RELATIONSHIP ANALYSIS: A TECHNIQUE TO IMPROVE THE SYSTEMS ANALYSIS PROCESS

Joseph T. Catanio
Mathematics & Computer Science Department

College of Arts and Sciences

LaSalle University

catanio@lasalle.edu
Michael Bieber

Information Systems Department

College of Computing Sciences

New Jersey Institute of Technology

bieber@oak.njit.edu
ABSTRACT

A significant aspect of systems analysis involves discovering and representing entities and their inter-relationships. Guidelines exist to identify entities but none provide a rigorous and comprehensive process to explicitly capture relationships. Whereas, other analysis techniques lightly address the relationship discovery process, Relationship Analysis offers a systematic, domain-independent analysis technique specifically to determine a domain’s relationship structure.

The quality of design artifacts, such as class diagrams can be improved by first representing the complete relationship structure of the problem domain. The Relationship Analysis Model is the first theory-based taxonomy to classify relationships. A rigorous evaluation was conducted, including a formal experiment comparing novice and experienced analysts with and without Relationship Analysis. It was shown that the Relationship Analysis Process based on the model does provide a fuller and richer systems analysis, resulting in improved quality of class diagrams. It also was shown that Relationship Analysis enables analysts of varying experience levels to achieve class diagrams of similar quality. Relationship Analysis significantly enhances the systems analyst’s effectiveness, especially in the area of relationship discovery and documentation, resulting in improved analysis and design artifacts.

KEYWORDS

Relationship Analysis, Systems Analysis, Software Engineering, Software Requirements, Class Diagram, Taxonomy, Ontology, Classification, Modeling, Brainstorming, Object-Oriented Analysis, Entity-Relationship, Structure of Intellect Theory, Analysis Quality

I. INTRODUCTION

The literature indicates that the best way to improve the software development life-cycle is to improve it during the early stages of the process (Sommerville, 2001) (Faulk, 2000) (Wieringa, 1998) (Booch et al., 1998); in particular, during the elicitation, analysis and design phases. During the system analysis phase, components are determined through the identification process of the system’s entities and relationships. Informal guidelines exist to help identify entities or objects (Chen, 1976) (Chen, 1983) (Rumbaugh, 1991) (Booch, 1994) (Abbott, 1983). However, no guidelines exist to analyze an application domain in terms of its relationship structure. The determination of an application domain relationship structure is an implicit process. No defined processes, templates, or diagrams exist to explicitly and systematically assist in eliciting relationships or documenting them in Class Diagrams or Entity-Relationship (E/R) Diagrams (Beraha & Su, 1999). However, relationships constitute a large part of an application domain’s implicit structure. Completely understanding the domain relies on knowing how all the entities are interconnected. Relationships are a key component, yet lightly addressed by E/R and class diagrams (Catanio, 2004a,b). These diagrams capture a limited subset of relationships and leave much of the relationship structure out of the design and system model. While analyses and models are meant to be a limited representation of a system, the incomplete relationship specification is not by design, but rather a lack of any methodology to determine them explicitly (Bieber & Yoo, 1999) (Bieber, 1998). As a result, many analyses miss aspects of the systems they represent. Relationship Analysis (RA) addresses these concerns and provides a straightforward way to identify the relationship structure of a problem domain, and thus fills a void in the systems analysis process. RA is a rigorous, systematic, theory-based process based on theory to identify the relationship structure of an application domain.

Yoo and Bieber developed an initial version of RA, but its completeness was in question as it was not conceived around any theory (Yoo 2000) (Yoo & Bieber 2000 a,b) (Yoo et al. 2004). In this paper we present the underlying theory and the resulting well-grounded RA model, process and tools, as well as empirical results showing RA’s potential to support both experienced and inexperienced analysts.

In §2 we examine the concept of relationships. §3 describes RA’s theoretical foundation. §4 presents the Relationship Analysis Model. §5 outlines the corresponding technique—the Relationship Analysis Process. §6 describes the experiment conducted and its results, showing that RA produces richer analyses than an object-oriented analysis technique. §7 concludes with a general discussion.

II. RELATIONSHIPS

A domain’s relationships constitute a large part of its implicit structure. A deep understanding of the domain relies on knowing how all the entities are related. Although commonly used, the relationship construct is poorly defined and lacks a strong theoretical foundation (Siau, 1996) (Siau, 1997).

