1. Every cyclically monotone subset of Rn ×Rn lies in the subdifferential of a

convex mapping of Rn → R.

This means that the solution to the transport problem (2.3) can almost everywhere be

expressed as

s(x) = ∇u(x)

where u is a convex function [67]. Given the constraints on s(x) in (2.3), this convex function

must satisfy the Monge-Ampère equation
det
(
D2u(x)

)
= f(x)/g(∇u(x)) x ∈ X

∇u : X → Y

u is convex.

(2.5)
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2.2 Analysis and Weak Solutions

Although the Monge-Ampère equation is a second order PDE, there is no guarantee that

it will possess a classical C2 solution. Consequently, it is necessary to use some notion of

weak solution (either the viscosity or the Aleksandrov solution). In this section we present

regularity results and background analysis that inform the numerical approach taken in this

thesis.

2.2.1 Regularity

We begin by reviewing regularity results for the Monge-Ampère equation and the related

problem of L2 optimal transport.

Solutions of the optimal transport problem need not be smooth. An example of a singular

solution (see Figure 2.3) is the problem of mapping the circle

X = {(x1, x2) | x2
1 + x2

2 ≤ 1}

onto the disconnected set

Y = {(x1, x2) | x1 ≤ −0.25, (x1 + 0.25)2 + x2
2 ≤ 1}

∪ {(x1, x2) | x1 ≥ 0.25, (x1 − 0.25)2 + x2
2 ≤ 1}.

In fact, the solution remains singular even if the disconnected region Y is approximated

by a connected region Yε [18].

While we do not solve the problem of mapping onto a disconnected region, we are able

to solve for the inverse mapping (which takes the disconnected set Y to the connected set

X) in §6.4.2.

As long as the sets X,Y are bounded, we are at least guaranteed that the solution of

the Monge-Ampère equation is differentiable almost everywhere with bounded gradient.

Remark. When the solution to the Monge-Ampère equation is not differentiable, the map is

given by the sub-gradient rather than the gradient. This allows a single point to be mapped

onto a region rather than a single point.

More regularity is guaranteed if we restrict ourselves to convex target sets Y .
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X Y

Figure 2.3: A transport problem with a singular solution.

Theorem 2.2 (Interior Regularity [16, 18]). Suppose that X,Y are bounded, connected,

open sets and Y is convex. Suppose also that the density functions

f : X → (0,∞), g : Y → (0,∞)

are bounded away from 0 and ∞. Then the solution of the Monge-Ampère equation

(1.2), (1.5), (1.1) belongs to C1,α
loc (X) for some 0 < α < 1.

If, in addition, the density functions f, g ∈ Cβ for some 0 < β < 1 then the solution of

Monge-Ampère belongs to C2,α
loc (X) for every 0 < α < β.

If both sets X,Y are uniformly convex, we can obtain regularity up to the boundary as

well.

Theorem 2.3 (Boundary Regularity [17, 19]). Suppose, in addition to the hypotheses of

Theorem 2.2, that the sets X and Y are uniformly convex. Then the solution of Monge-

Ampère is in C2,α(X̄) for some 0 < α < 1.

One of the primary concerns of this thesis is to correctly approximate the Monge-Ampère

operator in the interior of the domain. For simplicity and concreteness, therefore, much of

this thesis will focus on the Monge-Ampère equation with a simple right-hand side that

is independent of the solution u. The system will be augmented with a simple Dirichlet
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boundary condition: 
det(D2u(x)) = f(x), in X

u(x) = φ(x), on ∂X

u is convex.

(2.6)

Even in this simple setting, solutions need not be smooth. For a simple example where

regularity breaks down, consider the elliptic Monge-Ampère equation in a square domain

with constant Dirichlet boundary data and a strictly positive right-hand side. If we suppose

that a C2 solution exists, we can also conclude from the boundary condition that the second

derivative

ux1x1 = 0

along the boundary x2 = 0. Consequently, the equation reduces to

ux1x1ux2x2 − u2
x1x2

= −u2
x1x2

= f > 0,

which is not possible. We conclude that even for this very simple problem with smooth

data (aside from the square domain), the Monge-Ampère equation does not have a classical

solution.

Remark. We can obtain a similar result even if we replace the square domain with a smooth

domain that is convex but not strictly convex.

Using regularity results in [14, 15, 48, 87], we know that the Monge-Ampère equation

with Dirichlet boundary conditions is guaranteed to have a unique C2,α solution under the

following conditions:
The domain X is strictly convex with boundary ∂X ∈ C2,α.

The boundary values φ ∈ C2,α(∂X).

The function f ∈ Cα(X) is strictly positive.

(2.7)

Remark. While is it usual to perform numerical solutions on a rectangle, regularity can

break down in convex polygons [77, 88], as in the example presented earlier in this section.

2.2.2 Divergence Form of the Equation

Because the Monge-Ampère equation may not have a C2 solution, the equation must be

interpreted using some notion of weak solution.
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One common approach to constructing a weak formulation of an equation is to multiply

the equation by a smooth test function and integrate by parts. In order to do this, the

Monge-Ampère operator needs to be written in divergence structure. In two dimensions,

this can be done as follows:

det(D2u) =
1
2

div


 uyy −uxy
−uxy uxx

 ux

uu


 .

However, we note that this expression still involves second derivatives of u. As a result,

this approach will still require solutions of the Monge-Ampère equation to have sufficient

regularity. This tends to limit the use of finite element methods to solutions that have more

regularity than we can expect in general.

2.2.3 Viscosity Solutions

A more useful notion of weak solution for the Monge-Ampère equation, which will guide

much of the work in this thesis, is the viscosity solution. We first recall the definition of a

viscosity solution [26, 60], which is defined for the Monge-Ampère equation in [48].

Definition 2.1. Let u ∈ C(X) be convex and f ≥ 0 be continuous. The function u is

a viscosity subsolution (supersolution) of the Monge-Ampère equation in X if whenever

convex φ ∈ C2(X) and x0 ∈ X are such that (u − φ)(x) ≤ (≥)(u − φ)(x0) for all x in a

neighbourhood of x0, then we must have

det(D2φ(x0)) ≥ (≤)f(x0).

The function u is a viscosity solution if it is both a viscosity subsolution and supersolution.

Example (Viscosity solution of Monge-Ampère). We consider an example which will later

be solved numerically in two and three dimensions (§4.9-4.10 and §5.3-5.4). Consider (2.6)

with solution u and right-hand side f given by

u(x) =
1
2

((|x| − 1)+)2, f(x) = (1− 1/|x|)+.

(The function f changes in three dimensions; see §2.5.2). This function u is a viscosity

solution—but not a classical C2 solution—of the Monge-Ampère equation.

We verify that this function is a viscosity solution. This only needs to be done at points

where |x0| = 1 (since u is locally C2 away from this circle). We note that f is equal to zero

on this circle.
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We begin by checking convex C2 functions φ ≤ u with φ(x0) = u(x0) = 0 (that is,

u− φ has a local minimum here). Since ∇u(x0) = 0, we require ∇φ(x0) = 0 as well. Since

u is constant in part of any neighbourhood of x0, any convex φ must also be constant in

this part of the neighbourhood in order to ensure that u − φ has a local minimum. This

means that φ has zero curvature in some directions, so that detD2φ(x0) = 0, as required

by the definition of the viscosity solution. We conclude that u is a supersolution of the

Monge-Ampère equation.

We also need to check functions φ ≥ u with φ(x0) = u(x0) = 0 (so that u−φ has a local

maximum). Since φ is convex, it will automatically satisfy the condition detD2φ(x0) ≥ 0.

We conclude that u is also a subsolution, and is therefore a viscosity solution.

Viscosity solutions of the Monge-Ampère equation satisfy a very important property

known as the comparison principle.

Theorem 2.4 (Comparison Principle). Let u be a sub-solution and v a super-solution of

equation (1.2) in X with u ≤ v on ∂X. Then u ≤ v in X.

This property guarantees uniqueness of solutions and plays an important role in the

development of convergent approximation schemes.

The viscosity solution is equipped with a rich L∞ theory that includes maximum and

comparison principles. This is a very natural setting for finite difference schemes, which

makes finite difference methods a natural choice for approximating viscosity solutions of the

Monge-Ampère equation.

2.2.4 Aleksandrov Solutions

Next we turn our attention to the Aleksandrov solution, which is a more general weak

solution than the viscosity solution. Here f is generally a measure [48]. We begin by

recalling the definition of the normal mapping or subdifferential of a function.

Definition 2.2. The normal mapping (subdifferential) of a function u is the set-valued func-

tion ∂u defined by

∂u(x0) = {p : u(x) ≥ u(x0) + p · (x− x0)}, for all x ∈ X.

For a set V ⊂ X, we define ∂u(V ) =
⋃
x∈V

∂u(x).
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Figure 2.4: Examples that can be interpreted as (a) viscosity or (b) Aleksandrov solutions.

Now we want to look at a measure generated by the Monge-Ampère operator.

Definition 2.3. Given a function u ∈ C(X), the Monge-Ampère measure associated with u

is defined as

µ(V ) =
∣∣∂u(V )

∣∣
for any set V ⊂ X.

This measure naturally leads to the notion of the generalised or Aleksandrov solution of

the Monge-Ampère equation.

Definition 2.4. Let µ be a Borel measure defined in a convex set X ∈ Rd. Then the convex

function u is an Aleksandrov solution of the Monge-Ampère equation

det(D2u) = µ

if the Monge-Ampère measure associated with u is equal to the given measure µ.

Example (Aleksandrov solution). As an example, we consider the cone and the the scaled

Dirac measure

u(x) =‖x‖ , µ(V ) = π

∫
V
δ(x) dx.

We verify from the definition that u, µ is an Aleksandrov solution of the Monge-Ampère

equation. (Since µ is a measure, we cannot interpret u as a viscosity solution of the equation.)
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It is straightforward to check that the subdifferential ∂u is given by

∂u(x) =

x/‖x‖ , ‖x‖ > 0

B1, x = 0,

where B1 = {x |‖x‖ ≤ 1}. Then the associated Monge-Ampère measure will be

∣∣∂u(V )
∣∣ =

π 0 ∈ V

0 0 /∈ V
= π

∫
V
δ(x) dx = µ(V ).

2.2.5 Convexity

The convexity constraint (1.1) is necessary for uniqueness. As a simple illustration of the

convexity requirement, consider the two-dimensional Monge-Ampère equation (2.6) with

homogeneous Dirichlet boundary data

φ(x) = 0, x ∈ ∂X.

Then if u is a convex solution of the Monge-Ampère equation, -u will be a concave solution

of the equation. See Figure 2.5.
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Figure 2.5: Without the convexity constraint, the two-dimensional Monge-Ampère equation
has (a) a convex and (b) a concave solution.

For a twice continuously differentiable function u, the convexity restriction (1.1) can be

written as D2u is positive definite. Since we wish to work with less regular solutions, this
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restriction can be enforced through the inequality

λ1(D2u) ≥ 0,

understood in the viscosity sense [73, 75], where λ1(D2u) is the smallest eigenvalue of the

Hessian of u.

The convexity constraint can be absorbed into the operator by defining

det+(M) =
d∏
j=1

λ+
j (2.8)

where M is a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn and

x+ = max(x, 0).

Using this notation, (1.1) and (1.2) become

det+(D2u(x)) = f(x), x ∈ X. (2.9)

2.2.6 Ellipticity

The Monge-Ampère equation is a member of the class of PDEs known as elliptic equations.

In order to build correct numerical methods for this PDE, it is important to make use of

the theory for this class of equations.

We say that the linear second-order operator

L[u] ≡ −trace
(
A(x)D2u

)
is elliptic if the coefficient matrix A(x) is positive definite.

The definition of a nonlinear elliptic PDE operator generalises this simple definition. It

also allows for operators that are non-differentiable.

Definition 2.5. Let the PDE operator F (M) be a continuous function defined on symmetric

d× d matrices. Then the equation

F (D2u(x)) = 0

is elliptic if it satisfies the monotonicity condition

F (M) ≥ F (N) whenever M ≤ N.

For symmetric matrices, the inequality M ≤ N means that xTMx ≤ xTNx for all x ∈ Rd.
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The Monge-Ampère operator

F (M) = −det+(M)

is a non-increasing function of the eigenvalues, so it is elliptic. We stress, however, that in

the absence of the convexity constraint, the Monge-Ampère equation fails to be elliptic.

2.2.7 Linearisation

The linearisation of the Monge-Ampère equation will also play an important role in our

numerical methods, particularly when we construct fast solvers.

The linearisation of the determinant is given by

∇ det(M) ·N = trace
(
MadjN

)
where Madj is the adjugate [81], which is the transpose of the cofactor matrix. The adjugate

matrix is positive definite if and only if M is positive definite. When the matrix M is

invertible, the adjugate, Madj , satisfies

Madj = det(M)M−1. (2.10)

We now apply these considerations to the linearisation of the Monge-Ampère opera-

tor [20]. When u ∈ C2 we can linearise this operator as

−∇M det(D2u) · v = trace
(
−(D2u)adjD2v

)
. (2.11)

Example. In two dimensions we obtain

∇M det(D2u)v = −
(
uxxvyy + uyyvxx − 2uxyvxy

)
.

Lemma 2.1. Let u ∈ C2. The linearisation of the Monge-Ampère operator (2.11) is elliptic

if D2u is positive definite or, equivalently, if u is (strictly) convex.

Remark. When the function u fails to be strictly convex, the linearisation can be degenerate

elliptic, which affects the conditioning of the linear system (2.11). When the function u is

nonconvex, the linear system can be unstable.
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2.3 Newton’s Method

Since we ultimately want to develop fast solvers for the Monge-Ampère equation, it is

natural to turn our attention to the use of Newton’s method. In this chapter, we restrict

our analysis to the continuous setting. In this situation, Newton’s method can be written

as the iteration

un+1 = un − vn (2.12)

where the corrector vn solves a PDE involving the linearisation of the Monge-Ampère op-

erator (2.11): trace((D2un)adjD2vn) = det(D2un)− f in X

vn = 0 on ∂X.

This equation depends on the determinant of the Hessian of the current iterate, which we

denote by

fn ≡ det(D2un). (2.13)

If the Hessian of the current iterate D2un is invertible, then using (2.10) and (2.13), the

equation for the corrector (2.12) can be re-expressed asf
ntrace((D2un)−1D2vn) = fn − f in X

vn = 0 on ∂X.
(2.14)

In order for this linear PDE to be well posed, we require it to be elliptic. From

Lemma 2.1, it is elliptic provided the current iterate un is convex.

In general, an arbitrary Newton step will not produce a convex iterate un. The problem

is that while un−1 is convex, the corrector vn−1 may not be. The solution to this problem is

to incorporate sufficient damping into the iteration to ensure convexity of the new iterate.

Thus, we replace the Newton iteration (2.12) with the damped iteration

un+1 = un − τvn (2.15)

for some 0 < α ≤ 1. With a suitable damping parameter τ , which will depend on the given

data, we can prove convergence of the Newton iteration to sufficiently regular solutions of

the Monge-Ampère equation.
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2.3.1 Convergence of Newton’s method

In this section we restrict our attention to cases where the conditions (2.7) are met, which

ensure C2,α regularity of solutions.

To ensure convergence of Newton’s method, we will also require an initial iterate with

the properties

u0 ∈ C2,α(X).

u0 is strictly convex.

u0 satisfies the Dirichlet boundary condition (1.5).

u0 is sufficiently close to the exact solution of (1.1),(1.2) in C2,α.

(2.16)

Theorem 2.5 (Newton’s Method for the Monge-Ampère Equation). Suppose the condi-

tions (2.7), (2.16) hold. Then for sufficiently small 0 < τ ≤ 1 the damped Newton itera-

tion (2.15) converges to the exact solution of the Monge-Ampère equation (2.6).

We prove the convergence of Newton’s method using an approach similar to the proof for

the periodic case in [65]. We begin with the following result about the sequence produced

by the Newton iteration.

Lemma 2.2. Suppose the conditions (2.7), (2.16) are satisfied. Then we can choose τn ∈ (0, 1]

so that the damped Newton iteration (2.15) produces sequences (un) ∈ C2,α, (fn) ∈ Cα

with the properties

1. Each un satisfies the Dirichlet condition in (1.2).

2. Each un is strictly convex.

3. Each fn > C1f for some constant C1.

4. Each ‖fn − f‖Cα ≤ ‖f0 − f‖Cα .

Proof. Part (1) of the lemma is trivial. We prove the remainder of this result by induction.

The base case holds trivially from (2.16) and suggests a choice of

0 < C1 < inf
X

(f0/f).

We proceed with the inductive step by assuming parts (2)-(4) of the lemma for un ∈ C2,α.
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We denote the eigenvalues of the Hessian of un by

λn1 ≤ . . . ≤ λnd .

Since un is strictly convex, the PDE for the corrector vn is elliptic. From Schauder elliptic

theory [43] and property (4), the corrector satisfies the bound

‖vn‖C2,α ≤ C2(λn1 )‖fn − f‖Cα ≤ C̃2(λn1 ).

An immediate consequence is un+1 ∈ C2,α and fn+1 ∈ Cα.

We can separate the term fn+1 into terms linear in the corrector plus a remainder:

fn+1 = det(D2(un − τnvn))

= det(D2un)− τn det(D2un)trace((D2un)−1D2vn) + τ2
nrn

= fn − τn(fn − f) + τ2
nrn.

Here the remainder rn consists of products of at least two second derivatives of vn and at

most d− 2 second derivatives of un. Thus we can bound the remainder by

‖rn‖Cα ≤ C3(λn1 , λ
n
d )‖fn − f‖2Cα .

We now choose the damping parameter to satisfy

τn <
1

C3(λn1 , λ
n
d )

min

{
1,

f(1− C1)
‖fn − f‖2Cα

}
.

We recall that by assumption, f − fn < f(1− C1). Thus we have

f − fn+1 = (f − fn)(1− τn)− τ2
nrn

< f(1− C1)(1− τn) + τn
f(1− C1)

C3(λn1 , λ
n
d )‖fn − f‖2Cα

C3(λn1 , λ
n
d )‖fn − f‖2Cα

= f(1− C1),

which gives us fn+1 > C1f > 0.

To show that un+1 is strictly convex, we recall that the eigenvalues of the Hessian of

un+1 depend continuously on the damping parameter τ . In addition, if we set the damping

parameter to 0, we simply have un+1 = un, which is strictly convex. Thus for τ = 0, all the

λn+1
j are strictly positive. We have just shown that fn+1, the product of the eigenvalues,
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remains strictly positive for any choice of damping parameter between 0 and τn. Thus all

the λn+1
j must also remain positive for any damping parameter in this range. We conclude

that un+1 will also be strictly convex.

Finally, we observe that

‖fn+1 − f‖Cα ≤ (1− τn)‖fn − f‖Cα + τ2
n‖rn‖Cα

< (1− τn)‖fn − f‖Cα + τn‖fn − f‖2Cα

≤ ‖f0 − f‖

where the last step requires ‖f0 − f‖ < 1, which follows from the conditions (2.16).

We also show that the sequence fn = det(D2un), which is produced by Newton’s Method

and defined in (2.13), will converge.

Lemma 2.3. Suppose the conditions (2.7), (2.16) are satisfied. Then we can choose τ ∈
(0, 1] (independent of n) so that the sequence (fn) produced by the damped Newton’s

method (2.15) converges in Cα. Moreover, the sequence (un) is bounded in C2,α.

Proof. From Lemma 2.2, the sequence (fn) satisfies

‖fn − f‖Cα ≤ ‖f0 − f‖Cα .

This inequality gives an upper bound on fn. Lemma 2.2 also gives a lower bound C1 inf f > 0

for the fn. We conclude that the sequence (un) is bounded uniformly in C2,α [15]. The

bounds on ‖un‖C2,α and fn imply that that eigenvalues of the Hessian of the un (λn1 , . . . , λ
n
d )

are bounded uniformly away from 0 and infinity.

We recall now the requirement on the damping parameter:

τn <
1

C3(λn1 , λ
n
d )

min

{
1,

f(1− C1)
‖fn − f‖2Cα

}
.

Since λn1 , λnd are bounded away from 0 and infinity, the constant C3(λn1 , λ
n
d ) is bounded and

we can choose a suitable τ independent of n.

We are left with the inequality

‖fn+1 − f‖Cα < (1− τ)‖fn − f‖Cα + τ‖fn − f‖2Cα ,

which implies that fn converges to f .
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With these lemmas, we can complete the proof of convergence of Newton’s method

(Theorem 2.5).

Proof of Theorem 2.5. Consider any subsequence unj of the sequence produced by Newton’s

method. This subsequence is bounded in C2,α by Lemma 2.3 and is therefore pre-compact

by the Arzela-Ascoli compactness criterion. Thus there is a subsequence unjk that converges

in C2,α. Moreover, the corresponding subsequence fnjk converges to f . Since the solution of

Monge-Ampère is unique, the subsequence unjk must converge to the unique solution of the

Monge-Ampère equation (1.1), (1.2), (1.5) and the original sequence un must also converge

to this solution in C2,α.

2.4 Numerical Challenges

There are a number of issues that make the Monge-Ampère equation such an interesting

and challenging problem to solve numerically. We summarise several of these, which we

intend to address in this thesis.

As we have already noted, the Monge-Ampère equation will not always have a classical

C2 solution. From the point of view of mappings, we want to allow for the possibility of

singular or nearly singular maps. In this context, a singular solution can simply mean that

one point goes to several locations (as when the solution has a corner) or an interval goes

to a point (as when the solution is flat). It is desirable to allow for these situations in

order to encompass a larger class of maps. When the conditions for regularity are satisfied,

classical solutions can be approximated successfully using a range of standard techniques (as

discussed in §1.4). However, for singular solutions, standard numerical methods can break

down by becoming unstable, poorly conditioned, or by converging to the wrong solution.

The challenge in this setting is to develop discretisations and solution methods that capture

the weak solutions of the equation.

Another challenge is the convexity constraint, which is necessary for uniqueness. In

addition, the equation (1.2) fails to be elliptic if u is non-convex (see §2.2.6), so instabilities

can arise if the convexity condition (1.1) is violated. Any approximation of (1.2) requires

some selection principle to choose the convex solution. This selection principle can be built

into either the discretisation or the solution method.

A further goal of this thesis is to improve the accuracy of numerical methods for weak

solutions of Monge-Ampère. This is important since provably convergent methods are often
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less accurate than methods that work on more regular solutions. For example, the convergent

monotone scheme of [74] uses a wide stencil, and the accuracy of the scheme depends on

the directional resolution, which depends on the width of the stencil.

We also want to develop fast solvers for this equation. Although we have proved that

Newton’s method converges for sufficiently smooth solutions of Monge-Ampère, this does not

guarantee that Newton’s method will converge once the equation is discretised. Moreover,

the convergence proof requires more regularity than we can generally assume for solutions

of the Monge-Ampère equation. In fact, Newton’s method applied to a simple discretisation

of the Monge-Ampère equation can become unstable on singular examples (see §3.2.3).

Since we are interested in using the Monge-Ampère equation to generate invertible maps,

it is also important that we can obtain not only the solutions of the Monge-Ampère equation,

but also the gradients of the solutions. This is not automatic since a method may converge

with oscillations, leading to an accurate solution with an inaccurate gradient; this results in

a poor map.

2.5 Four Representative Solutions

As we build numerical methods, we want to test these on examples of varying regularity.

Here we describe four representative solutions of the Monge-Ampère equation, for which we

will provide detailed computational results throughout this thesis.

2.5.1 Two Dimensions

Throughout, we write x = (x, y) for a general point in R2 and x0 = (.5, .5) for the center of

the domain.