Relationships within information systems can be depicted in diagrams using various modeling techniques. These techniques identify system components and properties to help represent the static and dynamic views of the problem domain thereby building a conceptual model of the system being analyzed. A conceptual schema diagram must be powerful enough in its semantic expressiveness and easily comprehensible, as it serves as a communication medium between professional designers and users who interact with it during the stage of requirements analysis and modeling (Shoval & Frumermann, 1994) (Topi & Ramesh, 2002).

Entity-Relationship (E/R) modeling (Chen, 1976) is one of the best known semantic data modeling approaches and is often used to represent the conceptual schema of the problem domain by identifying its entities, properties, and relationships. The E/R model helps provide a high quality schema, by classifying relationships among entities as binary, n-ary, or recursive. Although relationships are depicted on the E/R diagram, the amount of information these relationships convey is rather limited and depicts primarily the cardinality among entities. Also, each relationship is depicted by a single word, which helps to avoid a cluttered diagram depicting too much detail, but only provides minimal information describing the relationship. In addition, other semantic models: Transaction And eXception handling database System (TAXIS) (Borgida et al., 1984) (Mylopoulos et al., 1980) (Nixon, et al., 1987) (O’Brien, 1983), Semantic Data Model (SDM) (Hammer & McLeod, 1981), Functional Data Model (FDM) (Shipman, 1981), Tasmanian Model (TM) (Codd, 1979) (Davis, 1982), Semantic Association Model (SAM) (Su, 1983), Event Model (King & McLeod, 1984), and Semantic Hierarchy Model (SHM) (Smith & Smith, 1977) and SHM+ (Brodie, 1984), described in (Catanio, 2004a), have similar problems, namely minimal information describing relationships.

Within the object-oriented methodology, conceptual models of a problem domain are represented as a collection of interacting objects. These objects help to encapsulate an abstract concept into a self-contained unit. This unit or component-based approach is the foundation of object-oriented modeling (Booch, 1986) (Rumbaugh, 1991). Objects are organized by their similarities into classes. An object class describes a group of objects that have the same attributes and behavior patterns. This grouping of objects supports the concept of abstraction and affords modeling the ability to generalize a real-world concept, as a single class comprised of a collection of interacting objects. Classes do not exist in isolation; rather for a particular problem domain, key abstractions are usually related in a variety of ways (Booch, 1994). Therefore, within the object-oriented methodology, relationship classification caters towards class representation. As a result, relationships of object-oriented conceptual models depict class relationships. There is no prescribed way to determine classes or relationships. However, techniques have emerged that offer recommended practices and rules of thumb for identifying classes and objects germane to a problem domain (Shlaer & Mellor, 1992) (Ross, 1986) (Coad & Yourdon, 1990).

Object-oriented modeling techniques provide three basic relationship categories: (Booch, 1994) (Rumbaugh, 1991) (Martin & Odell, 1995) (Shlaer & Mellor, 1992) (Coad & Yourdon, 1990) (Jacobson et al., 1992) (Embley et al., 1992) (DeChampeaux et al., 1993) (Firesmith, 1993) (Henderson-Sellers & Edwards, 1994).

· Generalization/Specialization/Inheritance: Denotes an “is-a” relationship

· Whole-Part/Aggregation: Denotes a “part-of” relationship

· Association: Denotes some semantic dependency among otherwise unrelated classes

Similar to E/R modeling, object-oriented modeling provides a strong representation of entities represented as classes and their attributes. Whereas the E/R model depicts the data model of the system so as to map the E/R diagram directly into a specific database management system (DBMS), an object-oriented model portions the system into a collection of sub-systems and classes. Inheritance and aggregation types of relationships are strongly defined among classes. However, all other types of relationships that exist in the problem domain are lumped into the association category and depicted by a name connecting the classes. These names only indicate that a dependency exists but does not explicitly indicate how. Thus, association relationships are identified more implicitly than explicitly. In addition, the processes of relationship discovery are not defined and low-level relationships that exist among class objects are not identified.

The Unified Modeling Language (UML) approach to relationship classification is similar to object-oriented relationship categories. Both support generalization, association, and aggregation relationships categories. However, the UML more explicitly supports dependency and realizes relationship categories and specifies five types of relationships between classes (Kobryn, 2000) (Booch, et al., 1998), namely associations, dependencies, aggregations, realizes, and generalizations.