The first example solution, which is smooth and radial, is given by

u(x) = exp

(
‖x− x0‖2

2

)
, f(x) = (1 +‖x‖2) exp(‖x− x0‖2). (2.17)

The second example, which is C1, is given by

u(x) =
1
2

(
(‖x− x0‖ − 0.2)+

)2
, f(x) =

(
1− 0.2
‖x− x0‖

)+

. (2.18)

The third example is used in §3.2.3 to demonstrate that Newton’s method for standard

finite differences is unstable. The solution is twice differentiable in the interior of the domain,
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but has an unbounded gradient near the boundary point (1, 1). The solution is given by

u(x) = −
√

2−‖x‖2, f(x) = 2
(

2−‖x‖2
)−2

. (2.19)

The final is example is the cone, which was discussed in §2.2.4:

u(x) =
√
‖x− x0‖, f = µ = π δx0 (2.20)

This solution is only Lipschitz continuous and, in fact, is not actually a viscosity solution of

the Monge-Ampère equation. Although the methods we construct in this thesis are designed

to solve for viscosity solutions, we would like to see if they can also be used to obtain more

general weak solutions of the Monge-Ampère equation.

In order to approximate the solution on a grid with spatial resolution h, we approximate

the measure µ by its average over the ball of radius h/2, which gives

fh =

4/h2 for ‖x− x0‖ ≤ h/2,

0 otherwise.

2.5.2 Three Dimensions

We can also generalise these examples to three dimensions. We now use x = (x, y, z) for a

general point in R3 and let x0 = (.5, .5, .5) be the centre of the domain. In this case, the

smooth example becomes

u(x) = exp

(
‖x− x0‖2

2

)
, f(x) = (1 +‖x− x0‖2) exp (

3
2
|x− x0|2). (2.21)

The second example, the C1 solution, is given by

u(x) =
1
2

(
(‖x− x0‖ − 0.2)+

)2
, (2.22)

f(x) =

1− 0.4
‖x−x0‖ + 0.04

‖x−x0‖2
, |x− x0| > 0.2

0 otherwise.

The third example is the surface of a ball, which as in two dimensions is differentiable in

the interior of the domain, but has an unbounded gradient at the boundary.

u(x) = −
√

3−‖x‖2, f(x) = 3(3−‖x‖2)−5/2. (2.23)
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Figure 2.6: Representative solutions of Monge-Ampère: (a) C2 example, (b) C1 example,
(c) example with blow-up, and (d) Lipschitz example.



Chapter 3

Standard Finite Difference

Methods

In this thesis, we want to develop finite difference methods for solving the Monge-Ampère

equation numerically. This is a two step process:

• We must discretise the equation to produce a system of nonlinear equations.

• We much build a solution method for the discrete system of equations.

In this chapter, we describe a natural, centred difference discretisation of the Monge-

Ampère equation. We build several different solvers for the resulting systems and discuss

the advantages and limitations of this discretisation.

3.1 Discretisation

The Monge-Ampère operator has a particularly simple form in two dimensions:

det(D2u) =
∂2u

∂x2

∂2u

∂y2
−

(
∂2u

∂x∂y

)2

, in X ⊂ R2. (3.1)

In this case, a standard discretisation of the operator is given by

MAS [u] ≡ (Dxxu)(Dyyu)− (Dxyu)2 (MA)S

31
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where, writing h for the spatial resolution of the grid,

[Dxxu]ij =
1
h2

(
ui+1,j + ui−1,j − 2ui,j

)
[Dyyu]ij =

1
h2

(
ui,j+1 + ui,j−1 − 2ui,j

)
[Dxyu]ij =

1
4h2

(
ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

)
.

In three dimensions, the Monge-Ampère operator has the form

det(D2u) =
∂2u

∂x2

∂2u

∂y2

∂2u

∂z2

+ 2
∂2u

∂x∂y

∂2u

∂x∂z

∂2u

∂y∂z
− ∂2u

∂x2

(
∂2u

∂y∂z

)2

− ∂2u

∂y2

(
∂2u

∂x∂z

)2

− ∂2u

∂z2

(
∂2u

∂x∂y

)2

. (3.2)

We can discretise this using centred differences, just as we did in the two-dimensional case.

Of course, the same thing can also be accomplished in higher dimensions.

It is important to recognise that there is no reason to expect that this discretisation

will converge to the correct weak solution of the Monge-Ampère equation. Convergence of

schemes for nonlinear equations is not simply a matter of verifying consistency and stability.

In fact, this discretisation is not amenable to the proof techniques that will be discussed

in Chapter 4. However, this discretisation does appear to behave correctly for a suprising

range of challenging examples. Moreover, it will play an important role in the construction

of convergent, higher-order schemes in Chapter 5.

We also note that the solution of the discretised system need not be unique, which can

introduce instabilities into solvers. This is because the discretisation does not enforce the

convexity constraint. Consequently, it is necessary to build the convexity constraint into

the solution method.

3.2 Newton’s Method

The natural finite difference discretisation results in a system of nonlinear equations that

must be solved. One way to attempt this is using Newton’s method.

To solve the discretised equation

MA[u] = f
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we use want to use a Newton iteration

un+1 = un − vn.

The corrector vn solves the linear system(
∇uMA[un]

)
vn = MA[un]− f. (3.3)

To set up the equation (3.3), the Jacobian of the scheme is needed. For the natural finite

differences, the Jacobian of the two-dimensional Monge-Ampère operator is given by

∇uMAN [u] = (Dxxu)Dyy + (Dyyu)Dxx − 2(Dxyu)Dxy, (3.4)

which is a discrete version of the linearisation of Monge-Ampère (2.11). These ideas are eas-

ily extended to higher dimensions, though the expressions become much more complicated.

In three-dimensions, for example, the Jacobian is given by

∇uMAN [u] = (DyyuDzzu− (Dyzu)2)Dxx + (DxxuDzzu− (Dxzu)2))Dyy

+ (DxxuDyyu− (Dxyu)2)Dzz + 2(DxzuDyzu−DzzuDxyu)Dxy

+ 2(DxyuDyzu−DyyuDxzu)Dxz + 2(DxyuDxzu−DxxuDyzu)Dyz.

(3.5)

3.2.1 Regularisation of the Jacobian

One obvious danger with using Newton’s method is that the Jacobian matrix may not be

invertible, which would prevent us from obtaining the corrector. For example, we might

initialise Newton’s method with the exact solution (pictured in Figure 2.6(b))

u(x) =
1
2

(
(‖x− x0‖ − 0.2)+

)2
.

This function is constant inside the circle‖x− x0‖ ≤ 2. Consequently, the second derivatives

(as well as their discrete approximations) will vanish in this region, which will cause the

Jacobian matrix (3.4) to be singular.

To ensure that we can actually solve the linear systems that appear in the implementation

of Newton’s method, we regularise the Jacobian matrices. This will not change the fixed

points of Newton’s method; it simply ensures that we can solve for the corrector at each

step. We describe the regularisation process in the two-dimensional case; the generalisation

to higher dimensions is straightforward.
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We choose a parameter ε > 0, replace the discrete second derivatives appearing in the

Jacobian by

Dεxxu = max{Dxxu, ε}, Dεyyu = max{Dyyu, ε},

and ensure that the mixed derivatives satisfy∣∣∣Dεxyu∣∣∣ <√Dεxxu · Dεyyu.
3.2.2 Damping

We also incorporate damping into the Newton iteration. That is, we replace the Newton’s

method with

un+1 = un − τvn

where the damping parameter τ ∈ (0, 1] is chosen to ensure that the residual is decreasing.

In many cases, we may simply choose τ = 1. However, allowing additional damping can

be helpful if a poor initial guess is chosen or if solutions are non-smooth.

3.2.3 Failure of Newton’s Method

We have already noted in 2.3 that the convergence proof for the continuous Newton iteration

does not guarantee that Newton’s method will converge for a discretised system, particularly

when solutions are non-smooth. One issue with the natural discretisation is that there is no

guarantee that a Newton step will preserve convexity, which can lead to instabilities in the

iteration. As an example of this, we look at the exact solution

u(x) = −
√

2−‖x‖2, f(x) = 2
(

2−‖x‖2
)−2

on the domain [0, 1]× [0, 1]. The gradient of the solution is unbounded at the point (1, 1).

The singularity arises from the fact that f is unbounded there, which leads to an instability

in Newton’s method. The result after performing two iterations of an undamped Newton’s

method, along with the gradient map, is illustrated in Figure 3.1. We also remark that if

damping is incorporated, the iteration will simply stagnate (that is, the damping parameter

is forced to zero). The correct computed solution is presented in Figure 2.6(c)-5.5(h).
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Figure 3.1: Failure of Newton’s method using standard finite differences: the solution oscil-
lates and becomes non-convex. (a) Solution and (b) gradient map after two iterations.

3.3 Two-Dimensional Solution Methods

One of the chief limitations of Newton’s method for the natural finite difference discretisation

is that it is not required to respect the convexity constraint (3.8). Since convexity is not

built in to the discretisation, it must instead be enforced by the solution method. In two

dimensions, this can be accomplished by exploiting the quadratic structure of the equation.

We now develop two methods (which are also discussed in the M.Sc. thesis [38])–an explicit

Gauss-Seidel iteration and a semi-implicit Poisson solver–for solving the two-dimensional

Monge-Ampère equation.

3.4 Explicit Gauss-Seidel Iteration

One of the limitations of the natural finite difference discretisation is that it does not enforce

the convexity constraint. In two dimensions, however, we can exploit the quadratic structure

of the Monge-Ampère equation in order to select the convex solution. This leads to a robust

Gauss-Seidel iteration for the two-dimensional Monge-Ampère equation.

We recall the natural finite difference discretisation of the two-dimensional equation, as
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in (MA)S :(
ui+1,j + ui−1,j − 2uij

h2

)(
ui,j+1 + ui,j−1 − 2uij

h2

)
−
(
ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

4h2

)2

= fij .

Solving this quadratic equation for uij and choosing the smaller root in order to select the

convex solution, we obtain:

uij =
d1 + d2

2
−

√(
d1 − d2

2

)2

+
(
d3 − d4

4

)2

+
1
4
fijh4 (3.6)

where we introduce the notation

d1 = ui+1,j+ui−1,j

2 d2 = ui,j+1+ui,j−1

2

d3 = ui+1,j+1+ui−1,j−1

2 d4 = ui−1,j+1+ui+1,j−1

2 .

(3.7)

We can now use Gauss-Seidel iteration to find the fixed point of (3.6). Dirichlet boundary

conditions are enforced at boundary grid points.

Remark. In the computations of §3.6, we perform the Gauss-Seidel iteration using a lexico-

graphical ordering. Other orderings are possible and may improve convergence and allow

for parallelisation of the method.

3.4.1 Improving Convexity

As explained in the convergence proof of the wide stencil schemes [74], the main obstacle

to monotonicity of the discrete scheme is the lack of convexity along directions other than

grid lines. Because we are looking for the convex solution of the Monge-Ampère equation,

the solution should satisfy

u(x) ≤ u(x+ h) + u(x− h)
2

(3.8)

for all grid directions h. We check that this holds in some of the grid directions. This

convexity is partially built in to (3.6).

Lemma 3.1. The fixed point of (3.6) satisfies the inequalities (3.8) for the grid directions

h = (1, 0), (0, 1).
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Proof. We assume without loss of generality that
ui,j+1 + ui,j−1

2
≤ ui+1,j + ui−1,j

2
.

In the notation of Equation (3.7) this reads

d2 ≤ d1.

Since f is non-negative,

uij ≤
d1 + d2

2
− d1 − d2

2
= d2

=
ui,j+1 + ui,j−1

2

≤ ui+1,j + ui−1,j

2
.

From this lemma, we observe that solutions of (3.6) are necessarily “convex” in the x

and y directions. Along the lines of [74] (where convexity along several directions ensures

convergence), we can also build additional convexity requirements into our method. This is

accomplished by modifying (3.6) slightly:

uij = min

d1 + d2

2
−

√(
d1 − d2

2

)2

+
(
d3 − d4

4

)2

+
1
4
fijh4, d3, d4

 . (3.9)

Lemma 3.2. The fixed point of (3.10) satisfies the inequality (3.8) for the grid directions

h = (1, 0), (0, 1), (−1, 1), (1, 1).

Proof. The proof of the first part of this lemma is the same as the proof of the first part of

Lemma 3.1. The second half of this lemma is built directly into (3.9).

3.4.2 Higher Dimensions

One big limitation of this Gauss-Seidel iteration is that it does not generalise naturally

to higher dimensions. In two-dimensions, the Monge-Ampère equation is quadratic in the

second derivatives. Consequently, the discretised equations are quadratic in the solution

values uij and it is straightforward to solve these quadratic equations for the correct (convex)

solution.

In higher dimensions, the quadratic structure of the Monge-Ampère equation is lost. In

three dimensions, for example, the equation is cubic in the second derivatives. As a result,

solving for the convex solution becomes a much more complicated task.
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3.5 Semi-Implicit Poisson Iteration

The next method is based on a reformulation of the two-dimensional Monge-Ampère equa-

tion. As in the previous section, we use the convexity requirement to select the correct

square root.

Definition 3.1. We define the operator

T [u] = ∆−1
(√

(∆u)2 + 2(f − det(D2u))
)
.

This operator can be used to reformulate (1.2) due to the following lemma.

Lemma 3.3. The convex solution of (1.2) satisfies

u = T [u]. (3.10)

Proof. Let v be the convex solution of (1.2), which satisfies

f − det(D2v) = 0.

Inserting this into Definition 3.1 we obtain

T [v] = ∆−1
(√

(∆v)2
)

= ∆−1(|∆v|).

Since v is convex,

∆v > 0.

As a result,

T [v] = ∆−1(|∆v|)

= ∆−1(∆v)

= v.

Therefore, v is a fixed point of (3.10).

In this section, we focus on the two-dimensional equation. With this in mind we rewrite

the operator T [u] in two dimensions.
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Lemma 3.4. In R2, the operator T [u] defined in Definition 3.1 is equivalent to

T [u] = ∆−1

(√
u2
xx + u2

yy + 2u2
xy + 2f

)
= ∆−1

(√∣∣D2u
∣∣2 + 2f

)
.

(3.11)

Proof. In R2, T [u] takes the form

T [u] = ∆−1
(√

(∆u)2 + 2(f − det(D2u))
)

= ∆−1

(√
(uxx + uyy)2 + 2f − 2(uxxuyy − u2

xy)
)

= ∆−1

(√
u2
xx + u2

yy + 2uxxuyy + 2f − 2uxxuyy + 2u2
xy)
)

= ∆−1

(√
u2
xx + u2

yy + 2u2
xy + 2f

)
= ∆−1

(√∣∣D2u
∣∣2 + 2f

)
.

Obtaining the fixed point of (3.10) consists in iterating un+1 = T [un] by solving

∆un+1 =
√
u2
n,xx + u2

n,yy + 2u2
n,xy + 2f.

with the prescribed Dirichlet boundary conditions.

We implement (3.10) using a simple finite difference method. This involves discretis-

ing (3.11) using central differences (as with the first method) and iterating to find the

fixed point. In the computations of §3.6 we solved the resulting Poisson equation using the

MATLAB backslash operator.

3.5.1 Contractivity

In the numerical experiments of §3.6 we observe that the Poisson iteration converges very

quickly when the solutions are smooth and the function f is strictly positive, but is fairly

slow when solutions are not smooth or f is very close to 0. In this section we consider a

one-dimensional version of (3.10) and prove that this mapping is a contraction with a rate

of convergence depending on how far f is from zero. We provide a similar result for the

two-dimensional case on a rectangle, although we do not have a complete proof that (3.10)

is a contraction mapping on a general domain. We begin with an observation about the

contractivity of the real valued function h(x) =
√
a2 + x2.
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Lemma 3.5. The function

h(x) =
√
a2 + x2

is a strict contraction on the domain

{|x| ≤ ka}.

In other words, there exists a constant µk < 1 such that∣∣h(x1)− h(x2)
∣∣ ≤ µk|x1 − x2|

for any x1, x2 in {|x| ≤ ka}.

Proof.

∣∣h′(x)
∣∣ =

|x|√
a2 + x2

≤ ka√
a2 + k2a2

=
k√

1 + k2

= µk < 1.

It follows that ∣∣h(x1)− h(x2)
∣∣ ≤ µk|x1 − x2| .

Lemma 3.6. Let v be an exact, smooth solution of (3.1) and u a smooth function. Further

suppose that

f ≥ α > 0

is a strictly positive function. Then at every point in the domain

∣∣∆(T [u]− T [v])
∣∣ =

∣∣∣∣√2f +
∣∣D2u

∣∣2 −√2f +
∣∣D2v

∣∣2∣∣∣∣
≤ µ

∣∣∣D2(u− v)
∣∣∣

for some constant µ < 1.

Proof. Since u, v are smooth and f is strictly positive, there exists a constant k so that∣∣∣D2u
∣∣∣ ,∣∣∣D2v

∣∣∣ ≤ k√2f.



CHAPTER 3. STANDARD FINITE DIFFERENCE METHODS 41

It follows from Lemma 3.5 that∣∣∣∣√2f +
∣∣D2u

∣∣2 −√2f +
∣∣D2v

∣∣2∣∣∣∣ ≤ µk

∣∣∣∣ ∣∣∣D2u
∣∣∣−∣∣∣D2v

∣∣∣ ∣∣∣∣
≤ µk

∣∣∣D2(u− v)
∣∣∣ ,

which completes the proof.

Remark. It is worth noting that as f → 0 or u becomes more and more non-smooth, the

constant k will increase so that µk increases and approaches 1.

Now we define the semi-norm

‖u‖L =
∫

Ω
(∆u)2 dx dy. (3.12)

Lemma 3.7. Let u(x, y) be a C2 function that vanishes on the boundary of a rectangle Ω.

Then ∫
Ω

(∆u)2 dx dy =
∫

Ω
|D2u|2 dx dy.

Proof. Using repeated integration by parts we find that∫
Ω

(∆u)2 dx dy =
∫

Ω

(
u2
xx + u2

yy + 2uxxuyy
)
dx dy

=
∫

Ω

(
u2
xx + u2

yy − 2uxuxyy
)
dx dy

=
∫

Ω

(
u2
xx + u2

yy + 2uxyuxy
)
dx dy

=
∫

Ω
|D2u|2 dx dy.

Throughout this computation the boundary terms vanish since u is constant along the sides

of the rectangle (and thus at any point on the boundary either ux, uxx or uy, uyy vanish).

Theorem 3.1 (Contractivity on a Rectangle). The mapping T on a rectangular domain Ω

is a contraction in the semi-norm ‖u‖L.

Proof. Let u, v be any C2 functions that satisfy the Dirichlet boundary conditions associated

with (3.1). Compute

‖T (u)− T (v)‖L =
∫

Ω
[∆(T (u)− T (v))]2 dx dy

≤
∫

Ω
µ2
∣∣∣D2(u− v)

∣∣∣2 dx dy,
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where the last step follows from Lemma 3.6. Since u and v are identical on ∂Ω, we can

apply Lemma 3.7 to obtain

‖T (u)− T (v)‖L ≤ µ2

∫
Ω

[∆(u− v)]2 dx dy

= µ2‖u− v‖L.

Since µ2 < 1, this completes the proof.

We have already noted that for f close to zero or u with large second derivatives, the

constant µ will be close to 1. This suggests that the mapping T [u] will converge more slowly

in these situations, which is exactly what we observe in the computations of §3.6.

Remark. We should note that the proof of convergence for this Poisson iteration is only

valid in the continuous setting. That is, it assumes that we are exactly solving the Poisson

equation at each step. Thus this proof does not guarantee that a particular numerical

implementation of the Poisson iteration will converge.

3.5.2 Higher Dimensions

To generalize this Poisson iteration to Rd, we can write the Laplacian in terms of the

eigenvalues of the Hessian: ∆u =
∑d

i=1 λi[D
2u]. Taking the d-th power and expanding,

gives the sum of all possible products of d eigenvalues.

(∆u)d = d!
d∏
i=1

λi + P (λ1, . . . , λd),

where P (λ) is a d-homogeneous polynomial, which we won’t need explicitly.

The result is the semi-implicit scheme

∆un+1 = (d!f + P (λ1[D2un], . . . , λd[D2un]))1/d. (3.13)

A natural initial value for the iteration is given by the solution of

∆u0 = (d!f)1/d. (3.14)

Unfortunately, because the equation is no longer quadratic in dimensions greater than

two, there is no reason to expect that this iteration will preserve convexity. We also recall

that even in two dimensions, the Poisson iteration could become very slow when solutions

were singular.
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3.6 Computational Results

We are now ready to provide numerical results for the Gauss-Seidel and Poisson iterations.

We have tested these methods on a number of examples of varying regularity. For concrete-

ness, we provided detailed results for the four representative examples described in §2.5.

All of the computations are performed on an N ×N grid with spatial resolution h.

To initialise the iterations, we first solve the problem on a coarser grid and interpolate

the results onto the refined grid. To obtain the coarse solution, we initialise the iterations

with the solution of the Poisson equation

∆u =
√

2f

with the correct Dirichlet boundary conditions for the problem. However, we note that

both methods appear to converge regardless of the initial data. In particular, they converge

even when we initialise with random data that does not respect the Dirichlet boundary

conditions.

Results are summarised in Table 3.1.

3.6.1 Accuracy

We provide log-log plots of error in Figure 3.2. For the C2 example, the natural finite

difference discretisation gives O(h2) accuracy, as anticipated by the formal error estimate

coming from the Taylor series. Not surprisingly, the accuracy becomes worse on examples

with less regularity. For the C1 example, accuracy is O(h). For the example with blow-

up at the boundary, accuracy is only O(h0.5) and for the Lipschitz example, the solution

accuracy is O(h). Although the natural finite difference discretisation becomes less accurate

on examples with less regularity, the discretisation does appear to converge to the weak

solution in all the examples we have computed.

3.6.2 Computation Time

We also look at the computation time required by the Gauss-Seidel and Poisson iterations.

These results are plotted in Figure 3.3.
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C2 Example (2.17)
N Max Error Iterations CPU Time (seconds)

Poisson Gauss-Seidel Poisson Gauss-Seidel

31 4.54× 10−5 42 2204 0.3 0.8
45 2.11× 10−5 44 4597 0.9 3.0
63 1.06× 10−5 44 8872 1.6 10.7
89 0.53× 10−5 45 17339 4.1 41.0
127 0.26× 10−5 44 34419 8.3 163.1
181 0.13× 10−5 44 67968 19.3 666.0
255 0.06× 10−5 45 — 44.0 —
361 0.03× 10−5 55 — 124.5 —

C1 Example (2.18)
N Max Error Iterations CPU Time (seconds)

Poisson Gauss-Seidel Poisson Gauss-Seidel

31 3.78× 10−4 164 1848 1.0 0.6
45 1.82× 10−4 367 3854 6.0 2.6
63 1.34× 10−4 839 7430 24.7 8.8
89 0.85× 10−4 1497 14520 114.0 33.8
127 0.59× 10−4 2890 28816 447.1 139.9
181 0.37× 10−4 — 56885 — 541.8

Example with Blow-up (2.19)
N Max Error Iterations CPU Time (seconds)

Poisson Gauss-Seidel Poisson Gauss-Seidel

31 1.74× 10−2 74 2205 0.4 0.7
45 1.47× 10−2 81 4601 1.2 2.8
63 1.26× 10−2 90 8885 2.5 9.6
89 1.07× 10−2 102 17378 7.4 36.5
127 0.90× 10−2 115 34515 16.6 144.8
181 0.76× 10−2 130 68177 45.0 577.6
255 0.64× 10−2 148 — 113.7 —
361 0.54× 10−2 177 — 331.9 —

C0,1 (Lipschitz) Example (2.20)
N Max Error Iterations CPU Time (seconds)

Poisson Gauss-Seidel Poisson Gauss-Seidel

31 5.19× 10−3 844 2453 4.9 0.8
45 3.82× 10−3 1673 5137 25.0 3.1
63 2.86× 10−3 3100 9943 86.9 10.6
89 2.12× 10−3 5815 19502 417.2 40.1
127 1.54× 10−3 11033 38857 1576.7 160.4
181 1.12× 10−3 — 77016 — 642.9

Table 3.1: Computation times and maximum error for the Poisson and Gauss-Seidel methods
on four representative examples.
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Figure 3.2: Error of standard discretisation on the (a) C2 example, (b) C1 example, (c) ex-
ample with blow-up, and (d) Lipschitz example.
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Figure 3.3: Computation time for the Poisson and Gauss-Seidel methods on the (a) C2

example, (b) C1 example, (c) example with blow-up, and (d) Lipschitz example.

First, we observe that the Gauss-Seidel method requires a moderate amount of time

to converge. However, it is interesting to note that the computation time appears to be

essentially independent of the regularity of the solutions.

The Poisson iteration, on the other hand, appears to be very fast for smooth solutions.

However, on solutions with less regularity, this iteration can be extremely slow. This is

consistent with the analysis of §3.5.1, where we showed that the iteration is a contraction

method with a rate depending on the size of the second derivatives and the strict convexity

of the solution.
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3.7 Conclusions

In this chapter, we have investigated the use of standard finite difference discretisations

for the Monge-Ampère equation. In all the examples we computed, these natural finite

differences appear to converge to the viscosity solution of Monge-Ampère. Unfortunately,

although we observe numerical convergence for a number of examples of varying regularity,

we cannot prove that this discretisation will always converge to the correct weak solution.

We find that fast methods such as Newton’s method can fail for this simple discreti-

sation. Consequently, it is necessary to develop new solutions methods for solving the

system of discrete equations coming from the natural finite difference discretisation of the

Monge-Ampère equation. In two dimensions, we have developed two solution methods to

accomplish this. The first is an explicit Gauss-Seidel iteration that is only moderately fast,

but has a solution time that appears independent of the solution regularity. The second

method involves iteratively solving a Poisson equation. This method is quite fast for smooth

examples, but can be very slow on examples with less regularity.

We also recall that these methods, while quite robust in two dimensions, do not generalise

naturally to higher dimensions. We conclude that this natural finite difference discretisation,

though it appears more powerful than we might suppose given the lack of convergence theory,

is not the right approach for constructing general solvers for the Monge-Ampère equation.



Chapter 4

Monotone Finite Difference

Methods

In the last chapter, we found that standard finite difference techniques applied to the Monge-

Ampère equation face several limitations. These include the lack of convergence proof, the

difficulty of generalising to higher dimensions, and the challenge of building fast solvers for

singular solutions. In light of these difficulties, we now turn our attention to more sophisti-

cated discretisation techniques. This enables us to construct finite difference methods that

provably converge to the viscosity solution of the Monge-Ampère equation in any spatial

dimension. We also use Newton’s method to build fast, convergent solvers for the discretised

system. Finally, we provide computational results in both two and three dimensions.

To keep the key ideas of these methods clear, we begin by limiting our discussion to the

case where the right-hand side of the equation does not depend on gradients of the solution.

That is, we focus on the theory of convergent finite difference methods for the problem

det(D2u) = F (x,∇u) ≡ f(x). (4.1)

Towards the end of this chapter, we will also show how our techniques can be extended to

more general Monge-Ampère equations.

Because we want to focus on the problem of correctly approximating the Monge-Ampère

operator in the interior of the domain, we will simply implement Dirichlet boundary con-

ditions. As Dirichlet (or, sometimes, periodic) boundary conditions are found most often

in the literature, this will also enable us to more easily compare our methods with results

obtained using other methods for solving the Monge-Ampère equation.

48
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4.1 Convergence of Finite Difference Schemes

While it is not too hard to construct consistent, stable approximation schemes for the

Monge-Ampère equation, this is not enough to guarantee convergence to the weak (viscos-

ity) solution of this nonlinear equation. To motivate and lay the theoretical foundation

for a convergent discretisation of the Monge-Ampère equation, we review a framework for

convergence of finite difference schemes to the viscosity solutions of elliptic PDEs. This

theory, developed by Barles and Souganidis [4] and extended by Oberman [72], gives more

easily verified conditions for when approximation schemes converge to the unique viscosity

solution of a PDE. It relies on the fact that viscosity solutions are stable under perturba-

tions of the operator as long as the perturbed operator is also elliptic. In this setting, the

consistent finite difference scheme can be regarded as a perturbed operator.

Theorem 4.1 (Convergence of Approximation Schemes [4]). The solution of a consis-

tent, stable, monotone approximation scheme converges uniformly on compact subsets to

the unique viscosity solution of the limiting equation, provided this equation satisfies a com-

parison principle.

One of the advantages of this convergence result is that it only requires consistency

to be verified on smooth solutions, which is much simpler than checking consistency with

the viscosity solution for singular functions. In [72], this theorem was used to establish a

framework for building and verifying the monotonicity of finite difference schemes. This

was accomplished using the notion of a degenerate elliptic approximation scheme. We recall

that a finite difference equation at the discrete location xi, i = 1, . . . ,M has the form

F i[u] = F i(ui, ui − uj |j 6=i).

Then a degenerate elliptic finite difference scheme is characterised as follows.

Definition 4.1. The scheme F is degenerate elliptic if F i is non-decreasing in each variable.

By taking advantage of this special structure, we can verify both stability and mono-

tonicity of our finite difference scheme, as in [72].

Theorem 4.2 (Verifying Monotonicity and Stability). A scheme is monotone and non-

expansive in the L∞ norm if and only if it is degenerate elliptic.

Another property of certain finite difference schemes that is useful for constructing a

convergence theory is the notion of a proper scheme.
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Definition 4.2. The scheme F is proper if there exists κ > 0 such that for any i = 1, . . . ,M ,

ui − uj |j 6=i and x0, y0 ∈ R the inequality

x0 ≤ y0

implies that the scheme satisfies

F i(x0, ui − uj |j 6=i)− F i(y0, ui − uj |j 6=i) ≤ κ(x0 − y0).

These properties of approximation schemes are sufficient to guarantee the existence of a

unique solution to a scheme, as proved in Theorem 8 of [72].

Theorem 4.3 (Uniqueness of Solutions). A proper, locally Lipschitz continuous, degenerate

elliptic scheme has a unique solution.

It is helpful to observe that any scheme F i(ui, ui − uj |j 6=i) that is non-decreasing in its

first argument can be made proper by replacing it with

F̃ i(ui, ui − uj |j 6=i) = F i(ui, ui − uj |j 6=i) + κui

where κ > 0 can be chosen to be smaller than the discretisation error of the scheme. This

modification does not affect consistency, degenerate ellipticity, or Lipschitz continuity. Since

the Monge-Ampère equations we consider in this thesis do not depend on the solution u

(only on its Hessian and gradient), our schemes for the PDE will fall into this category.

Consequently, we will not be concerned with building proper schemes in this thesis, since

our schemes can easily be made proper without affecting the formal accuracy of the dis-

cretisation.

Given these general results, the work in proving that a (locally) Lipschitz continuous

discretisation of (1.2) converges is reduced to verifying two conditions: consistency and

degenerate ellipticity. This is accomplished in Lemmas 4.5-4.6

Remark (Convergence rates). While the formal accuracy of the scheme can be determined

by Taylor series applied to smooth test functions, the theorem only guarantees uniform

convergence to the viscosity solution. In general, the rate of convergence (accuracy) of the

scheme may not agree with the convergence rates suggested by the formal analysis. This

is to be expected since, in general, viscosity solutions can be singular, which means that

Taylor series are not valid. The power of the convergence result is that it applies even in

the singular case. In general, numerically observed convergence rates depend on both the

regularity of the solution and the discretisation.
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4.1.1 Wide Stencil Schemes

Even in the linear case, it is not always possible to build a monotone discretisation of a

second-order elliptic equation using a narrow (9-point) finite difference stencil [69]. Instead,

wide stencils are typically needed to build monotone discretisations of degenerate elliptic

second order PDEs. This type of discretisation was introduced by Oberman to build con-

vergent schemes for the equation for level set motion by mean curvature [70] and for the

infinity Laplace equation [71]. In [74] wide stencils were used for the two dimensional Monge-

Ampère equation. A wide stencil discretisation of the convex envelope was given in [73]. A

study of consistent discretisations of Hamilton-Jacobi-Belman equations using wide stencil

schemes has been performed in [9].

When we discretise an operator on a finite difference grid, we approximate second deriva-

tives by centred finite differences (spatial discretisation). In addition, we can consider a finite

number of possible directions ν that lie on the grid (directional discretisation). This allows

us to discretise the second directional derivative in the direction ν by

Dννui =
1

(|ν|h)2

(
u(xi + νh) + u(xi − νh)− 2u(xi)

)
. (4.2)

Depending on the direction of the vector ν, this may involve a wide stencil.

As a concrete example, we can consider the direction ν = (1, 2) in R2. The second

directional derivative in this direction is discretised as

Dννui,j =
1

5h2
(ui+1,j+2 + ui−1,j−2 − 2ui,j).

At points near the boundary of the domain, some values required by the wide stencil

will not be available (Figure 4.1). In these cases, we can use intermediate boundary values,

which may not lie on grid points, to construct a lower accuracy (O(h)) stencil for the

second directional derivative. For example, at the point (i,N − 1) on an N × N grid,

the discretisation (4.2) of the second derivative in the direction (1, 2) requires the point

(i + 1, N + 1), which lies outside the grid. In this case, we will discretise this directional

derivative by

Dννui,j =
4

15h2
(2ui+1/2,N + ui−1,N−3 − 3ui,N−1).

Since the value of ui+1/2,N is on the boundary, it can be regarded as data, which is either

given or obtained by interpolation.
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Figure 4.1: Wide stencils on a two dimensional grid (a) in the interior and (b) near the
boundary.

4.1.2 Monotone Discretisation in Two Dimensions

In two dimensions, the largest and smallest eigenvalues of a symmetric matrix can be rep-

resented by the variational formula

λ1[A] = min
‖ν‖=1

νTAν, λ2[A] = max
‖ν‖=1

νTAν.

This formula was used in [74] to build monotone schemes for functions of the eigenvalues

of the Hessian. This work includes the Monge-Ampère operator, which is the product of

the eigenvalues of the Hessian. However, the above formulae do not generalise naturally to

higher dimensions.

4.2 A Variational Characterisation of the Equation

In this chapter, we want to use the theory of [4, 72] to construct a convergent discretisation

of the Monge-Ampère equation. To do this, we require a monotone discretisation of the

equation. We recall that the two-dimensional Monge-Ampère operator can be written as

det(D2u) =
∂2u

∂x2

∂2u

∂y2
−

(
∂2u

∂x∂y

)2

.

Unfortunately, there is no obvious way to produce a monotone discretisation of the mixed

derivatives. Of course, this situation does not get any easier in higher dimensions.
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In order to proceed, we want to rewrite the Monge-Ampère operator in a way that bet-

ter lends itself to a monotone discretisation. Given the difficulty in building a monotone

discretisation of mixed derivatives, as well as our knowledge of how to construct monotone

discretisations of second directional derivatives, we wish to find an alternative characterisa-

tion of the Monge-Ampère operator that does not involve mixed second derivatives.

4.2.1 A Variational Characterisation for Strictly Convex Solutions

We begin by establishing a matrix analysis result that will provide a characterisation of the

determinant of the Hessian (that is, the Monge-Ampère operator) that leads to a natural

discretisation in any spatial dimension.

Consider an arbitrary symmetric positive definite matrix, A. Then we can characterise

the determinant of A as follows.

Theorem 4.4 (Variational Characterisation of the Determinant). Let A be a d×d symmetric

positive definite matrix with eigenvalues λj and let V be the set of all orthonormal bases for

Rd:

V = {(ν1, . . . , νd) | νj ∈ Rd, νi ⊥ νj if i 6= j, ‖νj‖2 = 1}.

Then the determinant of A is equivalent to

d∏
j=1

λj = min
(ν1,...,νd)∈V

d∏
j=1

max
{
νTj Aνj , 0

}
.

Proof. Since A is symmetric and positive definite, we can find a set of d orthonormal eigen-

vectors vj .

Any (ν1, . . . , νd) ∈ V , can be expressed as a linear combination of the eigenvectors:

νj =
d∑

k=1

cjkvk =
d∑

k=1

(νTj vk)vk.

Since the νj and vj are both orthonormal, we can make some claims about the coefficients

cjk.

d∑
k=1

c2
jk =

 d∑
k=1

cjkv
T
k

 d∑
l=1

cjlvl

 = νTj νj = 1
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d∑
j=1

c2
jk = vTk

 d∑
j=1

νjν
T
j

 vk = vTk vk = 1.

We can use these results to compute

log
d∏
j=1

νTj Aνj =
d∑
j=1

log(νTj Aνj) =
d∑
j=1

log

 d∑
k=1

c2
jkλk

 .

Using Jensen’s inequality, we conclude that

log
d∏
j=1

νTj Aνj ≥
d∑
j=1

d∑
k=1

c2
jk log(λk)

=
d∑

k=1

 d∑
j=1

c2
jk

 log(λk) = log
d∏
j=1

λj .

Since the logarithmic function is increasing, we conclude that

d∏
j=1

νTj Aνj ≥
d∏
j=1

λj

with equality if the νj are identical to the eigenvectors vj . This implies that

d∏
j=1

λj = min
(ν1,...,νd)∈V

d∏
j=1

νTj Aνj .

Moreover, since A is positive definite, all of the νTj Aνj are positive and we conclude that

d∏
j=1

λj = min
(ν1,...,νd)∈V

d∏
j=1

max
{
νTj Aνj , 0

}
.

Theorem 4.4 allows us to characterise the determinant of the Hessian of a strictly convex

C2 function φ in terms of its second directional derivatives:

det+(D2φ) = min
(ν1,...,νd)∈V

d∏
j=1

(
νTj D

2φ νj

)+
= min

(ν1,...,νd)∈V

d∏
j=1

max

{
∂2φ

∂νj2
, 0

}
.

Theorem 4.5 (Variational Form of the Monge-Ampère Equation). Let f : X → R be a

strictly positive function. A function u ∈ C2(X) is a strictly convex solution of the Monge-

Ampère equation

det(D2u) = f
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if and only if it satisfies the variational expression

min
{ν1...νd}∈V

d∏
j=1

max

{
∂2u

∂ν2
j

, 0

}
= f. (4.3)

Proof. Suppose u ∈ C2(X) is a strictly convex solution of the Monge-Ampère equation.

Then the Hessian D2u is symmetric and positive definite. By Theorem 4.4, the Hessian

satisfies

min
{ν1...νd}∈V

d∏
j=1

max

{
∂2u

∂ν2
j

, 0

}
= f,

as required.

Now we suppose that u satisfies this variational expression. If u is not strictly convex,

then at least one of the second directional derivatives is negative or zero so that

max

{
∂2u

∂ν2
j

, 0

}
= 0

for some νj . Consequently, the variational expression will have the value 0, which cannot

be equal to a positive right-hand side. We conclude that u must be strictly convex. Then

the Hessian of u is a symmetric, positive definite matrix and by Theorem 4.4, u satisfies the

Monge-Ampère equation.

We want to stress that this variational formulation of the Monge-Ampère equation ac-

complishes two important tasks:

1. The mixed derivatives have been eliminated.

2. The convexity constraint has been absorbed into the equation.

4.2.2 A Variational Characterisation of Degenerate Equations

We have shown that for strictly convex solutions, the variational expression (4.3) is equiva-

lent to the Monge-Ampère equation with the convexity constraint. However, in the degener-

ate case where the right-hand side f can vanish and solutions are no longer strictly convex,

the variational expression may not uniquely determine the solution of the Monge-Ampère

equation. This is because the variational equation with a vanishing right-hand side can also

permit non-convex solutions. To remedy this problem, we modify our variational equation

by adding a term that will penalise non-convex functions.
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To begin, we need to verify that our variational characterisation of the determinant

remains valid for matrices that are only positive semi-definite.

Lemma 4.1 (Determinant of a Positive Semi-Definite Matrix). Let A be a d× d symmetric

positive semi-definite matrix and let V be the set of all orthonormal bases of Rd:

V = {(ν1, . . . , νd) | νj ∈ Rd, νi ⊥ νj if i 6= j, ‖νj‖2 = 1}.

Then the determinant of A is equivalent to

det(A) = min
(ν1,...,νd)∈V

d∏
j=1

max
{
νTj Aνj , 0

}
.

Proof. If A is positive definite, this result follows immediately from Theorem 4.4.

Now we suppose that A has at least one eigenvalue that vanishes, so that the determinant

of A also vanishes. Then the variational formula satisfies

0 ≤ min
(ν1,...,νd)∈V

d∏
j=1

max
{
νTj Aνj , 0

}

≤
d∏
j=1

max
{
vTj Avj , 0

}
= 0.

In the above, the vj are the eigenvectors of A.

We conclude that the variational expression will have the value zero, and it continues to

be identical to the determinant.

Next we propose incorporating an additional term into this expression, which will involve

the negative part of the eigenvalues.

Lemma 4.2 (Determinant of a Positive Semi-Definite Matrix). Let A be a d× d symmetric

positive semi-definite matrix, γ any positive real number, and V the set of all orthonormal

bases of Rd:

V = {(ν1, . . . , νd) | νj ∈ Rd, νi ⊥ νj if i 6= j, ‖νj‖2 = 1}.

Then the determinant of A is equivalent to

det(A) = min
(ν1,...,νd)∈V


d∏
j=1

max
{
νTj Aνj , 0

}
+ γ

d∑
j=1

min
{
νTj Aνj , 0

} .
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Proof. Since A is positive semi-definite, νTj Aνj will be non-negative for any choice of νj .

This means that

min
{
νTj Aνj , 0

}
= 0

for any choice of νj . Then the result follows immediately from Lemma 4.1.

This result immediately gives us another formulation of the Monge-Ampère equation.

Lemma 4.3 (Monge-Ampère Operator for Convex Functions). If u ∈ C2(X) is convex and

γ is any positive real number, the Monge-Ampère operator will be equal to

det(D2u) = min
{ν1...νd}∈V


d∏
j=1

max{uνjνj , 0}+ γ

d∑
j=1

min{uνjνj , 0}

 .

Proof. Since u is convex, its Hessian D2u is positive semi-definite and the result follows

immediately from Lemma 4.2.

The important thing about this adjusted variational formulation is that the new term

will serve to penalise non-convex functions, which will allow us to absorb the convexity

constraint into the equation even when the right-hand side vanishes. This is made clear in

the following lemma.

Lemma 4.4 (Convexity of Solutions). Let u ∈ C2(X) be a solution of the equation

min
{ν1...νd}∈V


d∏
j=1

max{uνjνj , 0}+ γ
d∑
j=1

min{uνjνj , 0}

 = f (4.4)

where γ is a positive real number and f is a non-negative function. Then u is convex.

Proof. Let u ∈ C2(X) be a non-convex function. Then at some point x ∈ X, and for some

v ∈ Rd, the second directional derivative in that direction is negative:

uvv < 0.

This means that

max{uvv, 0} = 0, min{uvv, 0} < 0.
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Thus the variational equation will have a negative value at this point:

min
{ν1...νd}∈V


d∏
j=1

max{uνjνj , 0}+ γ
d∑
j=1

min{uνjνj , 0}


≤ γmin{uvv, 0}

< 0.

On the other hand, the right-hand side is non-negative (f ≥ 0), so this non-convex function

cannot satisfy our new variational equation (4.4).

When we put these lemmas together, we find that the adjusted variational equation is

equivalent to the original Monge-Ampère equation with the convexity constraint.

Theorem 4.6 (Variational Characterisation of the Monge-Ampère Equation). A function

u ∈ C2(X) satisfies the Monge-Ampère equation (1.2) together with the convexity con-

straint (1.1) if and only if it satisfies the variational equation (4.4).

Proof. Let u be a convex solution of the Monge-Ampère equation (1.2). By Lemma 4.3, it

also satisfies the variational equation (4.4).

Now we suppose that u is a solution of the variational equation (4.4). By Lemma 4.4,

u must be a convex function. Then from Lemma 4.3, it is a convex solution of the Monge-

Ampère equation (1.2).

4.3 Monotone Discretisation

We now turn to the problem of constructing a monotone discretisation of the Monge-Ampère

equation using our new formulation of the equation. One big advantage of this formulation

is that the convexity constraint is built into the PDE. This means that we no longer have

to concern ourselves with consistency with the convexity constraint; it is enough that our

discretisation be consistent with the PDE (4.3).

4.3.1 Wide Stencil Discretisation

This formulation of the Monge-Ampère operator lends itself to the wide stencil discretisation

described in §4.1.1 To implement this, we consider a finite number of possible directions ν
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that lie on the grid. We denote this set of orthogonal vectors by G. Then we can discretise

the convexified Monge-Ampère operator as

− min
{ν1...νd}∈G


d∏
j=1

max{Dνjνju, 0}+ γ
d∑
j=1

min{Dνjνju, 0}

 .

where Dνν is the finite difference operator for the second directional derivative in the direc-

tion ν, which lies on the finite difference grid; see (4.2).

We note that this expression may not be uniformly elliptic if the (discrete) second

directional derivatives vanish. Thus we choose to relax this expression slightly be introducing

a small parameter δ ≥ 0 and instead defining our monotone discretisation as

MAM [u] ≡ − min
{ν1...νd}∈G


d∏
j=1

max{Dνjνju, δ}+ γ
d∑
j=1

min{Dνjνju, δ}

 . (MA)M

Since the discretisation considers only a finite number of directions ν, there will be an

additional term in the consistency error coming from the angular resolution dθ of the stencil.

This angular resolution will decrease and approach zero as the stencil width is increased. In

practice, we use relatively narrow stencils for most computations, but for singular solutions,

the directional resolution error can dominate.

An interesting question is whether this discretisation—in two dimensions—is equivalent

to the wide stencil discretisation of the two-dimensional Monge-Ampère equation described

in [74]. A simple example demonstrates that these two discretisations are genuinely distinct.

For example, we can consider the function u(x, y) = x2 +y2 +x2y2 and discretise the Monge-

Ampère operator using a 9-point stencil. This allows us to choose from the set of directions

{(1, 0), (0, 1), (1, 1), (1,−1)}.

Using the two-dimensional characterisation of the Monge-Ampère equation (recalled in §4.1.2),

the monotone discretisation produces

−
(

min
ν1
Dν1ν1u

)(
max
ν2
Dν2ν2u

)
= −2(2 + h2).

On the other hand, our new discretisation has the value

− min
ν1⊥ν2

{
Dν1ν1uDν2ν2u

}
= −4.
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4.3.2 Regularisation

The monotone discretisation we have described in (MA)M may not be differentiable at

points where the minimum is attained along more than one direction ν, or at points where

the value is zero. Since we wish to differentiate the operator when we build fast solvers using

Newton’s method, we need to regularise this discretisation. For convergence to viscosity

solutions, we need to make the regularisation monotone.

One way to do this is to notice that the non-differentiability of (MA)M arises only from

the operations of max and min. This means that if we regularise each of these operations

in a monotone way, we can reconstruct a regularised version of (MA)M by substitution.

With that in mind, we define

maxδ(a, b) =
1
2

(
a+ b+

√
(a− b)2 + δ2

)
minδ(a, b) =

1
2

(
a+ b−

√
(a− b)2 + δ2

)
.