Similar to the object-oriented analysis, the UML provides syntax to depict generalization and aggregation relationship types. As with object-oriented relationship classification, generalization and aggregation types of relationships are strongly defined among classes. However, association, dependency, and realize relationships are identified by looking at the sequence and collaboration diagrams. The literature does not address the fact that in order to depict relationships on the class diagram static view, it is necessary to extract information from the dynamic view using sequence and collaboration diagrams. Also, only a label is used to indicate that an association, dependency, or realize relationship exists but does not explicitly indicate how. Thus, these relationships are identified more implicitly than explicitly. In addition, the processes of relationship discovery are not defined and low-level relationships that exist among class objects are not identified.

To summarize, semantic classification within information systems strongly categorizes main system entities or components but poorly classifies how they are related. Modeling techniques focus on identifying main system components but loosely identify how components are related and interrelated. These semantic models offer the modeler a small set of the fundamental abstractions needed to identify the relationship structure of the application domain. None of the existing techniques explicitly helps the analyst in determining the detailed relationship structure of the application domain, and therefore they are not as comprehensive as analysts treat them. For any analysis to be truly effective, it needs to be systematic, controlled and comprehensive. RA is such a technique that can supplement and “complete” the existing approaches.
III. THEORETICAL FOUNDATION

Conceptual models or semantic data models in systems analysis and development are designed to capture the meaning of an application domain. The value of a conceptual model is its ability to identify and capture the relevant knowledge about a domain. In order to categorically say that a model is complete (and thus the domain representation), it should be based on a theoretical model. Wand promotes the idea that theories related to human knowledge generally can be used as foundations for conceptual modeling in systems analysis and development (Wand et al., 1995). This section describes three theories that have been used to develop conceptual models in the context of systems analysis: ontological theory, classification theory, and speech act theory. In addition, the Structure of Intellect (SI) theory is described in the context of classifying the complete range of intellectual ability. Guilford designed SI with a focus on measuring creativity (Guilford, 1950), which is an integral aspect of systems analysis and brainstorming activities in general. The latter theory has been adopted and applied to the Relationship Analysis Model (RAM), and arguments are made throughout this section as to why this is the best approach.

Ontological Theory

There is a need to share meaning of terms in a given domain. Achieving a shared understanding is accomplished by agreeing on an appropriate way to conceptualize the domain, and then to make it explicit in some language. The result—an ontology—can be applied in a wide variety of contexts for various purposes and may take a variety of forms, but necessarily it will include a vocabulary of terms, and some specification of their meaning (Uschold, 1998).

Ontology is a branch of metaphysics concerned with the nature and relations of being or existing. Since an information system represents a perceived real-world system, relationships can be viewed as constructs that model certain kinds of real-world phenomena (Wand et al., 1999). Therefore, it may be possible to derive the meaning of relationships through ontological theories. Fundamentally, ontologies are used to improve communication between either humans or computers (Jasper & Uschold, 1999), which broadly can be grouped into communication, inter-operability, and systems engineering benefits (Uschold, 1998).

In general, the accepted industrial meaning of “ontology” makes it synonymous with “conceptual model”. There is a slight differentiation between the terms. A conceptual model is an actual implementation of an ontology. Taxonomies are a central part of most conceptual models. Properly structured taxonomies help bring substantial order to elements of a model, are particularly useful in presenting limited views of a model for human interpretation, and play a critical role in reuse and integration tasks (Goldstein & Storey, 1999).

Given the diverse applications of ontologies from the literature, and the various dimensions by which they can be classified, four main categories emerge: neutral authoring, ontology as specification, common access to information, and ontology-based search (Jasper & Uschold, 1999). The commonality among the categories is the need for sharing the meaning of terms in a given domain, which is the central role of ontologies. Of these four, ontology as specification has been used to model application domains in terms of systems analysis. Ontology as specification and has been further subdivided into four ontologies concerned with conceptual modeling in the context of relationships (Mylopoulos, 1998), namely dynamic ontology, intentional ontology, social ontology, and static ontology. Dynamic ontology includes occurrence (state transition), temporal, and influence relationships. Intentional ontology includes intentional relationships. Social ontology includes socio-organizational relationships. Static ontology includes all other types of relationships.

Bunge, Wand, and Weber apply ontology to systems analysis and outlines ten ontological constructs to analyze the meaning of a relationship (Bunge, 1979), (Wand et al., 1999) (Weber & Zhang, 1996). These ten ontological constructs are:

· Thing: Anything perceived as a specific object of the system, whether it exists in physical reality or in an analyst’s mind.