Clearly maxδ → max and minδ → min as δ → 0. Moreover, these functions are differentiable

and non-decreasing in each variable. We also note that

maxδ(a, 0) =
1
2

(a+
√
a2 + δ2) >

1
2

(a+|a|) ≥ 0,

minδ(a, 0) =
1
2

(a−
√
a2 + δ2) <

1
2

(a−|a|) ≤ 0.

Now we can build up the regularised operator as follows. We begin by replacing the

approximations to the positive and negative parts of the second directional derivatives with

regularised versions:

max{Dννu, δ} → maxδ (Dνν , 0) , min{Dννu, δ} → minδ (Dνν , 0)

Next, the minimum over orthogonal vectors is regarded as a succession of minimums, each

of which is replaced by its regularised version.

The resulting discretisation is denoted by

MAR[u]. (MA)R

It is a smooth function of ui, strictly increasing in each of the Dνkj νkj ui, and converges to the

original discretisation (MA)M as δ → 0.
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4.4 Convergence to the Viscosity Solution

Theorem 4.7 (Convergence to Viscosity Solution). Let the PDE (4.1) have a unique vis-

cosity solution. Then the solutions of the schemes (MA)M , (MA)R converge to the viscosity

solution of (1.2) as h, dθ, δ → 0.

Proof. The convergence follows from verifying consistency and degenerate ellipticity, as

discussed in §4.1. This is accomplished in Lemmas 4.5-4.6.

4.4.1 Degenerate Ellipticity

We recall that according to Definition 4.1, a finite difference equation of the form

F i[u] = F i(ui, ui − uj |j 6=i).

is degenerate elliptic if F iis non-decreasing in each variable.

Lemma 4.5 (Degenerate Ellipticity). The finite difference schemes given by (MA)M and (MA)R

are degenerate elliptic.

Proof. From their definitions, the discrete second directional derivatives Dννu are non-

decreasing functions of each uj − ui for each grid direction ν. Ignoring the minus sign

in front of it, the scheme (MA)M is a non-decreasing combination of the operators min and

max applied to the non-decreasing terms Dννu, so it is also non-decreasing in each of the

uj − ui.
Replacing the minus sign in front of the scheme, we find that (MA)M is non-decreasing

in each of the ui − uj and is thus degenerate elliptic.

We recall from the construction of the scheme in §4.3.2 that the regularised scheme (MA)R

comes from replacing the operations of min and max in (MA)M by a non-decreasing regu-

larisation of these operations. So the regularised scheme is also degenerate elliptic.

4.4.2 Consistency

We also require the schemes (MA)R and (MA)M to be consistent with the Monge-Ampère

equation.

Definition 4.3. The scheme MAh,dθ,δ is consistent with the equation (1.2) at x0 if for every

twice continuously differentiable function φ(x) defined in a neighbourhood of x0,

MAh,dθ,δ[φ](x0)→MA[φ](x0) as h, dθ, δ → 0.
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The global scheme defined on X is consistent if this limit holds uniformly for all x ∈ X.

Before we prove the consistency of our scheme, we recall that we have used h to denote

the spatial resolution of our grid. However, because we are discretising the second directional

derivatives using a wide stencil, the effective spatial resolution will be larger. For example,

the discrete version of the second derivative in the direction νj will be

Dνhνju = uνjνj +O(
∣∣νj∣∣2 h2) = uνjνj +O(h2

j ).

We will denote the effective spatial resolution of our stencil by

heff ≡ max
νj∈G

hj .

As we refine the grid, it is important not only that h approaches zero, but also that heff
approaches zero. Since heff is related to the stencil width, which in turn determines the

angular resolution dθ of the stencil, this means that h should be converging to zero faster

than dθ converges to zero.

Now we prove consistency of (MA)M and (MA)R. The consistency proofs are identical

since

maxδ{a, 0} = max{a, 0}+O(δ) = max{a, δ}+O(δ).

Lemma 4.6. Let x0 ∈ X be a reference point on the grid and φ(x) be a twice continuously

differentiable function that is defined in a neighbourhood of the grid. Then the schemes

MAM [φ] and MAR[φ] defined in (MA)M and (MA)R approximate the PDE MA[φ] with

accuracy

MAM,R[φ](x0) = MA[φ](x0) +O(h2
eff + dθ + δ).

Proof. From a simple Taylor series computation we have

Dννφ(x0) = φνν(x0) +O(h2
eff ).

We also recall that in subsection 4.3.2 we regularised the second directional derivatives to

obtain

maxδ{Dννφ(x0), 0} = max{Dννφ(x0), 0}+O(δ),

minδ{Dννφ(x0), 0} = min{Dννφ(x0), 0}+O(δ).
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We know that the negation of the Monge-Ampère operator can be expressed as

min
ν∈V


d∏
j=1

max{uνjνj , 0}+ γ

d∑
j=1

min{uνjνj , 0}

 =
d∏
j=1

uvjvj + γ

d∑
j=1

min{uvjvj , 0}

where the vj are orthogonal unit vectors, which may not be in the set of grid vectors G. We

can then choose a set of vectors
v + dv

|v + dv|
∈ G

so that each remainder
∣∣dvj∣∣ = O(dθ).

Now we consider the discretised problem

−MAh,dθ,δM,R [φ](x0) = min
ν∈G

δ


d∏
j=1

maxδ{Dνjνjφ(x0), 0}+ γ
d∑
j=1

minδ{Dνjνjφ(x0), 0}


= min

ν∈G


d∏
j=1

max{Dνjνjφ(x0), 0}+ γ
d∑
j=1

min{Dνjνjφ(x0), 0}

+O(δ)

≤
d∏
j=1

max{D(vj+dvj)(vj+dvj)φ(x0), 0}

+ γ
d∑
j=1

min{D(vj+dvj)(vj+dvj)φ(x0), 0}+O(δ)

=
d∏
j=1

max

(vj + dvj)TD2φ(x0)(vj + dvj)∣∣vj + dvj
∣∣2 , 0


+ γ

d∑
j=1

min

(vj + dvj)TD2φ(x0)(vj + dvj)∣∣vj + dvj
∣∣2 , 0

+O(h2
eff + δ)

=
d∏
j=1

max{vTj D2φ(x0)vj , 0}+ γ

d∑
j=1

min{vTj D2φ(x0)vj , 0}

+O(h2
eff + dθ + δ)

= min
ν∈V


d∏
j=1

max{φνjνj (x0), 0}+ γ

d∑
j=1

min{φνjνj (x0), 0}


+O(h2

eff + dθ + δ)

= −MA[φ](x0) +O(h2
eff + dθ + δ).



CHAPTER 4. MONOTONE FINITE DIFFERENCE METHODS 64

In addition, since the set of grid vectors G is a subset of the set of all orthogonal vectors

V , we find that

−MAh,dθ,δM,R [φ](x0) = min
ν∈G

δ


d∏
j=1

maxδ{Dνjνjφ(x0), 0}+ γ
d∑
j=1

minδ{Dνjνjφ(x0), 0}


= min

ν∈G


d∏
j=1

max{Dνjνjφ(x0), 0}+ γ

d∑
j=1

min{Dνjνjφ(x0), 0}

+O(δ)

≥ min
ν∈V


d∏
j=1

max{Dνjνjφ(x0), 0}+ γ

d∑
j=1

min{Dνjνjφ(x0), 0}

+O(δ)

= min
ν∈V


d∏
j=1

max{φνjνj (x0), 0}+ γ

d∑
j=1

min{φνjνj (x0), 0}

+O(h2
eff + δ)

= −MA[φ](x0) +O(h2
eff + δ).

We conclude that

MAh,dθ,δM,R [φ](x0) = MA[φ](x0) +O(h2
eff + dθ + δ).

Thus the schemes are consistent.

4.5 Forward Euler for the Parabolic Equation

Having described a convergent discretisation of the Monge-Ampère equation, we now need

to provide a method for solving the discrete system.

Using a monotone discretisation −F [u] of the Monge-Ampère operator, the simplest

way to solve the Monge-Ampère equation is by solving the parabolic version of the equation

using forward Euler. That is, we perform the iteration

un+1 = un + dt(F [un]− f)

until the solution reaches a steady state.

Explicit iterative methods have the advantage of being simple to implement. However,

stability requires the stepsize dt to satisfy a CFL condition (which applies in a nonlinear

form to monotone discretisations, as explained in [72]). Because of the small size of dt,

which depends on the spatial resolution h, approximating the steady state solution requires
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a large number of iterations. In particular, the required time step is given by the inverse of

the Lipschitz constant for the scheme

dt = K(F [un])−1.

For example, we consider the (unregularised) scheme (MA)M

MAM [u] ≡ − min
{ν1...νd}∈G


d∏
j=1

max{Dνjνju, δ}+ γ

d∑
j=1

min{Dνjνju, δ}

 .

We recall that the Lipschitz constant of the maximum or minimum of two functions

f1, f2 is bounded by the maximum of the Lipschitz constants K1,K2

K(max(f1, f2)), K(min(f1, f2)) ≤ max(K1,K2)

and the Lipschitz constant of the sum of two functions is bounded by the sum of the Lipschitz

constants

K(f1 + f2) ≤ K1 +K2.

Using these properties and the chain rule, we can bound the Lipschitz constant of the

monotone scheme by

K(MAM [u]) ≤ 2
h2

max
{ν1...νd}∈G


d∑
i=1

∏
j 6=i

max{Dνjνju, δ}+ dγ

 ,

which implies that the optimal time step is O(h2) and may become very small if the eigen-

values of the Hessian are large.

Although this time step is an improvement over the one obtained by dimensional scaling

(which is O(h2d)), it still places a severe restriction on the solution speed that is possible

using an explicit forward Euler iteration. Consequently, we now turn our attention to the

construction of an implicit solution method that will allow for much faster solution times.

4.6 Newton’s Method

We now consider the use of Newton’s method for solving the system of equations we obtain

when we discretise the Monge-Ampère equation. Although Newton’s method can fail if the

Monge-Ampère equation is discretised naively, the use of a monotone discretisation ensures

that the Newton step will remain well-defined and that the iteration will converge.
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Again, we use use the Newton iteration

un+1 = un − τvn

where the corrector vn must solve the linear system(
∇uMA[un]

)
vn = MA[un] + f.

4.6.1 Monotone Discretisation

The Jacobian for the monotone discretisation is obtained by using Danskin’s Theorem [7]

and the product rule.

∇uMAM [u] = −
d∑
j=1

diag

1Dν∗
j
ν∗
j
u>δ

∏
k 6=j

max{Dν∗kν∗ku, δ}+ γ1Dν∗
j
ν∗
j
u≤δ

Dν∗j ν∗j
where the ν∗j are the directions active in the minimum in (MA)M .

In order to ensure that the linear equation (3.3) is well-posed, we want the coefficients of

each Dν∗j ν∗j in the Jacobian to be negative. This requirement shows an additional advantage

we obtain from the addition of the linear terms that penalise convexity (see §4.2.2). It is

evident that without this correction to the PDE (the case γ = 0), the Jacobian can be

singular if the (discrete) second directional derivatives of u vanish. However, the addition

of the extra penalty term ensures that this cannot happen. In fact, this correction to the

equation ensures that the linear system is well-posed even if u at the current iterate is

non-convex.

4.6.2 Regularised Discretisation

The monotone discretisation described above still faces a subtle limitation in that the formu-

lation of Newton’s method (MA)M may not be differentiable at points where the minimum

is attained along more than one direction ν. This was the motivation for the regularised

discretisation given by (MA)R. As this discretisation is differentiable, we can easily com-

pute the Jacobian and apply Newton’s method. We can also use the analysis we have done

for this discretisation in §4.4 to prove convergence of Newton’s method.

Theorem 4.8 (Newton’s Method for the discretised Monge-Ampère Equation). Suppose

the PDE (1.2) has a unique viscosity solution. Then Newton’s method for the discretised

system given by (MA)R converges quadratically.
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In order to prove this result, we recall a theorem on the convergence of Newton’s method

for a system of equations [57].

Theorem 4.9 (Newton’s Method for a System of Equations). Consider a system of equa-

tions F [u] = 0 where the operator F : Rd → Rd and let U ⊂ Rd be open. Suppose the

following conditions hold:

1. A solution u∗ ∈ U exists.

2. ∇F : U → RN×N is Lipschitz continuous.

3. ∇F (u∗) is non-singular.

Then the Newton iteration

un+1 = un −∇F (un)−1F (un)

converges quadratically to u∗ if u0 ∈ U is sufficiently close to u∗.

Remark. In order to apply this result to our non-linear system, we rely on the fact that

our discretisation is degenerate elliptic. This is necessary to ensure both that a solution to

the system exists and that the Jacobian ∇F in the Newton iteration is non-singular. This

general theorem about Newton’s method will not necessarily apply to other discretisations

such as the one described in Chapter 3.

Proof of Theorem 4.8. For any fixed grid, the discretised system of equations has a solution,

as established in Theorem 4.7.

The scheme (MA)R is smooth in u and is thus locally Lipschitz continuous.

By construction, the discrete Monge-Ampère operator is strictly decreasing in each of

the discrete second directional derivatives (§4.3.2). Thus the Jacobian will have the form

∇uMAδ[u] = −
∑
νk∈G

d∑
j=1

Ajk(u)Dνkj νkj

where each of the Ajk(u) is a positive definite diagonal matrix. The Jacobian is positive

definite and thus invertible.

By Theorem 4.9, Newton’s method converges for the discretised system (MA)R.
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4.7 Numerical Implementation

Before we provide computational results, we discuss several additional details of the com-

putational results.

4.7.1 Damping

We will use the form of Newton’s method in §4.6 with the addition of damping,

un+1 = un − τvn,

to solve the discretised equation coming from the monotone discretisation of §4.3.1. Here

the damping parameter τ , 0 < τ ≤ 1, is chosen at each step to ensure that the residual

‖MAM (un) + f‖ is decreasing. In most cases, we can simply choose τ = 1. However,

damping can improve convergence if we choose a poor initial value.

4.7.2 Initialisation

Newton’s method requires a good initialisation in order for convergence to be guaranteed.

In particular, we desire an initial value that:

• is close to the exact solution

• respects the boundary conditions.

A function that is convex may also be desirable, but this is no longer required for the

monotone scheme we have described. This is because we have built convexity directly into

the PDE and ensured that Newton’s method remains well-posed even if the initial guess is

non-convex. Thus we do not have to be overly concerned about forcing our initial guess to

be convex.

In order to find a suitable initial value u0, we suggest using one step of the semi-implicit

scheme (3.13). This amounts to solving the Poisson equation (3.14)

∆u0 = (d!f)1/d

along with the specified Dirichlet boundary conditions.

If the solution of the Monge-Ampère equation is sufficiently regular, we may also ac-

celerate the convergence of Newton’s method by first solving the equation on a coarse grid

and then interpolating onto the finer grid. This can result in a very accurate initial guess,

leading to rapid convergence of Newton’s method.
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4.8 Extensions to Other Monge-Ampère Equations

Up to this point, all the theory developed in this chapter was applicable only to Monge-

Ampère equations of the form

det(D2u(x)) = f(x),

where the right-hand side has no dependence on the solution u. However, in many applica-

tions the right-hand side can depend on the gradient of the solution:

det(D2u(x)) = F (x,∇u(x)).

We now describe how our monotone finite difference methods can be extended to allow for

the numerical solution of this more general equation.

4.8.1 Discretisation of Functions of the Gradient

The main point we need to address here is the discretisation of functions of the gradient.

The simplest approach would be to simply used standard centred differences for the first

derivatives:

Dxju(x) =
1

2h
(u(x + hej)− u(x− hej))

where ej is the vector whose ith component is equal to the Kronecker delta δij . While

this discretisation is consistent with C2 solutions of the Monge-Ampère equation, it is not

monotone and there is no guarantee that it will converge to the viscosity solution.

Oberman [72] provided some examples illustrating the construction of monotone dis-

cretisations for functions of the gradient. For example, that work describes a monotone

discretisation of the absolute value of a first derivative:∣∣ux(xj)
∣∣ =

1
h

max{u(xj)− u(xj−1), u(xj+1)− u(xj), 0}+O(h).

For more general functions of the gradient, one approach to producing a monotone

discretisation is to simply using centred differences and add on a small multiple of the

laplacian:

g(ux) = g(Dxu) + hKgDxxu+O(h).

Here Kg is the Lipschitz constant of the function g.

However, instead of adding an additional term to the discretised equation, we could

instead make use of the second derivatives that are already present in the Monge-Ampère
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equation. In the case where solutions are smooth and strictly convex, this will also allow

an improvement in the formal accuracy of the finite difference scheme. This is the subject

of the following sections.

4.8.2 Discretisation of the Monge-Ampère equation

So far we have attempted to produce a monotone discretisation for each individual term

in the Monge-Ampère equation. As an alternative to this, we suggest using a wide stencil

to produce a discretisation of the Monge-Ampère equation which, though it may not be

monotone for each of the individual terms, is monotone when considered as a whole.

To accomplish this, we make use of the second directional derivatives uνjνj that are

already present in the Monge-Ampère equation, as noted in §4.8.1. By making a change of

coordinates, we can write the gradient

∇u =
(
ux1 , . . . , uxd

)
in terms of first derivatives in the directions νj :

∇̃u =
(
uν1 , . . . , uνd

)
.

To accomplish all this, we first need to rewrite the gradient in terms of the new coordinate

system. We consider any set of d orthogonal vectors in Rd: (v1, . . . , vd). Now we can rewrite

the gradient of a function u in terms of directional derivatives along these axes:

∇u =
(
ux1 , . . . , uxd

)
=

 d∑
j=1

vj · e1∣∣vj∣∣ uvj , . . . ,

d∑
j=1

vj · ed∣∣vj∣∣ uvj

 .

This enables us to discretise the gradient using a wide stencil by discretising the directional

derivative in the direction vj as

Dvjui =
1

2
∣∣vj∣∣h (u(xi + vjh)− u(xi − vjh)

)
, (4.5)

which has an accuracy of O(h2). Near the boundary, where some of the required values may

not be available, we can simply use a first-order accurate forward or backward difference.

We stress again that this discretisation of the gradient is valid for any set of orthogonal

vectors v1, . . . , vd.
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Using this characterisation of the gradient, we can rewrite the Monge-Ampère equation

as

MA[u] = − min
(ν1,...,νd)∈V


d∏
j=1

max{uνjνj , 0}+ γ

d∑
j=1

min
{
uνjνj , 0

}+ F (x,∇u)

= − min
(ν1,...,νd)∈V


d∏
j=1

max{uνjνj , 0}+ γ
d∑
j=1

min
{
uνjνj , 0

}
− F (x,∇u)


=− min

(ν1,...,νd)∈V


d∏
j=1

max{uνjνj , 0}+ γ
d∑
j=1

min
{
uνjνj , 0

}

− F

x, d∑
j=1

νj · e1∣∣νj∣∣ uνj , . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ uνj




= − min
(ν1,...,νd)∈V

G(ν1,...,νd).

As we have already described in (4.2),(4.5), the directional first and second derivatives

can be discretised using a wide stencil by limiting the set of possible directions in the set V

to a finite set G of orthogonal vectors that lie on the grid. As before, we introduce a small

parameter δ > 0 in order to bound the maximum and minimum functions away from zero:

max{·, 0},min{·, 0} → max{·, δ},min{·, δ}.

We can now define the discretisation of the Monge-Ampère equation as

MAh,dθ,δM [u] = − min
(ν1,...,νd)∈G

Gh,dθ,δ(ν1,...,νd)[u] (4.6)

where each of the Gh,dθ,δ(ν1,...,νd)[u] is defined as

Gh,dθ,δ(ν1,...,νd)[u] =
d∏
j=1

max{Dνjνju, δ}+ γ

d∑
j=1

min{Dνjνju, δ}−

F

x, d∑
j=1

νj · e1∣∣νj∣∣ Dνju, . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ Dνju
 .

(4.7)

4.8.3 Convergence

Theorem 4.10 (Convergence to Viscosity Solution). Let the PDE (1.3) have a unique

viscosity solution and let the right-hand side F (x,∇u) be Lipschitz continuous on Ω × Rd
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with Lipschitz constant KF . Then the solution of the scheme (4.6) converges to the viscosity

solution of (1.2) as h, dθ, δ → 0 with γ ≥ δd−1 ≥ KF

∣∣νj∣∣h/2 and heff ≥ h
∣∣νj∣∣ → 0 for

every νj ∈ G.

Proof. The convergence follows from verifying consistency and degenerate ellipticity. This

is accomplished in Lemmas 4.8-4.9.

Lemma 4.7. Under the hypotheses of Theorem 4.10, the scheme for Gh,dθ,δ(ν1,...,νd)[u] in (4.7) is

non-decreasing in each uj − ui.

Proof. We introduce the notation

p+
j (xi) = u(xi + hνj)− u(xi), p−j (xi) = u(xi − hνj)− u(xi).

This allows us to write Gh,dθ,δ(ν1,...,νd)[u] in the form of Definition 4.1 as follows:

Gh,dθ,δ(ν1,...,νd)(p
+
1 , p

−
1 , . . . , p

+
d , p

−
d ) =

d∏
j=1

max

p
+
j + p−j∣∣νj∣∣2 h2

, δ


+ γ

d∑
j=1

min

p
+
j + p−j∣∣νj∣∣2 h2

, δ

− F
(
p+

1 − p
−
1

2|ν1|h
, . . . ,

p+
d − p

−
d

|2νd|h

)
. (4.8)

Now we need only check that this is non-decreasing in each of its arguments. We verify this

for the term p+
1 ; the reasoning is identical for the remaining terms.

Choose any ε > 0 and consider:

Gh,dθ,δ(ν1,...,νd)(p
+
1 + ε)−Gh,dθ,δ(ν1,...,νd)(p

+
1 )

≥ δd−1

max

{
p+

1 + ε+ p−1
|ν1|2 h2

, δ

}
−max

{
p+

1 + p−1
|ν1|2 h2

, δ

}
+ δd−1

min

{
p+

1 + ε+ p−1
|ν1|2 h2

, δ

}
−min

{
p+

1 + p−1
|ν1|2 h2

, δ

}
−KF

(
p+

1 + ε− p−1
2|ν1|h

− p+
1 − p

−
1

2|ν1|h

)
.

In the above, we have used the facts that

min

{
p+

1 + ε+ p−1
|ν1|2 h2

, δ

}
−min

{
p+

1 + p−1
|ν1|2 h2

, δ

}
≥ 0
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and that γ ≥ δd−1.

We continue with this expression to conclude that

Gh,dθ,δ(ν1,...,νd)(p
+
1 + ε)−Gh,dθ,δ(ν1,...,νd)(p

+
1 )

≥ δd−1

(
p+

1 + ε+ p−1
|ν1|2 h2

+ δ − p+
1 + p−1
|ν1|2 h2

− δ

)
−KF

ε

2|ν1|h

=
ε

|ν1|2 h2
(δd−1 −KF |ν1|h/2).

This expression is non-negative as long as δd−1 ≥ KF |ν1|h/2.

We conclude that each of the Gh,dθ,δ(ν1,...,νd) is non-decreasing in each uj − ui.

Lemma 4.8. Under the hypotheses of Theorem 4.10, the scheme for MAh,dθ,δM [u] in (4.6) is

degenerate elliptic.

Proof. The negation of this scheme is the minimum of schemes that are non-increasing in

each of the ui − uj . Consequently, the scheme for MAh,dθ,δM [u] is non-decreasing in each

argument and is therefore degenerate elliptic.

Lemma 4.9. Let x0 ∈ X be a reference point on the grid and φ(x) be a twice continuously

differentiable function that is defined and convex in a neighbourhood of the grid. Then

the scheme MAM [φ] defined in 4.6 approximates the Monge-Ampère equation (1.3) with

accuracy

MAM [φ](x0) = MA[φ](x0) +O
(

min
j
{Dνjνjφ(x0)}δ + γδ + h2

eff + dθ

)
.

Proof. We recall that the discretisation is of the form

MAh,dθ,δM [φ](x0) = min
(ν1,...,νd)∈G

Gh,dθ,δ(ν1,...,νd)[φ](x0).

We begin by considering the term inside the minimum.

Gh,dθ,δ(ν1,...,νd)[φ](x0) =
d∏
j=1

max{Dνjνjφ(x0), δ}+ γ

d∑
j=1

min{Dνjνjφ(x0), δ}

− F

x, d∑
j=1

νj · e1∣∣νj∣∣ Dνjφ(x0), . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ Dνjφ(x0)


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=
d∏
j=1

max{φνjνj (x0), δ}+ γ

d∑
j=1

min{φνjνj (x0), δ}

− F

x, d∑
j=1

νj · e1∣∣νj∣∣ φνj (x0), . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ φνj (x0)

+O(h2
eff )

=
d∏
j=1

max{φνjνj (x0), 0}+O

δ d∑
j=1

1φνjνj (x0)<δ


+ γ

d∑
j=1

min{φνjνj (x0), 0}+O(γδ)

− F

x, d∑
j=1

νj · e1∣∣νj∣∣ φνj (x0), . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ φνj (x0)

+O(h2
eff ).

Here we have made use of the fact that the centred difference discretisations of the first and

second derivatives have a formal accuracy of O(h2
eff ) and that the function F is Lipschitz

continuous.

Using the reasoning of Lemma 4.6, we conclude that

MAh,dθ,δM [φ](x0) = MA[φ](x0) +O

δ d∑
j=1

1φνjνj (x0)<δ + γδ + h2
eff + dθ

 .

Thus

Mh,dθ,δ
M [φ](x0)→MA[φ](x0)

as h, dθ, δ → 0 such that heff → 0 as well.

Therefore the scheme is consistent.

Remark. As before, we could also replace the max and min functions with the smooth

functions

maxδ(a, b) =
1
2

(
a+ b+

√
(a− b)2 + δ2

)
minδ(a, b) =

1
2

(
a+ b−

√
(a− b)2 + δ2

)
.

Since these regularised functions preserve the property that

maxδ(a, b) + minδ(a, b) = a+ b,

the convergence proof (Theorem 4.10) is unchanged.
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4.8.4 Formal Accuracy

Although the convergence proof does not provide an error estimate, it is interesting to look

at the formal accuracy of the finite difference scheme, which suggests the accuracy we might

expect to observe on smooth enough examples. The formal error of this scheme is on the

order of

δ
d∑
j=1

1uνjνj<δ + γδ + h2
eff + dθ

when u is a smooth solution.

We recall also that for convergence, the parameters in the Monge-Ampère equation and

the difference scheme must satisfy

γ ≥ δd−1 ≥ 1
2
KFheff .

Although γ occurs in the PDE itself, not merely the approximation scheme, the PDE (4.3) is

equivalent to the Monge-Ampère equation with the convexity constraint for any (arbitrarily

small) positive value of γ. Thus we expect that the best possible consistency error we can

observe would occur if we set γ = O(δd−1) = O(heff ). In this case, the formal consistency

error has the form

h
1
d−1

eff

d∑
j=1

1
uνjνj<h

1/(d−1)
eff

+ h
d
d−1

eff + h2
eff + dθ.

In particular, we want to consider the case of non-degenerate examples, where solutions

are strictly convex. Then all the second directional derivatives will be strictly positive and,

for small enough h, the solution will satisfy

uνjνj > h
1/(d−1)
eff .

This means that the consistency error will simplify to

h
d
d−1

eff + h2
eff + dθ.

In this case, the formal spatial accuracy will be better than first order. In particular,

in the two-dimensional setting we actually obtain second order accuracy in the spatial

resolution heff .
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4.8.5 Newton’s Method

The monotone discretisation of the more general Monge-Ampère equation results in a system

of equations that, as before, can be solved efficiently using Newton’s method.

This again involves performing the iteration

uk+1 = uk − vk

where the corrector vk is obtained by solving the equation

∇MA[uk]vk = MA[uk].

We recall that this discretisation has the form

MAM [u] = − min
(ν1,...,νd)∈G

G(ν1,...,νd)[u].

As before, we can write the Jacobian as

∇MAM [u] = −∇G(ν1,...,νd)[u],

where the (ν1, . . . , νd) are the directions active in the minimum. The components of this

Jacobian are now given by:

∇uiG(ν1,...,νd)[u] = −
d∑

m=1


∏
j 6=m

max{Dνjνjui, δ}

1Dνjνjui≥δ + γ1Dνjνjui<δ

Dνmνm
+

d∑
m=1

∂F

∂pm

x, d∑
j=1

νj · e1∣∣νj∣∣ Dνjui, . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ Dνjui
 d∑

j=1

νj · em∣∣νj∣∣ Dνj .
4.9 Computational Results: Two Dimensions

We now provide computational results to validate the theory developed in this chapter. We

begin by providing specific details for the four two-dimensional examples described in §2.5.

In all these examples, the right-hand side of the Monge-Ampère equation will not depend

on gradients of the solution. Results for a more general Monge-Ampère equation will be

delayed until Chapter 6, when we will be better equipped to evaluate these results in the

context of optimal transport.
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We perform computations using 9, 17, and 33 point stencils. These stencils look along

the directions in:

G9 =
{
{(1, 0), (0, 1)}, {(1, 1), (1,−1)}

}
G17 = G9 ∪

{
{(1, 2), (2,−1)}, {(2, 1), (1,−2)}

}
G33 = G17 ∪

{
{(1, 3), (3,−1)}, {(3, 1), (1,−3)}, {(2, 3), (3,−2)}, {(3, 2), (2,−3)}

}
.

We also perform a comparison with the standard methods described in Chapter 3.

4.9.1 Accuracy

In this section, we present accuracy results for the four representative examples described

in §2.5; see Table 4.1 and Figure 4.2. We perform the computations using the monotone

scheme on 9, 17, and 33 point stencils. The accuracy of the scheme is determined by

a combination of the directional resolution, dθ, error and the spatial discretisation error.

Widening the stencil, which has the effect of decreasing dθ, improves the accuracy, as does

increasing the number of grid points.

We also compared the accuracy to standard finite differences. Standard finite differences

are formally more accurate since there is no dθ error, and we certainly observe this in the

computations. This is particularly evident for the C2 and C1 examples, where the error

in the standard discretisation is much lower than the error in the monotone discretisations

(with reasonably narrow stencils).

4.9.2 Computation Time

One of the big advantages of the monotone scheme is that it allows us to use Newton’s

method, which could become unstable or converge to the wrong solution when combined

with the standard discretisation. Consequently, the monotone scheme allows for a big im-

provement in solution time.

To support this claim, we compare computation times required by the monotone New-

ton’s method (on a 17 point stencil) with the times required by the Poisson and Gauss-Seidel

iterations described in Chapter 3. These are presented in Table 4.2 and Figure 4.3. In terms

of absolution solution time, the Newton solver is faster for each of the four representative

examples of §2.5.
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Max Error, C2 Example (2.17)
N 9 Point 17 Point 33 Point Standard

31 9.45× 10−5 9.12× 10−5 9.38× 10−5 4.54× 10−5

45 6.31× 10−5 5.36× 10−5 5.40× 10−5 2.11× 10−5

63 4.91× 10−5 3.42× 10−5 3.40× 10−5 1.06× 10−5

89 4.17× 10−5 2.30× 10−5 2.17× 10−5 0.53× 10−5

127 3.79× 10−5 1.67× 10−5 1.39× 10−5 0.26× 10−5

181 3.60× 10−5 1.34× 10−5 0.92× 10−5 0.13× 10−5

255 3.51× 10−5 1.17× 10−5 0.66× 10−5 0.06× 10−6

361 3.48× 10−5 1.08× 10−5 0.51× 10−5 0.03× 10−6

Max Error, C1 Example (2.18)
N 9 Point 17 Point 33 Point Standard

31 21.54× 10−4 8.66× 10−4 6.39× 10−4 3.78× 10−4

45 20.89× 10−4 6.84× 10−4 4.07× 10−4 1.82× 10−4

63 21.33× 10−4 6.82× 10−4 3.18× 10−4 1.34× 10−4

89 21.40× 10−4 6.51× 10−4 2.70× 10−4 0.85× 10−4

127 21.55× 10−4 6.63× 10−4 2.49× 10−4 0.59× 10−4

181 21.54× 10−4 6.62× 10−4 2.40× 10−4 0.37× 10−4

255 21.51× 10−4 6.58× 10−4 2.36× 10−4 —
361 21.53× 10−4 6.62× 10−4 2.37× 10−4 —

Max Error, Example with blow-up (2.19)
N 9 Point 17 Point 33 Point Standard

31 1.74× 10−3 1.74× 10−3 1.74× 10−3 17.38× 10−3

45 0.98× 10−3 0.98× 10−3 0.98× 10−3 14.74× 10−3

63 0.86× 10−3 0.59× 10−3 0.59× 10−3 12.62× 10−3

89 0.84× 10−3 0.37× 10−3 0.35× 10−3 10.72× 10−3

127 0.83× 10−3 0.35× 10−3 0.20× 10−3 9.04× 10−3

181 0.83× 10−3 0.34× 10−3 0.17× 10−3 7.61× 10−3

255 0.83× 10−3 0.33× 10−3 0.16× 10−3 6.43× 10−3

361 0.83× 10−3 0.33× 10−3 0.15× 10−3 5.42× 10−3

Max Error, C0,1 (Lipschitz) Example (2.20)
N 9 Point 17 Point 33 Point Standard

31 11.83× 10−3 3.57× 10−3 1.61× 10−3 5.19× 10−3

45 10.35× 10−3 3.42× 10−3 1.68× 10−3 3.82× 10−3

63 11.10× 10−3 3.49× 10−3 1.65× 10−3 2.86× 10−3

89 10.12× 10−3 3.44× 10−3 1.69× 10−3 2.12× 10−3

127 11.80× 10−3 3.45× 10−3 1.64× 10−3 1.54× 10−3

181 10.38× 10−3 3.70× 10−3 1.64× 10−3 1.12× 10−3

255 10.47× 10−3 3.46× 10−3 1.64× 10−3 —
361 10.40× 10−3 3.45× 10−3 1.64× 10−3 —

Table 4.1: Accuracy of the monotone and standard discretisations on four representative
examples.
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Figure 4.2: Accuracy of the monotone and standard discretisations on the (a) C2 example,
(b) C1 example, (c) example with blow-up, and (d) Lipschitz example.
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Figure 4.3: Computation times for the 17 point monotone and standard discretisations on
the (a) C2 example, (b) C1 example, (c) example with blow-up, and (d) Lipschitz example.

We are also interested in how well the computation times scale as the number of grid

points (M ≡ N2) is increased. Order of magnitude solution times are presented in Table 4.3.

We find that the order of magnitude solution time for Newton’s method is similar to or, in

the more singular examples, faster than the solution times for the other two-dimensional

methods.
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C2 Example (2.17)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 3 0.1 0.3 0.8
45 3 0.3 0.9 3.0
63 3 0.6 1.6 10.7
89 3 1.2 4.1 41.0

127 3 2.6 8.3 163.1
181 3 6.6 19.3 666.0
255 3 14.6 44.0 —
361 3 33.6 124.5 —

C1 Example (2.18)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 3 0.1 1.0 0.6
45 3 0.3 6.0 2.6
63 4 0.7 24.7 8.8
89 5 1.8 114.0 33.8

127 4 3.3 447.1 139.9
181 4 7.9 — 541.8
255 5 20.6 — —
361 6 60.4 — —

Example with blow-up (2.19)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 6 0.2 0.4 0.7
45 6 0.5 1.2 2.8
63 9 1.5 2.5 9.6
89 7 2.8 7.4 36.5

127 11 9.1 16.6 144.9
181 7 15.5 45.0 577.6
255 7 35.2 113.7 —
361 11 122.2 331.9 —

C0,1 (Lipschitz) Example (2.20)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 6 0.2 4.9 0.8
45 6 0.5 25.0 3.1
63 6 1.1 86.9 10.6
89 7 2.4 417.2 40.1

127 8 6.4 1576.7 160.4
181 8 17.0 — 642.9
255 9 46.6 — —
361 10 155.6 — —

Table 4.2: Computation times for the 17 point monotone Newton, Poisson, and Gauss-Seidel
methods for four representative examples.
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Regularity of Solution
Method C2,α (2.17) C1,α (2.18) Blow-up (2.19) C0,1 (2.20)

Gauss-Seidel ∼ O(M2) ∼ O(M2) ∼ O(M2) ∼ O(M2)
Poisson ∼ O(M1.2) ∼ O(M2) ∼ O(M1.3) ∼ O(M2)

Monotone Newton ∼ O(M1.1) ∼ O(M1.2) ∼ O(M1.2) ∼ O(M1.3)

Table 4.3: Order of magnitude computation time for the different solvers in terms of solution
regularity. Here M = N2 is the total number of grid points.

4.10 Computational Results: Three Dimensions

In this section, we perform computations to test the speed and accuracy of the monotone

Newton’s method for three dimensional problems. These computations are performed on

an N ×N ×N grid on the square [0, 1]3 using a 19 point stencil, which leads to the allowed

directions:

G =
{
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, {(1, 0, 0), (0, 1, 1), (0, 1,−1)},

{(0, 1, 0), (1, 0, 1), (1, 0,−1)}, {(0, 0, 1), (1, 1, 0), (1,−1, 0)}
}
.

We present results for the three dimensional versions of the examples in §2.5. Since the

methods of Chapter 3 are restricted to the two-dimensional Monge-Ampère equation, we

cannot compare these methods in three dimensions.

The size of the computation was restricted by the available memory, not by solution

time. The linear systems that arise in Newton’s method involve sparse N3 ×N3 matrices.

In our implementation of Newton’s methods, we construct these matrices and solve the

resulting linear systems using the Matlab backslash operator. Although these matrices are

formed using a sparse data structure, their construction and solution still require a great

deal of memory. However, this situation could certainly be improved by using an iterative

method that does not require the construction of the large Jacobian matrices.

Computation times and accuracy results for the three dimensional examples are pre-

sented in Table 4.4.
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C2 Example (2.21)
N Max Error Iterations CPU Time (s)
7 1.46× 10−3 3 0.1
11 0.67× 10−3 2 0.1
15 0.42× 10−3 3 0.4
21 0.27× 10−3 3 1.8
31 0.22× 10−3 4 20.2
45 0.20× 10−3 4 242.0

C1 Example (2.22)
N Max Error Iterations CPU Time (s)
7 5.29× 10−3 5 0.1
11 4.04× 10−3 8 0.3
15 3.15× 10−3 8 0.9
21 2.78× 10−3 8 4.2
31 2.52× 10−3 6 34.6

Example with Blow-up (2.23)
N Max Error Iterations CPU Time (s)
7 7.11× 10−3 4 0.04
11 5.29× 10−3 8 0.22
15 4.62× 10−3 6 0.77
21 4.22× 10−3 10 5.67
31 4.03× 10−3 14 79.02

Table 4.4: Maximum error and computation time on three representative examples.

4.11 Conclusions

In this chapter, we have succeeded in constructing finite difference methods for the elliptic

Monge-Ampère equation that will provably converge to the convex viscosity solution in any

spatial dimension. The resulting system of nonlinear equations can be solved with New-

ton’s method. Computational examples indicate that this monotone scheme is competitive

with—and in many non-smooth cases, much faster than—finite difference methods based

on standard discretisations.

One of the main limitations of this monotone method is the accuracy of solutions, which

is limited by the stencil width. Since we want to use relatively narrow finite difference

stencils in practice, this can severely limit the accuracy we can achieve. Techniques for

improving the accuracy of the methods will be addressed in the next chapter.



Chapter 5

Hybrid Finite Difference Methods

In Chapter 4, we developed a finite difference discretisation that converges to the viscosity

solution of the elliptic Monge-Ampère equation. The main downside to this scheme is that it

has limited accuracy, with a consistency error that depends not only on the spatial resolution

h, but also on the angular resolution dθ. This means that impractically wide stencils may

be required to achieve high accuracy. A formally more accurate (O(h2)) discretisation was

studied in Chapter 3. Despite the better formal accuracy, this scheme may not converge to

the correct weak solution when solutions are singular.

In this chapter, we combine the best features of these two schemes in order to build a

hybrid discretisation that achieves higher accuracy in smooth regions of the solution, while

still successfully capturing the behaviour of the viscosity solution near singularities. This is

done by using the monotone scheme (MA)M near points where the solution is (or may be)

singular and the standard scheme (MA)S elsewhere. To do this, we require a systematic way

of characterising a solution (or its discrete approximation) as either singular or non-singular.

In this chapter, we explore two possible characterisations. For one of these, we can prove

that our hybrid scheme converges to the viscosity solution of the Monge-Ampère equation.

In fact, in the course of obtaining this result, we also prove a very general theorem about

the convergence of certain formally higher-order approximation schemes for a large class of

degenerate elliptic PDEs.

84
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5.1 A Priori Hybrid Discretisation

A natural option for distinguishing between singular and non-singular discrete approxima-

tions is to look at the size of certain derivatives (or their discrete approximations). Since

the Monge-Ampère equation is second-order, it is natural to characterise a discrete solution

as singular if its second derivatives are large. One advantage of this approach is that we can

make use of regularity results for the Monge-Ampère equation to define an a priori hybrid

discretisation. That is, the particular choice of monotone or standard scheme at each point

is pre-determined and does not depend on the computed solution.

5.1.1 Discretisation

The Monge-Ampère equation has a rich regularity theory, which we have briefly discussed

in §2.2.1. Using this theory and the given data, we can characterise the possible regions

where the solution of the Monge-Ampère equation can become singular.

We begin by identifying the set Xs, which is a neighborhood of the possible singular

set of u on X that is defined using the regularity conditions (2.7). Letting ε be a small

parameter, which we can take equal to the spatial resolution h, we define the singular set as

Xs = {x ∈ X | f(x) < ε or f(x) > 1/ε or f(x) 6∈ Cα in an ε-neighbourhood of x}∪

{x ∈ ∂X | ∂X is not strictly convex at x or φ(x) 6∈ C2,α in an ε-neighbourhood of x}.

Next we choose a weight function w : X → [0, 1] that is zero in an h-neighbourhood of

Xs, and that goes to 1 elsewhere.

This allows us to construct the following a priori hybrid discretisation, which is simply

an average of the monotone and standard schemes:

MAH = w(x)MAS + (1− w(x))MAM . (MA)H

We remark that for C2 solutions, this hybrid scheme will sometimes be less accurate

than the standard finite differences. This is because it will lose some accuracy near any flat

(non-strictly convex) boundary. While this might seem conservative, we have seen in §2.2.1

that the flat boundary can lead to a loss of regularity.
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5.1.2 Newton’s Method

Next we consider Newton’s method for this hybrid scheme. To set up the equation (3.3) for

the Newton step, the Jacobian of the scheme is again needed. Since the hybrid discretisation

is a weighted average of the monotone and standard discretisations, and since the weight

function w(x) is determined a priori, the Jacobian of the hybrid scheme will simply be a

weighted average of the Jacobians of the component schemes.

Thus Newton’s method is simply

un+1 = un − vn

where the corrector is obtained by solving the weighted average of the two linearisations

(w(x)∇uMAS [un] + (1− w(x))∇uMAM [un])vn

= w(x)MAS [un] + (1− w(x))MAM [un]. (5.1)

We incorporate damping and regularisation into this scheme as described in §3.2.

5.2 Filtered Discretisation

The hybrid discretisation we have just described is formally more accurate than the mono-

tone discretisation since, providing the data is sufficiently well-behaved, it does not require

a wide stencil. However, by sacrificing monotonicity we also sacrifice the convergence proof

of Chapter 4.

Now we consider an alternative approach for classifying a discrete solution as singular,

which will depend on the particular scheme we are considering. Instead of looking at the

derivatives of the solution, we now look at the value of the standard scheme when we

input the solution. Intuitively, the idea is that for smooth functions, any two consistent

discretisations (for example, our monotone and standard schemes) should have values that

are close to each other. We will say that a function is singular with respect to a particular

scheme if the value of that scheme is far from the value of the monotone scheme (which we

know correctly approximates the viscosity solution). This idea leads us to consider a filtered

scheme of the form

MAM [u] + F
(
MAS [u]−MAM [u]

)
. (5.2)
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Here the function F should be equal to the identity if its argument is small in magnitude

and should vanish otherwise. Thus as long as the standard scheme is approximating the

PDE well in some sense, the filtered scheme will simply reduce to the higher-order scheme.

If the standard scheme is not approximating the PDE correctly, the monotone scheme is

used to ensure correctness.

As with our a priori hybrid scheme, this filtered scheme is not monotone. However,

this formulation ensures that it is at least close to a monotone scheme. This property will

enable us to prove that this non-monotone scheme converges to the viscosity solution of the

Monge-Ampère equation.

5.2.1 Viscosity Solutions of Elliptic Equations

Because the filtered discretisation we are considering is not monotone, it will no longer fit

into the convergence framework of [72], which we relied on in Chapter 4. The convergence

of certain higher-order, non-monotone schemes has been studied for Hamilton-Jacobi equa-

tions [1, 61]. However, we are not aware of similar results for second order equations. This

means that we must establish new convergence results that will apply to our filtered scheme.

We begin our discussion in the very general setting of second-order degenerate elliptic

equations of the form

F (x, u(x),∇u(x), D2u(x)) = 0, x ∈ X ⊂ Rd, (5.3)

together with appropriate boundary conditions.

Remark. Throughout the remainder of this section, we will assume that boundary conditions

have been incorporated into the operator F so that equation (5.3) can be posed in the closed

domain X̄.

In Chapter 2, we remarked that the Monge-Ampère equation belongs to the class of

elliptic equations because of its monotone dependence on the eigenvalues of the Hessian.

The equations we are now considering call for a slightly more general definition of degenerate

ellipticity.

Definition 5.1 (Degenerate Elliptic Equations). The equation (5.3) is degenerate elliptic if

F (x, r, p, Z) ≤ F (x, s, p, Y )

for all x ∈ X̄, r, s ∈ R, p ∈ Rn, Z, Y ∈ Sn with Z ≥ Y and r ≤ s.
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As we have already seen for the Monge-Ampère equation, elliptic equations need not have

smooth solutions. Viscosity solutions, which we defined for the Monge-Ampère equation

in §2.2.3, can also be defined in this more general setting.

Before we give this more general definition, we need to introduce the notion of semi-

continuity.

Definition 5.2 (Semi-Continuous). A function u : X → R is upper (lower) semi-continuous

if for every point x0 ∈ X,

u(x0) ≥ lim sup
x→x0

u(x)(
u(x0) ≤ lim inf

x→x0

u(x)
)
.

For brevity of notion, we will use USC(X) and LSC(X) to denote the sets of real-valued

upper and lower semi-continuous functions defined on the domain X.

We can also define the upper and lower-semi continuous envelopes of a function.

Definition 5.3 (Upper and Lower Semi-Continuous Envelope). The upper and lower semi-

continuous envelopes of a function u(x) are defined, respectively, by

u∗(x) = lim sup
y→x

u(y),

u∗(x) = lim inf
y→x

u(y).

We are now prepared to define viscosity solutions of elliptic equations.