· Property: Properties are attached to things either intrinsically or mutually. An intrinsic property is dependent only on one thing. A mutual property depends on two or more things.

· Attribute: Properties of things, which are characteristics assigned to things according to human perceptions.

· Class: A set of things possessing common properties.

· Kind: A thing defined by a set of properties.

· Functional Schema: A finite sequence of attributes defined on a certain domain.

· State: A description of what a thing may change into.

· Law: A restriction of how a thing may change.

· Interaction: Things can interact, which may cause other things to change.

· Composition of Things: Fundamental ontological concept which addresses the notion that a thing is made of other things.

Table 1 shows how ontological constructs map to conceptual modeling constructs.

Table 1 Mapping of Ontological Constructs to Conceptual Model Constructs

	Ontological Construct
	Conceptual Model Construct

	Thing
	Entity, Object

	Property
	Relationship

	Attribute
	Attribute

	Class
	Entity Type, Object Class

	Kind
	Entity Type, Object Class

	Functional Schema
	Entity Type

	State
	No direct representation

	Law
	No direct representation

	Interaction
	Message connection, Relationship

	Composition
	Aggregate Entity, Object

These ten constructs encompass static and dynamic ontology. Three types of models related to systems analysis have been developed based on Bunge-Wand-Weber ontology (Wand & Weber, 1995): the representation model, state tracking model, and system model. A representation model deals with the mapping between ontological constructs and information systems constructs. The state tracking model views an information system as an artifact that changes state to reflect the state changes of the represented real world system. The system model analyzes the structure and behavior of a system as a whole in terms of the states and laws of its components.

Of the three model types, the literature indicates that only the representation model has been used in systems analysis practice. For example, the entity-relationship (E/R) model (Chen, 1976) maps an entity to a thing, an entity type maps to a functional schema, and a relationship maps to a property or interaction. Thus, the application of ontology to the E/R model results in rules for the use of entities, relationships and attributes (Wand et al., 1995). Bunge’s ontology has also been used in object-oriented analysis (OOA) to propose a model of objects as representation constructs. The resulting model was used as the basis for an object-oriented (OO) conceptual model approach (Takagaki & Wand, 1991) and serves to propose guidelines for OO modeling (Parsons & Wand, 1997).

However, there are two main problems with an ontological approach as the basis to systems analysis. First, there is no generally accepted ontology (Wand et al., 1995). A different ontology may utilize different constructs, thereby possibly leading to different outcomes. Therefore, how does one know what constructs should be employed? Second, although Bunge’s ontology is has been applied to systems analysis, it does not deal with organizational and behavioral aspects of information systems. In contrast, the proposed relationship analysis model (RAM) encompasses the static, dynamic, intentional, and social ontologies in its classification and analysis of relationships.

Classification Theory

Classification is a systematic arrangement of information in groups or categories according to established criteria. Information placed in categories based on common characteristics helps to break down information into smaller more manageable pieces. The aggregate of these organized components comprise the totality of what is being classified. The terms classification, taxonomy, ontology, and morphology are often confused and used interchangeably. Taxonomy is the orderly classification of plants and animals according to their natural relationships. Ontology is a branch of metaphysics concerned with the nature and relations of being or existing. Morphology is the study of structure or form. Simply stated, these are all ways of organizing information (things or animals) into categories. For example, the Linnaean system of classification used in the biological sciences to describe and categorize all living things in terms of genus and species is a classical taxonomy, with which we are all familiar today. Similarly, both the Dewey Decimal System and Colon Classification System describe the way libraries categorize and catalog information (Daniels & Martin, 2000) (Ranganathan, 1965). Classification theory extends beyond the traditional biological and library sciences. Environments such as the World Wide Web and digital libraries face classification challenges. These challenges encompass effective information presentation, retrieval, and use (Giles et al., 1998).

Classification of information is as much an art form as it is a science. Successful information organization is to a large extent a function of the mental abilities that the performer brings to the task (Bloomberg & Weber, 1976). There seems to be a universal level at which humans name things. This level at the broader term is the genus level and for the narrower term, species level (Kay et al., 1991). The RA model also has broader and narrower levels. The broader term describes the focus or aspects of the relationship being classified, while narrower levels describe relationship types.