Definition 5.4 (Viscosity Solution). An upper (lower) semi-continuous function u is a vis-

cosity sub(super)-solution of (5.3) if for every φ ∈ C2(X̄), if u − φ has a local maximum

(minimum) at x ∈ X̄, then

F∗(x, u(x),∇φ(x), D2φ(x)) ≤ 0

(F ∗(x, u(x),∇φ(x), D2φ(x)) ≥ 0).

A function u is a viscosity solution if it is both a sub- and a super-solution.

A very useful property of viscosity solutions is their stability under perturbation not only

of the solution, but also of the operator. This is important in developing approximation

schemes. Another important property of viscosity solutions of degenerate elliptic equations

is the comparison property, which guarantees uniqueness [60].
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Theorem 5.1 (Comparison Property). Under mild structure conditions on a degenerate

elliptic operator, the following result holds. If u ∈ USC(X̄) is a sub-solution and v ∈
LSC(X̄) is a super-solution of (5.3) then u ≤ v on X̄.

Remark. As we have already noted in Theorem 2.4, the Monge-Ampère equation does satisfy

a comparison principle.

5.2.2 Convergence of Approximation Schemes

We now want to consider a scheme for approximating the degenerate elliptic equation (5.3).

We will be using an approximation scheme of the form

F ε(x, uε(x), uε(·)) = 0 (5.4)

where ε is a discretisation parameter. In practice, this could be the spatial and/or directional

resolution of a finite difference stencil.

Remark. The solution of the approximation scheme will normally be given on the grid, but

we assume that we have a continuous extension of this into the domain X̄.

The work of Barles and Souganidis [4], which was foundational to the schemes con-

structed in Chapter 4, demonstrates that approximation schemes will converge if they are

consistent, stable, and monotone. To facilitate the development of a higher-order filtered

scheme, we now want to relax this requirement and allow for schemes that may not be

monotone. In particular, our theory will closely follow the work of [4] except that we now

require schemes to be consistent, stable, and almost monotone.

Definition 5.5 (Consistent). The scheme (5.4) is consistent with the equation (5.3) if for

any smooth function φ and x ∈ X̄,

lim sup
ε→0,y→x,ξ→0

F ε(y, φ(y) + ξ, φ(·) + ξ) ≤ F ∗(x, φ(x),∇φ(x), D2φ(x)),

lim inf
ε→0,y→x,ξ→0

F ε(y, φ(y) + ξ, φ(·) + ξ) ≥ F∗(x, φ(x),∇φ(x), D2φ(x)).

Definition 5.6 (Stable). The scheme (5.4) is stable if any solution uε of (5.4) is bounded

independently of ε.

Definition 5.7 (Almost Monotone). The scheme (5.4) is almost monotone if for every ε > 0,

x ∈ X̄, t ∈ R and bounded u ≥ v

F ε(x, t, u(·)) ≤ F ε(x, t, v(·)) + r(ε)
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where

lim
ε→0

r(ε) = 0.

With these definitions, we can now give our convergence result.

Theorem 5.2 (Convergence of Approximation Schemes). For each ε > 0 let uε be a solution

of (5.4). Then as ε→ 0, uε converges locally uniformly to the viscosity solution of (5.3).

We begin with two lemmas.

Lemma 5.1 (Viscosity Solutions). In the definition of viscosity solutions (Definition 5.4), it

is sufficient to consider unique, strict, global maxima (minima) with u(x)− φ(x) = 0 at the

extremum.

The relaxations allowed by this lemma are fairly standard; see, for example, [60, Prop.

2.2]. We include a proof here for completeness and clarity.

Proof. Suppose that a bounded, upper semi-continuous function u satisfies the criteria of

Definition 5.4 where “local max (min)” is replaced with “unique, strict, global max (min)

with a value of zero”. We verify that u is a viscosity subsolution. We can similarly show

that it is a supersolution.

Choose any smooth function φ such that u−φ has a local max at a point x0 ∈ X̄. Then

there exists r > 0 such that

u(x0)− φ(x0) ≥ u(x)− φ(x), for x ∈ B(x0, r).

Now we choose a number

M >
1
r4

(
max
X̄

∣∣φ(x) + u(x0)− φ(x0)
∣∣+ max

X̄
u(x)

)
and define

φ̃(x) = φ(x) + (u(x0)− φ(x0)) +M |x− x0|4 .

Then by hypothesis,

0 ≥ F (x0, u(x0),∇φ̃(x0), D2φ̃(x0))

= F (x0, u(x0),∇φ(x0), D2φ(x0)).

Thus u is a subsolution and the definitions agree.
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Lemma 5.2 (Stability of Maxima). Define

ū(x) = lim sup
ε→0,y→x

uε(y) ∈ USC(X̄),

which is bounded by the stability property. For a smooth function φ, let x0 be the unique

strict global maximizer of ū− φ with ū(x0) = φ(x0). Then there exist sequences:
εn → 0

yn → x0

uεn(yn)→ ū(x0)

where yn is a global maximiser of uεn − φ.

Proof. From the definition of the limit superior, we can find sequences

εn → 0, zn → x0

such that

uεn(zn)→ ū(x0).

Now we define yn ∈ X̄ to be maximisers of uεn(x)− φ(x).

We have

uεn(yn)− φ(yn) ≥ uεn(zn)− φ(zn)→ ū(x0)− φ(x0) = 0.

Also, for any δ > 0 and large enough n,

uεn(yn)− φ(yn) ≤ ū(yn)− φ(yn) + δ ≤ ū(x0)− φ(x0) + δ = δ.

Thus we have

uεn(yn)− φ(yn)→ 0.

Now suppose we do not have yn → x0. Then (possibly through a subsequence) there is

an R > 0 such that

|yn − x0| > R.

Also, since the max is strict, global, and unique, there is a K > 0 such that

ū(y)− φ(y) < −K < 0

whenever |y − x0| > R.
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Thus for any δ > 0 and large enough n,

uεn(yn)− φ(yn) ≤ ū(yn)− φ(yn) + δ < −K + δ → −K < 0,

which contradicts the fact that uεn(yn)− φ(yn)→ 0. We conclude that

yn → x0.

Finally, it is clear that∣∣uεn(yn)− ū(x0)
∣∣ =
∣∣uεn(yn)− φ(x0)

∣∣
≤
∣∣uεn(yn)− φ(yn)

∣∣+
∣∣φ(yn)− φ(x0)

∣∣
→ 0.

Therefore,

uεn(yn)→ ū(x0).

Proof of Theorem 5.2. Define

ū(x) = lim sup
ε→0,y→x

uε(y) ∈ USC(X̄),

u(x) = lim inf
ε→0,y→x

uε(y) ∈ LSC(X̄).

These are bounded by the stability property.

Now we show that ū is a sub-solution. For a smooth function φ, let x0 be a strict global

maximum of ū−φ with φ(x0) = ū(x0) (Lemma 5.1). By Lemma 5.2, we can find sequences

with 
εn → 0

yn → x0

uεn(yn)→ ū(x0)

where yn is a global maximiser of uεn − φ.

We define

ξn = uεn(yn)− φ(yn)→ ū(x0)− φ(x0) = 0.

We also recall that

uεn(x)− φ(x) ≤ uεn(yn)− φ(yn) = ξn for any x ∈ X̄.
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Using these definitions and the almost monotonicity of the scheme, we find that

0 = F εn(yn, uεn(yn), uεn(·))

= F εn(yn, φ(yn) + ξn, φ(·) + (uεn(·)− φ(·)))

≥ F εn(yn, φ(yn) + ξn, φ(·) + ξn)− r(εn).

By consistency, we have

0 ≥ lim inf
n→∞

{
F εn(yn, φ(yn) + ξn, φ(·) + ξn)− r(εn)

}
≥ lim inf

ε→0,y→x,ξ→0
F εn(y, φ(y) + ξ, φ(·) + ξ)

≥ F∗(x0, φ(x0),∇φ(x0), D2φ(x0))

= F∗(x0, ū(x0),∇φ(x0), D2φ(x0)),

which shows that ū is a subsolution. Similarly, we can show that u is a super-solution. By

the comparison principle we have

ū ≤ u.

However, from their definitions, we know that

u ≤ ū.

Thus we conclude that ū = u is both a sub-solution and a super-solution, and is therefore

the viscosity solution of (5.3).

5.2.3 Convergence of Almost Monotone Finite Difference Methods

We now want to use the framework of Theorem 5.2 to construct a convergent, formally

higher-order approximation scheme for the Monge-Ampère equation. We continue our dis-

cussion in the general setting and consider an almost monotone discretisation of the form

F ε[u] ≡ F εM [u] + εαS [x, u, ε] = 0. (5.5)

Here F εM is a convergent monotone scheme. The function S should be bounded and con-

tinuous. We note that with a suitable choice of the function S, this scheme resembles the

filtered scheme suggested in (5.2).

In this thesis, we have already constructed a convergent monotone scheme for the Monge-

Ampère equation. We now want to use the properties of the monotone scheme to establish

convergence of the perturbed scheme (5.5).
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Theorem 5.3 (Convergence of Perturbed Schemes). Suppose that the scheme F εM [u] is

degenerate elliptic, proper, and locally Lipschitz continuous. Suppose also that S is a con-

tinuous, bounded function. Then solutions of the perturbed scheme

F ε[u] ≡ F εM [u] + εS [x, u, ε] = 0

exist and converge locally uniformly to the viscosity solution of the PDE (5.3).

Before we prove this result, we state several lemmas, which will enable us to use Theo-

rem 5.2.

Lemma 5.3 (Consistency and Almost Monotonicity). The perturbed scheme (5.5) is consis-

tent with Equation (5.3) and is almost monotone.

Proof. This result follows immediately from the consistency and monotonicity of F εM .

Lemma 5.4 (Existence). Suppose that the scheme F εM [u] is degenerate elliptic, proper, and

locally Lipschitz continuous. Suppose also that S is a continuous, bounded function. Then

the perturbed scheme

F ε[u] ≡ F εM [u] + εS [x, u, ε] = 0

has a solution.

Proof. For a fixed ε > 0, consider the function y(u), defined as the solution vector of the

scheme

F εM [y(u)] + εS [x, u, ε] = 0.

From the theory in [72] and the continuity of S, the function y(u) is uniquely defined and

continuous. In addition, since the function S is bounded, the function y will also be bounded.

In particular, there exists an R so that for any input u,

y(u) ∈ BR

where BR is the ball of radius R.

Now we restrict the domain of y to this ball and note that y : BR → BR. By Brouwer’s

fixed point theorem, the function y has a fixed point in this same ball.

We conclude that the perturbed scheme has a solution.
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Lemma 5.5 (Stability). Suppose that the scheme F εM [u] is degenerate elliptic, proper, and

locally Lipschitz continuous. Suppose also that S is a continuous, bounded function. Then

any solution uε of the perturbed scheme

F ε[u] ≡ F εM [u] + εS [x, u, ε] = 0

can be bounded uniformly as ε→ 0.

Proof. Let u be any solution of the perturbed scheme. Then u is also a solution of the

monotone scheme

F εM [v] + εS [x, u, ε] = 0.

Since the function S is bounded independently of u and ε, we can use the theory of [72] to

bound the solution uniformly as ε→ 0.

Proof of Theorem 5.3. The hypotheses of Theorem 5.2 are established in Lemmas 5.3–5.5,

which proves convergence to the viscosity solution.

5.2.4 Construction of Filtered Schemes

Now we want to use this theory to construct more accurate approximation schemes. This

can be done by appropriate choice of the function S, which we will refer to as a filter.

To do this, let us denote by F εA[u] a more accurate approximation scheme. For example,

we can consider the standard finite difference discretisation of the Monge-Ampère equation

that was described in Chapter 3. Other higher-order schemes for this and other PDEs can

also be constructed by looking at Taylor series expansions. In order for our filtered scheme

to make use of this more accurate scheme, we need to choose the function S so that

S[x, u, ε] =
F εA[u]− F εM [u]

ε

for sufficiently regular functions u. We also want the filtered scheme to reduce back to the

monotone scheme if the accurate and monotone schemes give very different values, which

might happen on a singular solution. This means that the function S should vanish if the

difference

F εA[u]− F εM [u]

is large in magnitude.
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Figure 5.1: The filter used to construct a formally higher-order discretisation.

This motivates us to choose a filter S of the form

S [x, u, ε] = S

[
F εA[u]− F εM [u]

ε

]
where FA is an accurate scheme with a formal discretisation error that is less than O(εα).

We define the function S by

S(x) =


x |x| ≤ 1

max{2− x, 0} x > 1

min{−2− x, 0} x < −1.

(5.6)

This filter is plotted in Figure 5.1.

Remark. Any continouous, bounded function S that is equal to the identity in a neighbour-

hood of the origin is equally valid.

The discussion of this chapter is all valid for the Monge-Ampère equation. Thus we now

propose the following filtered discretisation.

MAh,dθ,δF [u] ≡MAh,dθ,δM + ε(h, dθ, δ)S

[
MAhS [u]−MAh,dθ,δM [u]

ε(h, dθ, δ)

]
(MA)F

where ε(h, dθ, δ) converges to zero as h, dθ, and δ go to zero.

Theorem 5.4 (Convergence of Filtered Scheme for Monge-Ampère). Let the PDE (1.3)

have a unique viscosity solution and let the right-hand side F (x,∇u) be Lipschitz continuous

on X ×Rd with Lipschitz constant KF . Then the solutions of the scheme (MA)F exist and

converge to the viscosity solution of (1.3) as h, dθ, δ → 0 with γ ≥ δd−1 ≥ KF

∣∣νj∣∣h/2 and

heff ≥ h
∣∣νj∣∣→ 0 for every νj ∈ G.
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Proof. This follows immediately from Theorems 4.10 and 5.3.

5.2.5 Formal Accuracy

Now we want to verify that the filtered scheme does in fact lead to an improvement in the

formal accuracy.

Now let us consider a smooth solution φ of the Monge-Ampère equation. By construc-

tion, the standard scheme (MA)S has a formal accuracy of O(h2). With an appropriate

choice of parameters, the formal accuracy of the monotone scheme is at worst O(h + dθ)

(§4.8.4). (It is O(h2 +dθ) for strictly convex solutions). Let us also choose the perturbation

size ε(h, dθ, δ) to be O(hα + dθβ) where α and β are less than or equal to one.

We first observe that the argument of the filter S will be on the order of

MAhS [φ]−MAh,dθM [φ]
ε(h, dθ, δ)

=
O(h2) +O(h+ dθ)

hα + dθβ

=
O(h+ dθ)

O
(
max{hα, dθβ}

)
= O

(
min{h1−α, h/dθβ}+ min{dθ1−β, dθ/hα}

)
≤ O(1).

This means that the filter will act as the identity operator.

Thus the filtered scheme will be given by

MAh,dθ,δF [φ] = MAh,dθ,δM [φ] + ε(h, dθ, δ)
MAhS [φ]−MAh,dθ,δM [φ]

ε(h, dθ, δ)

MAhS [φ],

which is just the standard scheme.

We conclude that the formal discretisation error in the filtered scheme will be O(h2),

just like the original standard scheme.

5.2.6 Newton’s method

As before, we solve the discrete system using Newton’s method:

un+1 = un − (∇MAF [un])−1MAF [un]
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where the Jacobian is given by

∇MAF [u] =
(
1− S′[u]

)
∇MAM [u] + S′[u]∇MAS [u].

The derivative of the filter (5.6) is given by

S′(x) =


1 |x| < 1

−1 1 < |x| < 2

0 |x| > 2.

However, allowing this derivative to take on negative values can lead to poorly conditioned

or ill-posed linear systems. Instead, we approximate the Jacobian by

∇̃MAF [u] =
(
1− S′[u]

)
∇MAM [u] + max{S′[u], 0}∇MAS [u].

5.3 Computational Results–Two Dimensions

In this section, we present computational results for the hybrid and filtered schemes. In the

implementation of the filtered scheme, we have fixed the parameter ε =
√
h + dθ/10. For

brevity, we only present results on a 17 point stencil. Computations were also performed

on the 9 and 33 point stencils, but these results do not affect our qualitative observations.

We compare these results to the results obtained using the monotone method (also on a 17

point stencil) and the standard finite differences. As in the previous chapters, we present

detailed results for the four representative examples of §2.5.

5.3.1 Accuracy

We begin by looking at the numerical accuracy of the hybrid methods. Numerical errors are

presented in Table 5.1 and Figure 5.2. To assist in the interpretation of our results, we are

also interested in knowing which scheme (monotone or standard) is active in the hybrid or

filtered discretisations. This information is presented in Figure 5.3. In these pictures, yellow

indicates that the value of the scheme is equal to the value of the standard scheme. Green

indicates that the value is given by the value of the monotone scheme. Intermediate colours

indicate that the value of the filtered scheme is between the values of the two component

schemes.
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C2 Example (2.17)
N Maximum Error

Monotone Hybrid Filtered Standard

31 9.12× 10−5 6.76× 10−5 4.54× 10−5 4.54× 10−5

45 5.36× 10−5 3.00× 10−5 2.11× 10−5 2.11× 10−5

63 3.42× 10−5 1.46× 10−5 1.06× 10−5 1.06× 10−5

89 2.30× 10−5 0.71× 10−5 0.53× 10−5 0.53× 10−5

127 1.67× 10−5 0.35× 10−5 0.26× 10−5 0.26× 10−5

181 1.34× 10−5 0.17× 10−5 0.13× 10−5 0.13× 10−5

255 1.17× 10−5 0.09× 10−5 0.06× 10−5 0.06× 10−5

361 1.08× 10−5 0.04× 10−5 0.03× 10−5 0.03× 10−5

C1 Example (2.18)
N Maximum Error

Monotone Hybrid Filtered Standard

31 8.66× 10−4 6.62× 10−4 3.99× 10−4 3.78× 10−4

45 6.84× 10−4 3.70× 10−4 2.03× 10−4 1.82× 10−4

63 6.82× 10−4 2.75× 10−4 1.40× 10−4 1.34× 10−4

89 6.51× 10−4 1.98× 10−4 1.03× 10−4 0.85× 10−4

127 6.63× 10−4 1.68× 10−4 0.76× 10−4 0.59× 10−4

181 6.62× 10−4 1.19× 10−4 0.56× 10−4 0.37× 10−4

255 6.58× 10−4 0.85× 10−4 0.46× 10−4 —
361 6.62× 10−4 0.60× 10−4 0.31× 10−4 —

Example with blow-up (2.19)
N Maximum Error

Monotone Hybrid Filtered Standard

31 1.74× 10−3 1.74× 10−3 1.74× 10−3 17.38× 10−3

45 0.98× 10−3 0.98× 10−3 0.98× 10−3 14.74× 10−3

63 0.59× 10−3 0.59× 10−3 0.59× 10−3 12.62× 10−3

89 0.37× 10−3 0.35× 10−3 0.35× 10−3 10.72× 10−3

127 0.35× 10−3 0.20× 10−3 0.20× 10−3 9.04× 10−3

181 0.34× 10−3 0.12× 10−3 0.12× 10−3 7.61× 10−3

255 0.33× 10−3 0.07× 10−3 0.13× 10−3 6.43× 10−3

361 0.33× 10−3 0.04× 10−3 0.13× 10−3 5.42× 10−3

C0,1 (Lipschitz) Example (2.20)
N Maximum Error

Monotone Hybrid Filtered Standard

31 3.57× 10−3 3.57× 10−3 4.16× 10−3 5.19× 10−3

45 3.42× 10−3 3.42× 10−3 2.60× 10−3 3.82× 10−3

63 3.49× 10−3 3.49× 10−3 2.82× 10−3 2.86× 10−3

89 3.44× 10−3 3.44× 10−3 2.90× 10−3 2.12× 10−3

127 3.45× 10−3 3.45× 10−3 2.83× 10−3 1.54× 10−3

181 3.70× 10−3 3.70× 10−3 3.02× 10−3 1.12× 10−3

255 3.46× 10−3 3.46× 10−3 3.06× 10−3 —
361 3.45× 10−3 3.45× 10−3 3.21× 10−3 —

Table 5.1: Accuracy for the 17 point monotone, hybrid, filtered, and standard discretisations
for four representative examples.



CHAPTER 5. HYBRID FINITE DIFFERENCE METHODS 100

10
1

10
2

10
3

10
−6

10
−4

N

M
ax

 E
rr

or

 

 

Slope ≈ −2
Monotone
Hybrid
Filtered
Standard

(a)

10
1

10
2

10
3

10
−5

10
−4

10
−3

N

M
ax

 E
rr

or

 

 

Slope ≈ −1

Monotone
Hybrid
Filtered
Standard

(b)

10
1

10
2

10
3

10
−4

10
−2

N

M
ax

 E
rr

or

 

 

Slope ≈ −1.5

Slope ≈ −0.5

Monotone
Hybrid
Filtered
Standard

(c)

10
1

10
2

10
−3

10
−2

N

M
ax

 E
rr

or

 

 

Slope ≈ −1

Monotone
Hybrid
Filtered
Standard

(d)

Figure 5.2: Error of the 17 point monotone, hybrid, filtered, and standard discretisations on
the (a) C2 example, (b) C1 example, (c) example with blow-up, and (d) Lipschitz example.

Our qualitative observations differ somewhat depending on the regularity of the partic-

ular problem so we discuss each example in turn.

The C2 solution (2.17)

The standard finite difference schemes gives O(h2) accuracy. In this case, the hybrid scheme

is slightly less accurate (though it still exhibits approximately O(h2) accuracy). This hap-

pens because the monotone scheme is used near the non-strictly convex boundary as a

precaution. Because the filtered scheme is allowed to use the more accurate discretisation

right up to the boundary, it achieves the same accuracy as the standard scheme. Both the
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Figure 5.3: The discretisation that is active in the hybrid and filtered schemes for the
(a),(b) C2, (c),(d) C1, (e),(f) blow-up, and (g),(h) Lipschitz examples.
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hybrid and filtered schemes represent a clear improvement over the monotone scheme, which

had its accuracy limited by the width of the stencil.

The C1 solution (2.18)

This solution is non-smooth around a circle, so there is no reason to expect the second-order

accuracy that was possible on the smooth solution. In fact, we find that the accuracy for

the hybrid scheme is about O(h), which is similar to the standard discretisation. However,

the absolute error is somewhat larger than the accurate scheme due to the fact that the

monotone scheme is used in the interior of the circle and at points near the boundary, where

the solution is in fact smooth. From Figure 5.3(d), we see that the filtered scheme applies

the standard scheme at most of these points, with a small weight assigned to the monotone

scheme at some points around the circle. (Note that the scale on this image is different than

the scale on the other images. Without this change in scale, it is difficult to see the small

weights assigned to the monotone discretisation.) This results in a lower absolute error than

the hybrid scheme could achieve.

It is worth noting that the precise accuracy of the filtered scheme will depend on our

choice of the parameter ε, which determines the allowable deviation from the value of the

monotone scheme. We have chosen to set this value to

ε =
√
h+

1
10
dθ.

By changing this scaling (for example, by allowing ε to scale with
√
dθ), we can allow for

greater deviations from the monotone scheme, which could improve solution accuracy by

permitting the use of the accurate scheme in a larger reason. For this particular example,

where the standard discretisation appears to converge to the correct solution, this approach

would probably improve the accuracy of the filtered scheme. In general, however, increasing

the value of ε too much could also make it possible to use the standard scheme near a

singularity, where it could instead cause a decrease in accuracy.

Both the hybrid and the filtered schemes again allow for a big improvement over the

limited accuracy of the monotone scheme.

The blow-up solution (2.19)

In this case, the accuracy of the hybrid scheme is O(h1.5), which is much better than the

accuracy of both the standard discretisation, which was only O(h0.5), and the monotone



CHAPTER 5. HYBRID FINITE DIFFERENCE METHODS 103

scheme, which is limited by the stencil width.

The accuracy of the filtered scheme is better than the accuracy of the monotone scheme,

but still appears to be limited by the width of the stencil. This is caused by our choice of

the parameter ε, which scales like
√
h in these computations. Given our observation that

the accuracy of the standard scheme is only
√
h, it is unreasonable to expect the values

of the standard and monotone schemes to differ by less than
√
h. As a result, the filtered

scheme may reduce to the monotone scheme even in regions where the solution is smooth.

By increasing the value of ε, we can improve the accuracy of the filtered scheme.

The cone solution (2.20)

For this singular example, the hybrid scheme is identical to the monotone scheme (since

the right-hand side is either 0 or very large everywhere in the domain). Consequently, the

angular resolution (stencil width) limits the accuracy of solutions. The singularity also limits

the accuracy we can achieve with the filtered scheme. Since this solution is so singular (in

fact, it is not even a viscosity solution), the reduced accuracy is to be expected.

5.3.2 Computation Time

Next we look at the computation times for the hybrid and filtered schemes. The incorpora-

tion of the monotone discretisation into these more accurate schemes appears to be enough

to ensure the stability of Newton’s method. In Chapter 4, we saw that the monotone New-

ton’s method performed much more quickly than our other two-dimensional methods. We

now want to verify that the computation time required by Newton’s method is not adversely

affected by the use of a hybrid or filtered scheme.

Computation times for the 17 point schemes are presented in Table 5.2 and Figure 5.4.

As we had hoped, the computation times appear to be essentially the same for all three of

the monotone, hybrid, and filtered schemes.

5.3.3 Gradient Maps

At this point, we recall that one of the motivations for solving the Monge-Ampère equation

was to solve various mapping problems. With this goal in mind, it is important that not
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C2 Example (2.17)
N Newton Iterations CPU Time (seconds)

Monotone Hybrid Filtered Monotone Hybrid Filtered

31 3 3 2 0.1 0.1 0.1
45 3 3 2 0.3 0.3 0.2
63 3 3 2 0.6 0.6 0.5
89 3 3 2 1.2 1.2 1.1
127 3 3 2 2.6 2.4 2.0
181 3 3 2 6.6 5.9 4.6
255 3 3 2 14.6 12.5 9.9
361 3 3 2 33.6 28.2 22.5

C1 Example (2.18)
N Newton Iterations CPU Time (seconds)

Monotone Hybrid Filtered Monotone Hybrid Filtered

31 3 2 2 0.1 0.1 0.1
45 3 3 3 0.3 0.3 0.3
63 4 3 2 0.7 0.6 0.5
89 5 4 3 1.8 1.5 1.2
127 4 5 3 3.3 3.8 2.6
181 4 4 4 7.9 7.6 7.0
255 5 5 3 20.6 19.1 12.9
361 6 5 6 60.4 48.3 50.6

Example with blow-up (2.19)
N Newton Iterations CPU Time (seconds)

Monotone Hybrid Filtered Monotone Hybrid Filtered

31 6 6 7 0.2 0.3 0.3
45 6 6 6 0.5 0.6 0.6
63 9 9 9 1.5 1.4 1.5
89 7 7 7 2.8 2.7 2.6
127 11 11 11 9.1 8.6 8.4
181 7 7 8 15.5 14.2 15.0
255 7 7 8 35.2 30.5 32.4
361 11 11 12 122.2 101.5 108.7

C0,1 (Lipschitz) Example (2.20)
N Newton Iterations CPU Time (seconds)

Monotone Hybrid Filtered Monotone Hybrid Filtered

31 6 6 7 0.2 0.2 0.2
45 6 6 7 0.5 0.5 0.6
63 6 6 9 1.1 1.0 1.4
89 7 7 9 2.4 2.4 2.9
127 8 8 8 6.4 6.6 6.4
181 8 8 9 17.0 17.3 15.4
255 9 9 10 46.6 47.1 38.2
361 10 10 9 155.6 155.8 81.7

Table 5.2: Computation times for the 17 point monotone, hybrid, and filtered Newton’s
methods.
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Figure 5.4: Computation times for the 17 point monotone, hybrid, and filtered Newton’s
methods for the (a) C2 example, (b) C1 example, (c) example with blow-up, and (d) Lips-
chitz example.
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only the solutions of the equation, but also their gradients, are obtained accurately. In

particular, it is critical that the gradient map be monotone.

In Figure 5.5 the solutions and corresponding gradient maps for the first three repre-

sentative examples are presented. For example (2.20), the gradient map is too singular to

illustrate. To visualise the maps,we show the image of a Cartesian mesh under the mapping x

y

→
 Dxu
Dyu

 ,

where (Dxu,Dyu) is the numerical gradient of the solution of the Monge-Ampère equation.

In some cases, the image of a circle is plotted for visualisation purposes; the equation was

actually solved on a square. For reference, the identity mapping is also displayed.

In each case, the computed map agrees with the gradient map coming from the exact

solution.

5.4 Computational Results–Three Dimensions

In this section, we demonstrate the speed and accuracy of the hybrid Newton’s method for

three dimensional problems. These computations are performed on an N ×N ×N grid on

the square [0, 1]3. The monotone scheme used a 19 point stencil.

As before, we provide specific results for three representative examples of varying regu-

larity, which are described in §2.5. Although the results are obtained on fairly coarse grids

(up to 45×45×45), Figure 5.6 suggests trends similar to what we saw in the two-dimensional

case. In particular, the filtered and hybrid schemes lead to an improvement over the limited

accuracy that is possible with the narrow-stencil monotone scheme. We also find that, as in

the two-dimensional case, the computation time is essentially the same for all three schemes.
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Figure 5.5: Solutions and mappings for the (a),(b) identity map, (c),(d) C2 example, (e),(f)
C1 example, and (g),(h) example with blow-up.
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C2 Example (2.21)
N Max Error

Monotone Hybrid Filtered
7 1.46× 10−3 1.43× 10−3 1.24× 10−3

11 0.67× 10−3 0.58× 10−3 0.46× 10−3

15 0.42× 10−3 0.29× 10−3 0.24× 10−3

21 0.27× 10−3 0.14× 10−3 0.12× 10−3

31 0.22× 10−3 0.06× 10−3 0.05× 10−3

45 0.20× 10−3 0.03× 10−3 0.02× 10−3

C1 Example (2.22)
N Max Error

Monotone Hybrid Filtered
7 5.29× 10−3 5.01× 10−3 3.82× 10−3

11 4.04× 10−3 3.82× 10−3 2.69× 10−3

15 3.15× 10−3 2.61× 10−3 1.03× 10−3

21 2.78× 10−3 1.78× 10−3 0.72× 10−3

31 2.52× 10−3 1.35× 10−3 0.41× 10−3

Example with Blow-up (2.23)
N Max Error

Monotone Hybrid Filtered
7 7.11× 10−3 7.09× 10−3 6.38× 10−3

11 5.29× 10−3 5.38× 10−3 5.32× 10−3

15 4.62× 10−3 4.12× 10−3 4.36× 10−3

21 4.22× 10−3 3.43× 10−3 3.90× 10−3

31 4.03× 10−3 2.84× 10−3 3.86× 10−3

Table 5.3: Accuracy for the monotone, hybrid, and filtered discretisations for three repre-
sentative three-dimensional examples.
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C2 Example (2.21)
N Iterations CPU Time (seconds)

Monotone Hybrid Filtered Monotone Hybrid Filtered
7 3 3 3 0.1 0.1 0.1
11 2 2 2 0.1 0.1 0.1
15 3 3 2 0.4 0.4 0.3
21 3 3 3 1.8 1.5 1.4
31 4 4 2 20.2 17.6 8.7
45 4 5 5 242.0 204.9 192.6

C1 Example (2.22)
N Iterations CPU Time (seconds)

Monotone Hybrid Filtered Monotone Hybrid Filtered
7 5 5 4 0.1 0.2 0.1
11 8 10 4 0.3 0.3 0.1
15 8 10 6 0.9 1.0 0.6
21 8 7 6 4.2 3.4 2.6
31 6 8 7 34.6 37.9 29.5

Example with Blow-up (2.23)
N Iterations CPU Time (seconds)

Monotone Hybrid Filtered Monotone Hybrid Filtered
7 4 4 4 0.03 0.04 0.08
11 8 10 10 0.22 0.29 0.29
15 6 6 6 0.77 0.61 0.66
21 10 10 10 5.67 4.73 4.58
31 14 11 14 79.02 48.66 56.83

Table 5.4: Computation times for the monotone, hybrid, and filtered Newton’s methods in
three-dimensions.
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Figure 5.6: Maximum error and computation times for the monotone, hybrid, and filtered
schemes on the three-dimensional (a),(b) C2 example, (c),(d) C1 example, and (e),(f) ex-
ample with blow-up.



Chapter 6

Optimal Transport

In this chapter, we turn our attention to an important application of the elliptic Monge-

Ampère equation: the L2 optimal mass transport problem. After reviewing the special

boundary conditions that arise in this setting, we propose a method for solving the trans-

port problem by solving a sequence of Monge-Ampère equations with Neumann boundary

conditions. We conclude this chapter by providing several challenging and representative

computational examples from optimal transport.

6.1 Transport Boundary Conditions

In this section, we discuss the transport boundary conditions in more detail. We describe

a method for solving this challenging problem by solving a sequence of more tractable sub-

problems; these are Monge-Ampère equations subject to Neumann boundary conditions.

6.1.1 Nonlinear Boundary Conditions

In the problem of L2 optimal transport between convex sets X,Y ∈ Rd, the transport

condition (1.7)

∇u : X → Y,

also known as the second boundary value problem, can be enforced by simply requiring the

boundary points to map to boundary points [77, 84, 86]:

∇u : ∂X → ∂Y.

111
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In particular, if the boundary of the region Y is defined by the function

Φ(y) = 0,

we can write the transport boundary condition as

Φ(∇u(x)) = 0, x ∈ ∂X. (6.1)

While we might try simply enforcing this nonlinear equation at boundary points, the function

φ can be highly nonlinear and non-smooth. As a result, it will be difficult to construct a dis-

cretisation that is consistent with the boundary condition even when solutions are singular.

Additionally, we want to ensure that the discretisation we use permits fast solvers to remain

stable. As was the case for standard schemes for the Monge-Ampère equation (§3.2.3), we

expect that a naive discretisation of the boundary condition could affect the stability of

Newton’s Method.

6.1.2 Mapping Between Rectangles

The situation simplifies significantly if we are simply mapping a rectangle to a rectangle.

In this case, since the optimal L2 mapping does not permit twisting or rotation, we expect

the four sides of the rectangle X to map to the corresponding sides of the rectangle Y .

As a concrete example (see Figure 6.1), suppose that the sets X,Y ∈ R2 are defined as

X = [0, 1]× [0, 1], Y = [0, 1]× [0, 1].

Then, for example, we expect the function ∇u(x) to map the segment x1 = 0, x2 ∈ [0, 1] to

the segment y1 = 0, y2 ∈ [0, 1]. That is,

ux1(0, x2) = 0.

Similarly, we will have

ux1(1, x2) = 1, ux2(x1, 0) = 0, ux2(x2, 1) = 1.

This is simply a (linear) Neumann boundary condition, which is straightforward to imple-

ment [4, 72].

Given the ease with which we can explicitly express the optimal transport boundary

condition for maps between rectangles, a natural solution for more general geometries would



CHAPTER 6. OPTIMAL TRANSPORT 113

X Y

u
x2

  = 0

u
x2

 = 1

u
x1

 = 1
∇  u(x)

u
x1

= 0

Figure 6.1: Mapping between rectangles.

be to simply embed the sets X and Y into squares. The optimal map will not change as

long as we do not allow the addition of any mass. This is easily accomplished by extending

the density functions as follows:

f̃(x) =

f(x), x ∈ X

0, x /∈ X
g̃(y) =

g(y), y ∈ Y

0, y /∈ Y.

However, a problem is immediately evident when we recall that we are solving the PDE

det(D2u(x)) = f(x)/g(∇u(x)),

which involves division by the density function g. Clearly, we must ensure that g(y) remains

positive. In addition, we recall that the convergence of our monotone discretisation is

dependent on g(y) being a positive Lipschitz function (Theorem 4.10).

A simple solution would be to simply regularise the density functions slightly to ensure

that they are strictly positive and Lipschitz continuous. However, an approximation to a

discontinuous density function will still have a large Lipschitz constant. We also recall that

the formal consistency error of the monotone scheme is affected by the Lipschitz constant

KF of the right-hand side since convergence requires the regularisation parameter δ to satisfy

δd−1 ≥ KF

∣∣νj∣∣h/2.
While in theory we can still establish the convergence of the finite difference scheme, in prac-

tice the grid will have to be extremely well-refined before we are able to achieve meaningful

results.
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We conclude that while the idea of extending the density functions into a square is

simple, it is not practical from a computational standpoint. Thus a more sophisticated

method for implementing the transport boundary conditions is desirable.

6.1.3 A Sequence of Neumann Boundary Conditions

Given the appearance of the gradient in the transport boundary condition (6.1) and the sim-

plicity of implementing a Neumann boundary condition, we would like to find the Neumann

boundary condition
∂u

∂n
= φ(x), x ∈ ∂X

for the Monge-Ampère equation that is equivalent to solving the more challenging prob-

lem (1.3), (1.7), (1.1). Here the vector n refers to the unit outward normal vector at each

point x ∈ ∂X.

It is not at all apparent from (1.7) what the equivalent Neumann boundary condition

should be. However, we suggest a sequence of Neumann boundary conditions that can be

used to numerically determine the correct function φ.

We first recall that the gradient of the exact solution u maps the boundary of the set X

to the boundary of Y

∇u : ∂X → ∂Y

and that the correct Neumann condition is given by

φ(x) = ∇u(x) · n(x), x ∈ ∂X.

To find this function, we suppose that we have a convex approximation uk to the solution

of the Monge-Ampère transport problem. Then the (sub-)gradient of this function will map

the domain X onto some set Y k ∈ Rd and, since uk is convex,

∇uk : ∂X → ∂Y k.

In reality, we would like the image of the gradient to be ∂Y , the boundary of the target

set. This motivates us to consider the projection of ∂Y k = ∇uk(∂X) onto the correct set

of boundary points ∂Y :

Proj∂Y (∇uk(x)) = argmin
y∈∂Y

‖y −∇uk(x)‖22, x ∈ ∂X.
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From this we extract a new Neumann boundary condition

φk(x) = Proj∂Y (∇uk(x)) · n

and solve the Monge-Ampère equation once again with this updated boundary condition to

obtain a new approximation uk+1.

To summarize, we iterate to produce a sequence of functions (u1, u2, . . .) obtained by

solving the Monge-Ampère equation
det(D2uk+1(x)) = f(x)/g(∇uk+1(x)), x ∈ X

∇uk+1(x) · n(x) = Proj∂Y (∇uk(x)) · n ≡ φk(x), x ∈ ∂X

uk+1 is convex.

(6.2)

We make the important observation that these boundary conditions do not pin down

the values of ∇uk+1 on the boundary. This would be a mistake since we know only that

∇u : ∂X → ∂Y and not the exact values of ∇u(x) on the boundary. Instead, each Neumann

condition fixes only one component of the gradient (the normal component) and allows the

remaining component(s) to slide as needed to ensure that the Monge-Ampère equation is

satisfied.

6.1.4 Solvability of Sub-problems

We note that the iteration (6.2) may not be well-posed. The problem here is that, while

the Monge-Ampère equation with the correct Neumann values φ(x) has a solution, the

sub-problems we have described may not be solvable.

One important point to note is that for the Monge-Ampère equation with Neumann

boundary conditions, a solution (unique up to an additive constant) does not exist for

general data. This is analogous to the Neumann problem for the linear Poisson equation:∆u(x) = f(x), x ∈ X

∇u(x) · n(x) = ψ(x), x ∈ ∂X.
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If we integrate the forcing f over the domain, we find via integration by parts that∫
X

f(x) =
∫
X

∆u(x)

=
∫
∂X

∇u(x) · n(x)

=
∫
∂X

ψ(x).

Thus the Neumann problem will not have a solution unless that data satisfies the solvability

condition ∫
X

f(x) =
∫
∂X

ψ(x).

For the Monge-Ampère equation with Neumann boundary conditions, we are not aware

of an explicit representation of the corresponding solvability condition. However, it is true

that the problem: 
det(D2u) = f(x)/g(∇u(x)), x ∈ X

∇u(x) · n(x) = ψ(x), x ∈ ∂X

u is convex,

has a solution (unique up to an additive constant) only if an implicit solvability condition

is satisfied [62].

Even if the problem we are given is well-posed, the system of discretised equations

may not be well-posed: numerical error can mean that the solvability conditions for the

continuous and discrete problems are slightly different. To get around this problem, we will

instead solve an equation of the form

det(D2u) = cF (x,∇u(x)), x ∈ X

∇u(x) · n(x) = ψ(x), x ∈ ∂X

u is convex,∫
X u dx = 0

for the unknowns c > 0 and u(x), where the constant c is chosen to ensure the equation has

a solution and the mean-zero condition forces the solution to be unique (instead of unique

up to an additive constant).
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Of course, if we are given the correct Neumann values φ(x) for the solution to the

transport problem, the constant c will simply be equal to one. However, by relaxing this

condition we make it possible to solve the sub-problems when the solvability condition

requires c to be slightly different than one.

To summarize, we solve the transport problem by performing the iteration

det(D2uk+1(x)) = ck+1f(x)/g(∇uk+1(x)), x ∈ X

∇uk+1(x) · n(x) = Proj∂Y (∇uk(x)) · n ≡ φk(x), x ∈ ∂X

uk+1 is convex,∫
X u

k+1 dx = 0.

(6.3)

Although we do not present detailed computational results until §6.4, we do want to

provide an idea of the sequence of maps that is produced using this method. We illustrate

this by mapping a square with uniform density onto a circle with uniform density. The

sequence of maps produced by this method is presented in Figure 6.2. We can see that this

iteration successfully transforms a square mesh into a circular mesh in just a few iterations.

6.1.5 Extension of Target Density

Another point that needs to be addressed is the definition of the target density function g(y)

at points outside the target set Y . Of course, if we substitute the exact transport potential

u into the Monge-Ampère equation

det(D2u(x)) = f(x)/g(∇u(x)),

the gradient ∇u(x) will only give values in the set Y and g will only need to be defined in

this set. However, in the course of computing the solution to the mass transport problem,

we will have approximations that can map points in X to points outside of Y . Thus it is

important that g(y) is actually defined at these points.

From the viewpoint of optimal transport, the most natural option is to let the density

g(y) vanish outside the target Y since all mass is inside the target set. However, this

is not practical from a computational standpoint since convergence of the Monge-Ampère

solver requires the density function g(y) to be strictly positive and Lipschitz continuous

(Theorem 4.10 and §6.1.2).
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Figure 6.2: Mapping a square onto a circle using the iteration (6.3).
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Instead, we allow for any positive, Lipschitz continuous extension of g(y) into all space.

In some cases, when g is a given function, there is an obvious way of extending it into

all space. Lipschitz extensions can always be obtained by using, for example, the method

of [71]. The resulting function g∗(y) can also be bounded away from zero by considering

max{g∗(y), ε} for some 0 < ε ≤ min
y∈Y

g(y).

Of course, a positive extension of g(y) means that the initial mass
∫

Rd f(x) dx =
∫
X f(x) dx

will not be equal to the total final mass in all space
∫

Rd g
∗(y) dy. However, the maps we

compute will only take the set X into a bounded region that need not include the whole

support of the extended density g∗(y). This property, together with the scaling parameter

c introduced in §6.1.4, ensures that mass is conserved in each step of our projection scheme.

6.2 Numerical Implementation

The biggest challenge in implementing this projection scheme is the solution of the Monge-

Ampère equation at each iteration. This challenge is easily and efficiently handled using the

finite difference schemes developed in the previous chapters. We now turn our attention to

a few remaining computational details.

One important issue is the implementation of the Neumann boundary conditions since,

in the previous chapters, we limited our attention to the Dirichlet problem.

The iterations we have described in this paper also need to be initialised. There are really

two aspects to this: we need to initialise u and c each time we solve the Monge-Ampère

equation and we also need to initialise our estimation of the boundary condition φ(x).

We also describe a simple method for computing in complicated domains without having

to resort to more complicated finite difference stencils.

6.2.1 Implementation of Neumann Boundary Conditions

We begin by describing our numerical implementation of the Neumann boundary condi-

tion (1.6):

un(x) = φ(x), x ∈ ∂X.

Here n denotes the unit outward normal to the boundary ∂X.

Our computational domain is the square, which means we must impose values for ux1

on the left and right sides of the domain and for ux2 on the top and bottom edges of the
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domain.

We accomplish this by adding a layer of ghost points around the outside of our computa-

tional domain. The value of the normal derivatives on the boundary can then be discretised

using simple centred differences. For example, at a point on the left edge (x1 = xmin), we

can discretise the normal derivative as

un(x) =
1

2h
(u(xmin + h, x2)− u(xmin − h, x2)).

The use of ghost points ensures that all values needed in this discretisation are available.

We also need to provide four more equations at the corner points in our grid. We specify

the value of the derivative in the “diagonal” direction ((1, 1), (1,−1), (−1, 1), or (−1,−1))

that points outward from the grid at each of these four points. This is enforced using centred

differences. So, for example, at the points (x1,min, x2,min) we require that

1
2
√

2h
(u(x1,min − h, x2,min − h)− (x1,min + h, x2,min + h)) =

− 1√
2

(ux1(x1,min, x2,min) + ux2(x1,min, x2,min)).

As before, the ghost points ensure that all of these values are available.

6.2.2 Newton’s Method

Because we have included the scaling factor c (which comes from the solvability condition)

as an unknown, we must slightly adjust Newton’s method to obtain this. We will now

perform the iteration

uk+1 = uk − vk, ck+1 = ck − dk

where the correctors vk, dk are obtained by solving the equation

∇MA[uk, ck](vk, dk)T = MA[uk, ck].

As long as the initial iterate u0 satisfies the given Neumann boundary condition, we can

simply enforce a homogeneous Neumann condition on the corrector vk at each step.

As usual, we obtain the Jacobian of the hybrid system via

∇MA[u, c] = w(x)∇MAM [u, c] + (1− w(x))∇MAS [u, c].
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We begin by computing the Jacobian of the monotone discretisation. We recall that this

discretisation has the form

MAM [u, c] = min
(ν1,...,νd)∈G

G(ν1,...,νd)[u, c].

By Danskin’s Theorem [7], we can write the Jacobian of this as

∇MAM [u, c] = ∇G(ν1,...,νd)[u, c],

where the (ν1, . . . , ν) are the directions active in the minimum.

This Jacobian can be broken down into two basic components: the gradient with respect

to the solution vector u and the gradient with respect to the scaling factor c. The first

component is identical to what we computed in §4.8.5 except for the addition of the scaling

factor c:

∇uiG(ν1,...,νd)[u, c] =
d∑

m=1


∏
j 6=m

max{Dνjνjui, δ}

1Dνjνjui≥δ + 1Dνjνjui<δ

Dνmνm
− c

d∑
m=1

∂F

∂pm

x, d∑
j=1

νj · e1∣∣νj∣∣ Dνjui, . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ Dνjui
 d∑

j=1

νj · em∣∣νj∣∣ Dνj .
The final component is given by

∇cG(ν1,...,νd)[u, c] = −F

x, d∑
j=1

νj · e1∣∣νj∣∣ Dνjui, . . . ,
d∑
j=1

νj · ed∣∣νj∣∣ Dνjui
 .