Concept theory is a type of classification theory that has been applied to systems analysis and involves the notion of a class as its fundamental concept. Classification theory defines a class as a well-defined set of properties that determines membership in a class. Therefore, a class is the way classification theory categorizes information. In essence, a class is the implementation of groupings. In concept theory, a class structure is a set of properties satisfying four conditions (Wand et al, 1995):

· Each class must be able to have instances

· Each class must contain every property common to all instances

· Every known property of an object must be included in the definition of at least one class in the class structure

· No class in a class structure is defined as the union of the properties of any other classes

A class is unique when its instances contain meaningful differences (Rosch, 1978) with instances of other classes. Wand argues that meaningfulness can only be determined with respect to some use of knowledge (Wand et al., 1995) and meaningfulness differs among people. Therefore, the use of concept theory cannot always generate a set of classes to uniquely model a domain. Instead, the generated classes are dependent upon the human being performing the task. Inference is the second way a class organizes information. Inference is the ability to derive conclusions on unobserved properties of class instances by classifying them based on other observed properties (Wand et al., 1995).

A concern in using classification theory in developing a conceptual model in systems analysis is which theory to use. Only the concept theory of classification theory has been described in potentially being useful in systems analysis (Wand et al., 1995). Other classification theories exist, but have not been applied to conceptual modeling in systems analysis. Finally, similar to ontological theory, classification theory does not consider beliefs, goals, organizational, and behavioral aspects of information systems in its classification schema. In contrast, the proposed relationship analysis model (RAM) encompasses these aspects in its classification and analysis of relationships. More research is needed in the area of applying conceptual modeling in systems analysis before it is possible to say whether classification theory is a worthwhile approach.

Speech Act Theory

Another interesting theory that has been applied to conceptual modeling in information systems is Speech Act Theory (SAT). SAT can be used to analyze the activities in a modeled domain and is widely accepted in linguistics and philosophy in the study of how language understanding and communication work (Fornara & Colonbetti, 2003) (Tosca, 2000). Speech acts (SACTS) are symbolic deeds that result in linguistic expressions having a meaning and always involve at least two agents, speaker and hearer. SACTS form conversations or discourses, which exhibit systematic regularities that can be studied and analyzed. Sequences of SACTS form an ordered sequence or logical pattern. These patterns can be grouped into larger discourse segments. Segments share a common topic and have a goal that is relevant to achieving the purpose of the discourse type (Fornara & Colonbetti, 2003). SACTS can be analyzed to determine system relationships in the context of human-to-human relationships, human to system component relationships, and system component to system component relationships.

SAT has been used by different researchers to model different aspects of interactions (Wand et al., 1995). One of the most popular applications is Speech Act based office Modeling aPprOach (SAMPO) (Auramäki et al., 1988), which models office functions. The SAMPO systems analysis technique provides several tabular tools to describe a discourse in office information systems. The table is constructed by defining the discourse type on the basis of prerequisites and possibilities, thereby specifying the semantics of each unit of information as it passes among people and/or processes. These characterizations reveal features of the discourse. The literature indicates that SAMPO provides insights into observing and understanding information flows by specifying the flow semantics in terms of social and nonsocial communication. However, the results were difficult to interpret and often ambiguous.

Current applications of SAT have drawbacks ranging from a lack of an overall picture of how actions relate among each other to ambiguous classification (Wand et al., 1995). It can be argued that the primary reason for problems associated with the application of SAT is its lack of an accepted description of the theory. Wand suggests that other techniques and theories should be used jointly with the application of SAT. In contrast, RA is a stand-alone technique, which provides unambiguous relationship classification categories. In addition, RA is based on theory to identify the complete relationship structure of a domain thereby improving the overall picture of the system and its relationships.

Structure of Intellect Theory (SI)

The Structure of Intellect (SI) theory is a general theory of human intelligence, thus forming a basis for comparing and classifying the complete range of intellectual ability. Guilford designed SI with a focus on measuring creativity (Guilford, 1950), which is an integral aspect of systems analysis and brainstorming activities in general. The SI model classifies intellectual abilities into a three-plane system with independent cross sections, each comprised of contents, products and operations (Guilford, 1956).

Figure 1 Guilford's Structure of Intellect Model (Guilford, 1950)
[image: image9.png]CONTENTS _ yrsyey

Bipithey
Soneortt

L/ e
/R

erODUCTS
o

cLasses
RELATIONS
R
s
————— mPLicATIoNs

_geerarions

IR

EveLyaTIon
EORGERTERT propucrion
BIVERBENT PRODUETION
FeoRY

e on

I

 As figure 1 shows, SI includes five kinds of contents, six kinds of products, and five kinds of operations. Three independent planes result in theoretically 150 different components of intelligence. The three dimensions of the model specify first the operation, second the content, and third the product of a given kind of intellectual act. Every intellectual ability in the structure is characterized in terms of the type of operation employed, the content involved, and the sort of resulting product. The convention (Operations, Contents, Products) is used to specify each factor. For example, (Cognition, SeMantic, Unit) or (CMU) represents cognition of a semantic unit. In this way the SI theory represents the major kinds of intellectual activities or processes as an interrelated three-dimensional model.

Turoff et al. apply SI to the computer application domain with their Hypermedia Morphology Model (HMM) (Turoff et al., 1991). Arguing that not all of the SI components are necessary for classifying computer application domains, they reduce it to two dimensions by classifying all SI types of content as one, namely semantic. The four SI contents—visual, auditory, symbolic, and behavioral—while useful in classifying tests of intellect, are not necessary for classifying application domains. In addition, the SI operations of evaluation and memory are also not necessary for classifying application domains (Turoff et al., 1991).

As we shall describe, the Relationship Analysis Model (RAM) approach builds upon HMM. RAM utilizes the resulting 2-dimensional semantic classification model (products vs. operations) for relationship classification.

The concept of product represents the form in which information occurs (Guilford, 1967) (Meeker, 1969).

· Units: Most basic item. Things to which nouns are normally applied. Described units of information.

· Classes: Sets of items of information grouped by virtue of their common properties.

· Relations: Connections between items of information based on variables or points of contact that apply to them.

· Systems: Organized or structured aggregates of items of information.

· Transformations: Changes, redefinition, shifts, or modifications of existing information or in its function.

· Implications: Extrapolations of information. Emphasizes expectancies, anticipations, and predictions.

Operations represent major kinds of intellectual activities or processes that analysts perform with information (Guilford, 1967) (Meeker, 1969).

· Cognition: Discovery, awareness, or recognition of information by comprehension or understanding. Guilford views the cognition process as classifying an object. Turoff et al. extend this concept to hypertext whereby cognition is represented by a node that classifies all the linked objects as related to a common concept or characteristic. Hypertext, at its core, concerns nodes (elements-of-interest) and links (relationships). These links or relationships among nodes are classified under convergent and divergent production properties. The RAM differentiates itself from the HMM in its application of cognition. The HMM represents cognition by a node and in hypertext terms: a node is an endpoint, and relationships exist among nodes or endpoints. In contrast, the relationships of each element-of-interest in the RAM are represented by six cognitive focus perspectives.

· Convergent Production: Generation of information from the given information, where the emphasis is on achieving unique best outcomes. Guilford views convergent production as when the input information is sufficient to determine a unique answer. Turoff et al. extend this concept so that a convergent link is a relationship that follows a major train of thought. This is referred to as a convergent relationship in the RAM.

· Divergent Production: Generation of information from the given information, where the emphasis is on variety and quality of output from the given information. Guilford views divergent production as fluency and flexibility of thinking. Turoff et al. extend this concept so that a divergent link is a relationship that starts a new train of thought. This is referred to as a divergent relationship in the RAM.

In summary, the RAM uses Guilford’s categories from SI, condenses them in the same manner as Turoff et al., and re-labels several to reflect the goal of relationship discovery and documentation. The differences between the HMM and RAM are semantically metaphoric. The HMM, interprets the “products” as nodes or endpoints, while the RAM interprets “products” to represent the six possible cognitive foci of the current artifact or “element of interest” being analyzed. (Recall that Guilford views the cognition process as object classification.) The “operations” now represent relationships that either conceptually converge or diverge within this focus. Therefore it is possible to classify the relationships of an element of interest in terms of six products each of which has convergent and divergent relationships. Table 2 depicts the 18 cells of the RAM using SI nomenclature.