For the standard discretisation, the first component of the Jacobian (in two dimensions)

is simply

∇uiMAS [u, c] = (Dx2x2ui)Dx1x1 + (Dx1x1ui)Dx2x2 + 2(Dx1x2ui)Dx1x2

− c ∂F
∂p1

(x,Dx1ui,Dx2ui)Dx1 − c
∂F

∂p2
(x,Dx1ui,Dx2ui)Dx2

and the second component is

∇cMAS [u, c] = −F (x,Dx1ui,Dx2ui).
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6.2.3 Initialisation of Boundary Data

Next we discuss the initialisation of the boundary data φ0 in the iteration (6.3). The simplest

approach would be to extract boundary conditions from the identity map s(x) = x. However,

if this mapping does not overlap with the target set Y , the iteration is likely to fail.

We can remedy this problem by instead extracting boundary data from the scaled iden-

tity map s(x) = Mx where the constant M is chosen large enough that the set s(X)

encompasses the target set Y .

Once this constant is chosen, we simply choose the initial boundary condition

φ0(x) = Mx · n(x), x ∈ ∂X.

We can accelerate the convergence of this method by first solving the transport problem

on a coarser grid, then interpolating the resulting boundary data onto the refined mesh.

6.2.4 Initialisation of Newton’s Method

We also need to initialise Newton’s method each time we solve the Monge-Ampère equation.

We can use the approach we have employed in previous chapters, which involves obtaining

the initial guess by solving the equation

∆u(x) = (cd!f(x)/g(x− x0))1/d

where x0 is a point in the interior of the target set Y .

However, since we will be solving the Monge-Ampère equation multiple times with dif-

ferent boundary conditions, we can also accelerate the convergence of the (k+ 1)st iteration

by initialising with the solution found during the previous solve (uk). One important point

here is that the boundary data changes from step to step. Thus it is important to change

the values of uk at the boundary points so as to ensure that correct boundary conditions

are satisfied.

6.2.5 Computing in General Domains

When computing with finite difference methods, it is most convenient to work in rectangular

domains. However, it is often desirable to solve the mass transport problem in more general

domains. This motivates us to return to the idea of extending the density functions into

a square, which was discussed in §6.1.2. We observed earlier that extending the densities
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was not a practical option because of the large Lipschitz constant of the regularised version

of the extended target density g̃. However, there is nothing to prevent us from using a

vanishing or discontinuous initial density f̃ . Because, in the context of optimal transport,

the functions f , g appearing on the right-hand side are really density functions, computing

in square domains is actually sufficient. More general domains can simply be embedded

in a square, with the density function f set equal to zero outside the region of interest;

see Figure 6.3. Because this approach leads to very degenerate Monge-Ampère equations,

many of the currently available solvers for Monge-Ampère equations would not allow this

option. However, we stress again that our finite difference solvers are equipped to enforce

the non-strict convexity and correctly approximate the possibly singular solutions that can

result in this degenerate setting.

X

f(x)

(a)

X

f(x)

f=0

(b)

Figure 6.3: (a) A non-rectangular domain can simply be (b) embedded in a square.

6.3 Computational Results: Mapping Between Rectangles

We now provide computational results for several different examples. We begin by consid-

ering mappings between rectangles. In this case, our projection scheme reduces to a simple

Neumann boundary condition (§6.1.2). This allows us to focus on the correctness of our

discretisation, which must now deal with a right-hand side that depends on gradients.

In each example, our domain is a square, which is discretised on an N × N grid using

the 17 point hybrid scheme (MA)H . As in earlier chapters, we let h = 1/(N − 1) denote
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the spatial resolution of the grid and let M = N2 denote the total number of grid points.

When an exact solution uexact is available, we also provide the maximum error in the

gradient map:

Error = max{‖uexactx1
− ux1‖∞, ‖uexactx2

− ux2‖∞}.

We also provide the total number of Newton iterations and computation time required for

each example.

The examples we consider include:

• A (linear) map between Gaussian densities.

• A comparison between a map obtained by solving the direct problem and a map

obtained by inverting the solution to the inverse problem.

• A map from a uniform density onto a density that blows up at a point.

• A map between two brain MRI images.

6.3.1 Gaussian Densities

We begin by showing that we can recover a linear mapping between two rectangles with

Gaussian densities. We consider the problem of mapping the square [−0.5, 0.5]× [−0.5, 0.5]

onto the rectangle [0.5, 1.5]× [−0.25, 0.25] with the density functions:

f(x1, x2) =
1

0.16
exp

(
−1

2
x2

1

0.42
− 1

2
x2

2

0.42

)
,

g(y1, y2) =
1

0.08
exp

(
−1

2
(y1 − 1)2

0.42
− 1

2
y2

2

0.22

)
.

In this case, we have an explicit expression for the optimal map:

ux1 = x1 + 1, ux2 =
1
2
x2.

We present the results in Table 6.1 and Figure 6.4. In this example, can actually achieve

machine accuracy (if we take enough Newton steps). This is because the exact solution is

simply a linear map, which will exactly solve the discretised system of equations. In addition

to this, we find that the Newton solver for the Monge-Ampère equation converges in O(M)

time.
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Figure 6.4: (a) A mesh with Gaussian density f and (b) its image under the gradient map
∇u (§6.3.1).

N h Newton Iterations CPU Time (s) Maximum Error
32 0.0323 1 0.1 5.71× 10−8

46 0.0222 1 0.2 3.34× 10−8

64 0.0159 1 0.3 0.26× 10−8

90 0.0112 1 0.6 0.18× 10−8

128 0.0079 1 1.1 0.13× 10−8

182 0.0055 1 2.4 0.09× 10−8

256 0.0039 1 5.3 0.07× 10−8

362 0.0028 1 12.4 0.05× 10−8

Table 6.1: Computation time and maximum error for the map between two Gaussian den-
sities (§6.3.1).
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6.3.2 Recovering an Inverse Map

For our next example, we consider another problem with an exact solution, which will be

used to verify that we can correctly recover inverse maps. To set up this example, we define

the function

q(z) =
(
− 1

8π
z2 +

1
256π3

+
1

32π

)
cos(8πz) +

1
32π2

z sin(8πz).

Now we map the density

f(x1, x2) = 1 + 4(q′′(x1)q(x2) + q(x1)q′′(x2)) + 16(q(x1)q(x2)q′′(x1)q′′(x2)− q′(x1)2q′(x2)2)

in the square [−0.5, 0.5] × [−0.5, 0.5] onto a uniform density in the same square. This

transport problem has the exact solution

ux1(x1, x2) = x1 + 4q′(x1)q(x2), ux2(x1, x2) = x2 + 4q(x1)q′(x2).

We will solve this problem in two ways:

• Directly, as in the previous example.

• By solving the inverse problem (mapping g to f) and inverting the resulting map.

Results are presented in Figure 6.5 and Table 6.2. We find that the maps obtained from

both the forward and inverse formulations have about O(h2) accuracy. Both problems are

solved in about O(M) time.

6.3.3 An Example with Blow-up

Next we consider the problem of mapping a uniform density onto a density that blows up

at a point:

g(y1, y2) =
exp

(
−2
√

(y1 − 0.5)2 + (y2 − 0.5)2
)

√
(y1 − 0.7)2 + (y2 − 0.7)2

.

In this case, both X and Y are the square [0, 1] × [0, 1]. This example is taken from [32],

which allows us to compare results. In this example, we slightly regularise the density g

(bounding it by a O(1/h2) function) to prevent infinities from appearing.
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Figure 6.5: (a) A uniform Cartesian mesh and (b) its image under the gradient map ∇u
(§6.3.2).

Forward Problem Inverse Problem
N Iterations Time (s) Max Error Iterations Time (s) Max Error
32 3 0.2 2.476× 10−3 4 0.4 2.450× 103

46 2 0.2 0.631× 10−3 2 0.5 0.575× 103

64 2 0.5 0.241× 10−3 2 1.1 0.244× 103

90 1 0.6 0.106× 10−3 1 1.3 0.101× 103

128 1 1.3 0.049× 10−3 1 2.9 0.048× 103

182 1 2.9 0.024× 10−3 1 5.1 0.023× 103

256 1 6.3 0.012× 10−3 1 10.9 0.011× 103

362 1 14.0 0.006× 10−3 1 22.6 0.006× 103

Table 6.2: Newton iterations, computation time and maximum error for a map obtained by
a direct solve and by inverting the inverse map (§6.3.2).
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We present the timing results in Table 6.3. We provide not only the number of Newton

iterations and computation time, but also the ratio

R = max
{
g(y1, y2)/f(x1, x2)

}
,

since many currently available Monge-Ampère solvers can become slow or unstable when

this ratio is large. For comparison, we provide the same information for the method of [32]

(which is essentially our “standard” discretisation solved with an optimised Newton-Krylov

method). The method of [32] runs in O(M) time. Our method, though it runs in about

O(M1.1) time, has lower computation times and deals with larger density ratios. Naturally,

we cannot conclude too much from the comparison of computation times since the com-

putations were performed on different computers. However, it is evident that, in terms of

computation time, our method is very competitive with other fast solvers.

We also present the deformed mesh; see Figure 6.6. In addition, we zoom into the region

of high density to verify that our method has produced an untangled mesh.

Hybrid Method Method of [32]
N R Iterations CPU Time (s) R Iterations CPU Time (s)
32 546 4 0.2 356 6 1
46 1,151 4 0.3 — — —
64 2,254 5 0.8 1,127 7 4
90 4,066 5 1.6 — — —
128 9,162 5 3.5 2,829 7 17.4
182 18,608 5 8.3 — — —
256 36,933 5 19.4 8,886 7 70
362 74,018 4 36.3 — — —

Table 6.3: Ratio of density functions, Newton iterations, and total computation time for
our hybrid method and the method of [32].

6.3.4 Mapping Between Brain MRI Images

We conclude this section with an example from image processing. In this example, we obtain

our density functions from the pixel intensities in two synthetic brain MRI images [22, 25, 23].

The images are shown in Figures 6.7(a)-6.7(b). In this case, the regionsX and Y are identical
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Figure 6.6: (a) The image of a Cartesian mesh under the gradient map ∇u (§6.3.3) and
(b) a zoomed in view of the same mesh in the region of large density.

and are equal to the unit square. The fully resolved images contain 256 × 256 pixels. For

the computations presented here, we have also interpolated both images onto coarser grids

so that in each case we are mapping an N ×N grid onto the density function obtained from

an N ×N image.

In this example, the density functions have large gradients, which effectively increase as

we map onto more refined images. The solver now runs in aboutO(M1.1) time; see Table 6.4.

Figures 6.7(c)-6.7(d) show the image we obtain by solving the Monge-Ampère equation

and interpolating and the error in this image. The mapped image we obtain agrees well

with the given image. Not surprisingly, the largest error occurs around the edges of the

brain where the density function is essentially discontinuous; consequently, small errors in

the map can lead to large errors in estimated pixel intensity.

6.4 Computational Results: Optimal Transport

Next, we turn our attention to computational results for the mass transport problem. In

each example, we embed our domain in the square [−0.5, 0.5] × [−0.5, 0.5] (setting the

density f = 0 outside our domain X). While this can lead to singularities in the solutions,

our methods are robust enough to handle this non-smoothness.
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(a) (b)

(c) (d)

Figure 6.7: (a) The initial density function f , (b) the final density function g, (c) the image
obtained by solving the Monge-Ampère equation and interpolating, and (d) the error in the
resulting image.
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N Newton Iterations CPU Time (s)
32 7 1.1
46 7 1.2
64 9 3.0
90 10 7.0
128 12 13.7
182 12 34.9
256 13 81.6

Table 6.4: Computation time for a map between two brain MRI images (§6.3.4).

In each case, we present the total number of Monge-Ampère solves required on the

N ×N grid (this does not include solves performed on coarser grids during the initialization

process), as well as the total computation time required. When an exact solution is available

for comparison, we provide the maximum error in the map:

Error = max{‖uexactx1
− ux1‖∞, ‖uexactx2

− ux2‖∞}.

The examples considered in this section include:

• A map between two ellipses, for which an exact solution is available for comparison.

• A map from two disconnected semi-circles onto a circle, for which an exact solution is

available for comparison.

• A map from a square onto a convex polygon, which is neither smooth nor strictly

convex, together with recovery of the inverse map.

• A map from a square onto a non-convex region.

6.4.1 Mapping an Ellipse to an Ellipse

First we consider the problem of mapping an ellipse onto an ellipse. To describe the ellipses,

we let Mx,My be symmetric positive definite matrices and let B1 be the unit ball in Rd.

Now we take X = MxB1, Y = MyB2 to be ellipses with constant densities f , g in each

ellipse.

In R2, the optimal map can be obtained explicitly [68] from

∇u(x) = MyRθM
−1
x x
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where R is the rotation matrix

Rθ =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 ,

the angle θ is given by

tan(θ) = trace(M−1
x M−1

y J)/trace(M−1
x M−1

y ),

and the matrix J is equal to

J = Rπ/2 =

 0 −1

1 0

 .

We use the particular example

Mx =

 0.4 0

0 0.2

 , My =

 0.3 0.1

0.1 0.4

 ,

which is pictured in Figure 6.8.

Projections onto the ellipse at each step are accomplished efficiently using the method

described in [58].

Computational results are presented in Table 6.5 and Figure 6.8. The error is decreasing

uniformly (about O(h0.8)). We cannot expect high accuracy for this example due to the

degeneracy of this example: the density f vanishes in part of the domain. This means that

the lower accuracy monotone stencil is needed in this region, which will in turn affect the

error in the map.

Despite the degeneracy of this example and the multiple Monge-Ampère solves required

to initialize and solve this problem, the computation requires only O(M1.1) time.

6.4.2 Mapping from a Disconnected Region

We now return to the degenerate example considered in §2.2.1. This is the problem of

mapping the two half-circles

X = {(x1, x2) | x1 ≤ −0.1, (x1 + 0.1)2 + x2
2 ≤ 0.32}

∪ {(x1, x2) | x1 ≥ 0.1, (x1 − 0.1)2 + x2
2 ≤ 0.32}
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Figure 6.8: (a) A Cartesian mesh in the ellipse X and (b) its image under the gradient map
∇u (§6.4.1).

N h (1.2) Solves CPU Time (s) Maximum Error
32 0.0323 4 0.7 0.0264
46 0.0222 13 1.7 0.0180
64 0.0159 3 1.8 0.0152
90 0.0112 6 5.5 0.0117
128 0.0079 3 9.9 0.0083
182 0.0055 3 25.3 0.0060
256 0.0039 2 61.9 0.0048

Table 6.5: Computation time and maximum error for the map between two ellipses (§6.4.1).
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onto the circle

Y = {(y1, y2) | y2
1 + y2

2 ≤ 0.32}.

Results are presented in Table 6.6 and Figure 6.9. In this case, the error appears to

approach a constant value of around 0.004. This is not surprising since in this case, the

monotone stencil is needed in the region where f vanishes or is discontinuous. The width

of the stencil then limits the accuracy of solutions, as we explained in Chapter 4. The

computation time for this very degenerate example is about O(M1.3).
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Figure 6.9: (a) A Cartesian mesh in two half-circles X and (b) its image under the gradient
map ∇u (§6.4.2).

N h (1.2) Solves CPU Time (s) Maximum Error
32 0.0323 5 0.5 0.0171
46 0.0222 2 0.5 0.0160
64 0.0159 5 1.6 0.0129
90 0.0112 9 6.0 0.0082
128 0.0079 5 11.8 0.0052
182 0.0055 4 30.3 0.0040
256 0.0039 3 66.7 0.0038

Table 6.6: Computation time and maximum error for the map from two half-circles to a
circle (§6.4.2).
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6.4.3 Mapping to a Convex Polygon

Next we consider a map onto a convex polygon Y , which has a very non-smooth boundary.

We use the polygon Y with vertices:

(−0.5,−0.3), (−0.5, 0.4), (0, 0.5), (0.5, 0.3), (0.3,−0.5).

Despite the non-smoothness of ∂Y , our method successfully maps the square [−0.5, 0.5] ×
[−0.5, 0.5] into the prescribed polygon, though we do not have an exact solution to compare

with.

We also solve the problem by solving the inverse problem (mapping the polygon to

the square) and inverting this map as in §6.3.2. While no exact solution is available for

comparison, we can check the maximum difference between components of the two maps:

max{‖ux1 − uinvx1
‖∞, ‖ux2 − uinvx2

‖∞}.

Results are presented in Table 6.7 and Figure 6.10. The computation is reasonably

efficient, requiring about O(M1.2) time for both the forward and inverse problem. We

also observe that the agreement between the maps obtained from the forward and inverse

approaches improves as we refine the grid.
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Figure 6.10: (a) A Cartesian mesh and (b) its image under the gradient map ∇u (§6.4.3).
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Forward Problem Inverse Problem
N Iterations Time (s) Iterations Time (s) Max Difference
32 3 0.4 1 0.3 0.0397
46 3 0.8 1 0.7 0.0227
64 3 1.5 1 1.1 0.0153
90 4 3.2 1 2.3 0.0119
128 4 8.5 1 6.2 0.0087
182 4 21.0 1 13.5 0.0063
256 4 61.8 1 33.9 0.0050
362 4 154.3 1 92.6 0.0044

Table 6.7: Monge-Ampère solves, computation time and maximum difference for a map
from square to polygon obtained by a direct solve and by inverting the inverse map (§6.4.3).

6.4.4 Mapping to a Non-convex Region

Next, we compute the mapping of the square with constant density f onto a non-convex

region given by

Y =
{

(y1, y2) | 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1− 0.1 sin(2πy1)
}
.

We impose the following periodic density in the region Y :

g(y1, y2) = 2 + cos
(

8π
√

(y1 − 0.5)2 + (y2 − 0.5)2
)
.

The results are displayed in Table 6.8 and Figure 6.11. Despite the non-convexity of Y ,

the method successfully maps the region X into the non-convex region Y . The non-convexity

does not appear to affect the computation time at all: the solution time is roughly O(M).
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Figure 6.11: (a) A Cartesian mesh and (b) its image under the gradient map ∇u (§6.4.4).

N (1.2) Solves CPU Time (s)
32 5 1.7
46 4 2.2
64 4 5.4
90 5 8.4
128 5 21.4
182 5 41.9
256 3 68.1
362 3 197.4

Table 6.8: Computation time for the map onto a non-convex region (§6.4.4).



Chapter 7

Conclusions

7.1 Summary

In this thesis, we have focused on the problem of numerically computing solutions to the

elliptic Monge-Ampère equation. Because of the nonlinearity of the equation, a classical

solution may not exist and standard techniques can fail. In addition, fast solution methods

such as Newton’s method can become unstable, making it necessary to use slower solvers.

The numerical solution of the Monge-Ampère equation requires a suitable approximation

to the determinant of the Hessian of a convex function. Instead of using a standard expansion

of the determinant, we have rewritten the equation in a variational form that includes the

constraint that solutions must be convex. Using this form of the equation, together with

the definition of a viscosity solution, we successfully produced a monotone finite difference

discretisation that provably converges to the weak (viscosity) solution. Moreover, the special

structure of the discretisation allows us to use Newton’s method to efficiently solve the

resulting system of nonlinear equations.

We have also looked at the problem of building a formally more accurate scheme for the

Monge-Ampère equation that nevertheless handles singularities correctly. We accomplished

this by constructing two hybrid discretisations that carefully combined the monotone scheme

with a formally more accurate discretisation. For one of these schemes, we succeeded in

proving convergence to the viscosity solution of the equation.

Finally, we looked at the related problem of optimal mass transport with quadratic

cost. This problem can be expressed as a Monge-Ampère equation coupled to an implicit

transport boundary condition. Previously, this boundary condition had been implemented

138
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only in the simplest geometries. In this thesis we proposed a new method for enforcing

this boundary condition by solving a sequence of Monge-Ampère equations with a simpler

Neumann boundary condition. By combining this with our fast solver for the Monge-

Ampère equation, we were able to successfully and efficiently compute solutions to the

optimal transport problem in a number of challenging cases that included mapping onto

unbounded densities, recovery of inverse maps, maps from disconnected domains, and maps

into non-convex regions.

7.2 Future Work

The work of this thesis answers a few interesting questions, but it also raises many new

questions and suggests several possible directions for future research.

One very important research problem is the construction of formally high-order numer-

ical methods that converge to the correct weak solution of the underlying equation. In this

thesis, we proved a very general result about the convergence of certain numerical methods

for the class of second-order degenerate elliptic PDEs. Further study is needed to flesh out

the full implications of this theorem. For instance, this result could lead to construction of

or convergence proofs for high-order methods for Hamilton-Jacobi equations.

The problem of enforcing optimal transport boundary conditions certainly deserves addi-

tional study. The method we proposed in this thesis appeared to perform well for mappings

into convex—and some non-convex—target sets. However, at this time we do not have a

proof that this method converges. It would also be desirable to extend this method to even

more general non-convex targets, where the projection operator may not be well-defined.

We are also interested in the issue of computing solutions to more general optimal

transport problems. In this thesis, we limited our attention to a quadratic cost function.

The particular structure of this special case allowed the problem to be re-expressed in terms

of the elliptic Monge-Ampère equation. The situation becomes much more complicated

when we consider other cost functions. However, the more general case can still be brought

into the realm of partial differential equations [66]. It would be very interesting to try

to extend the analytical and computational results of this thesis to the more challenging

problem of optimal transport with a non-quadratic cost function.

The application of techniques developed in this thesis to various applications of optimal

transport is another possible direction for future research. One interesting application is
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adaptive mesh generation. This is useful in the study of other equations, whose solutions

may change rapidly in a small region of the domain. In order to increase the accuracy and

decrease the cost of computations, it is desirable to compute on a mesh that clusters more

grid points in areas where the solution is changing rapidly. The Monge-Ampère equation can

be used to generate these equidistributing meshes by mapping a constant density function

(uniform mesh) onto a density function (or monitor function) that contains information

about the solution of the underlying equation [13]. Our ability to map into different types

of geometries also suggests a method of generating equidistributing meshes in different types

of domains. In order to realise the benefits of these equidistributing meshes in solving other

problems, it will be necessary to couple the Monge-Ampère equation to other problems of

interest.

Another interesting application is the problem of image registration. For images such as

brain MRIs, which provide information about proton density, it is natural to use techniques

related to optimal transport to establish correspondences between different images [51].

Depending on the particular approach used, the optimal transport problem may be coupled

to other equations or constraints. Again, techniques for doing optimal transport can be

used as a starting point for this important application.



Bibliography

[1] R. Abgrall. Construction of simple, stable, and convergent high order schemes for
steady first order Hamilton-Jacobi equations. SIAM J. Sci. Comput., 31(4):2419–2446,
2009.

[2] Luigi Ambrosio. Lecture notes on optimal transport problems. In Mathematical aspects
of evolving interfaces (Funchal, 2000), volume 1812 of Lecture Notes in Math., pages
1–52. Springer, Berlin, 2003.

[3] I. Bakelman. Convex analysis and nonlinear geometric elliptic equations. Springer-
Verlag, 1994.

[4] Guy Barles and Panagiotis E. Souganidis. Convergence of approximation schemes for
fully nonlinear second order equations. Asymptotic Anal., 4(3):271–283, 1991.

[5] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to
the Monge-Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000.

[6] Jean-David Benamou, Brittany D. Froese, and Adam M. Oberman. Two numerical
methods for the elliptic Monge-Ampère equation. ESAIM: Math. Model. Numer. Anal.,
44(4), 2010.

[7] Dimitri P. Bertsekas. Convex analysis and optimization. Athena Scientific, Belmont,
MA, 2003. With Angelia Nedić and Asuman E. Ozdaglar.
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