Table 2 Relationship Analysis Model Using SI Nomenclature

	Products
	Operations

	
	
Cognition
	Convergent Production
	Divergent

Production

	Unit
	Cognition, Semantic, Unit
	Convergent, Semantic, Unit
	Divergent, Semantic, Unit

	Class
	Cognition, Semantic, Class
	Convergent, Semantic, Class
	Divergent, Semantic, Class

	Relation
	Cognition, Semantic, Relation
	Convergent, Semantic, Relation
	Divergent, Semantic, Relation

	System
	Cognition, Semantic, System
	Convergent, Semantic, System
	Divergent, Semantic, System

	Transformation
	Cognition, Semantic, Transformation
	Convergent, Semantic, Transformation
	Divergent, Semantic, Transformation

	Implication
	Cognition, Semantic, Implication
	Convergent, Semantic, Implication
	Divergent, Semantic, Implication

The following section applies the aforementioned concepts and describes the RAM in detail.

IV RELATIONSHIP ANALYSIS MODEL

Taking Guilford’s SI theory and Turoff et al.’s HMM, our goal is to fully describe the relationships among the elements of interest using the meanings of the cells outlined in Table 2. These theories give us a model comprising a set of sound relationships for describing systems. Our research further applies this model to develop a systematic systems analysis approach. During the analysis process, documents and dialogue (discussions, knowledge elicitation and brainstorming) provide analysts descriptions of desired system functionality. Through these interactions it is possible to extract elements of interest. Thus, the relationships surrounding an element of interest (cognitive product in SI terms) are described by six cognitive focal points. Relationships of each focal point are classified under convergent and divergent operation properties. The convergent and divergent relationships are not opposites. Rather they provide two separate emphases for exploring the relationships under each of the six cognition foci. The following sub-sections describe the six focal aspects of the corresponding RAM classification of relationships depicted in Table 3.

Table 3 Relationship Analysis Model (RAM)

	Cognition

Focus
	Convergent

Relationship
	Divergent

Relationship

	Unit
	Specification
	Elaboration

	Collection
	Membership
	Aggregation

	Comparison
	Generalization/Specialization
	Similar/Dissimilar

	System
	Structure
	Occurrence

	Transformation
	Modify
	Transpose

	Implication
	Influence
	Extrapolate

Unit Focus

Guilford views a unit as descriptions or definitions of items of information (Guilford, 1967). One can think of items of information as units or definitions first, before they form collections or groupings. Guilford views the cognition process as the classification of an object (Guilford, 1967) and as such, cognition of a unit takes the form as defining the object. These descriptions or definitions can be explicit or implicit. Explicit descriptions yield specific relationship types. In contrast, implicit relationships are uncovered as descriptions are further elaborated. Descriptions provide characteristics of items of information, which are attributes, also known as metadata. Thus, metadata relationships are identified within unit focus.

Guilford views convergence as when the input information is sufficient to determine a unique answer (Guilford, 1967). Corresponding to the first row, second column of Table 2, Guilford views convergent production of a semantic unit as explicitly specified in the description of the element of interest. Thus, the corresponding relationships connect the unit (element of interest) to other elements that provide some descriptive specification. The following list is an example of knowledge elicitation questions to determine specific convergent relationships (Yoo, 2000).

· Does the item have a description?

· Does the item have a definition?

· Does the item have an explanation?

· Does the item have a set of instructions?

· Does the item have an illustration?

Guilford views divergence as flexibility of thinking (Guilford, 1967). In contrast therefore, when considering divergent production of a semantic unit (corresponding to the first row, third column of Table 2), divergent relationships are determined as descriptions are further elaborated. These types of relationships are generally found not within, but just below the surface of the description of an element of interest. The following list is an example of questions to determine elaborated divergent relationships.

· Does the description fully describe the item?

· Does the definition fully encompass the item?

· Does the explanation make assumptions?

· Are the set of instructions complete?

· How can this item be expanded or broadened?

Both structured and object-oriented analysis utilizes functional definitions to help perform the analysis (Martin & Odell, 1995) (Borgida et al., 1984) (Brachman, 1983) (Smith & Smith, 1977). Jacobson’s use-case analysis technique has made the process more explicit by generating descriptions of the use-cases (Booch et al., 1998). Use-case descriptions are narratives that describe a functional aspect of the desired system. From these narratives it is possible to extract both explicit and implicit relationships. Unit or definition focus is depicted in Figure 2.

Figure 2 Unit Focus

[image: image1.wmf]Unit

Elaboration

Specification

Collection Focus

Collections are recognized sets of information grouped by virtue of their common properties (Guilford, 1967) and the collection (class
) focus emphasizes group or collection relationships of units of information.

Guilford views convergent production of a semantic collection
 as the ability to produce meaningful collections or groups under specific conditions and restrictions (Guilford, 1967). Therefore, collection convergent relationships represent groupings or membership properties. Membership relationships of collections are based on aspects of the whole-part properties (Henderson-Sellers, 1997) (Odell, 1994). Its intent is to represent an element of interest as a member of a collection. Membership connects a member of a collection to other members or to a whole collection or class. The following knowledge elicitation questions determine membership relationships (Yoo, 2000).

· Is this item a segment of a whole item?

· Is this item a member of a collection?

· What is this item a part-of?

· What components consist of this item?

· What phrases are in this whole activity?

In contrast, Guilford views divergent production of a semantic collection as the ability to produce meaningful sub-categories of ideas appropriate to a given collection (Guilford, 1967) (Meeker, 1969). Therefore, collection divergent relationships represent the components or aggregates of collection members. Aggregation relationships are determined for the collection members or whole-part composition (Boggs & Boggs, 2002) (Booch et al., 1998) (Brodie, 1981) (Motschnig-Pitrik & Storey, 1995). Their intent is to represent an element’s members as part-of the whole. The following list is an example of questions to help determine aggregation relationships (Yoo, 2000).

· Which components comprise this item?

· What materials are used to make this item?

· What is part-of this item?

The collection focus is depicted in Figure 3 and represents membership relationships as looking outside the element and aggregation relationships as looking inside a collection. The premise is that membership converges to whole collection and aggregation diverges into the disparate components.

Figure 3 Collection Focus

[image: image2.wmf]Membership

Aggregation

Comparison Focus

The comparison
 focus, which is equivalent to Guilford’s term relation, is defined as recognized connections between items of information based upon variables or points of contact that apply to them (Guilford, 1967).
Guilford views convergent production of a semantic comparison as the ability to produce an idea that conforms to specific relationship requirements (Guilford, 1967) (Meeker, 1969). The ability to specify from a general meaning to a more specific or specialized meaning represents a way to represent commonality among concepts (Boggs & Boggs, 2002) (Booch et al., 1998). In terms of analysis, generalization/specialization are the terms used to describe commonality among components and the phrases “is-a” or “a-kind-of” are used to relate objects (Booch, 1994) (Rumbaugh, 1991). The following knowledge elicitation questions help determine generalization/specialization relationships (Yoo, 2000).

· Is the item a kind of parent item?

· Does the item completely include or encompass other items?

· Is there a broader term for this item?

· Is there a narrower term for this item?

In contrast, Guilford views divergent production of a semantic comparison as the ability to produce many relationships appropriate in meaning to a given idea (Guilford, 1967). Identifying appropriate meaning among information represents similarity characteristics between information components. Dissimilar characteristics also are determined as a natural result of components not being similar. Therefore, comparison divergent relationships represent both similarity and dissimilarity among elements of interest. Characteristics or attributes become criteria to determine the degree of similarity present with other elements (Booch et al., 1998) (Belkin & Croft, 1987) (Neelameghan & Maitra, 1978). The following questions help determine similar and dissimilar relationships (Yoo, 2000).

· Which other items are similar to this item?

· What serves the same purposes as this item?

· Which others items are opposite to this item?

Comparison focus is depicted in Figure 4.

Figure 4 Comparison Focus

[image: image3.wmf]Similar

Dissimilar

Generalization/

Specialization

System Focus

Guilford defines a system as organized or structured items of information, a complex of interrelated parts (Guilford, 1967). Cognition of a semantic system shows comprehension of meaning derived from a system of components.

Guilford views convergent production of a semantic system as the ability to order or structure information into a meaningful sequence (Guilford, 1967) (Meeker, 1969). Structure identifies how an item fits into the framework of a system and includes spatial perspective concepts of before, after (Cobb & Petry, 1998) (Egenhofer & Herring, 1990) (Rodriquez et al., 1999), above and below. The following list is an example of knowledge elicitation questions to help determine structure relationships (Yoo, 2000).

· What prerequisites or preconditions exist for this item?

· What follows this item for a given purpose?

· What precedes this item for a given purpose?

· Which items are close to this item?

Guilford views divergent production of a semantic system as the ability to organize information in various complex ideas (Guilford, 1967) (Meeker, 1969). Its intent is to represent an item within the context of its appearances and uses at different places, and therefore can be viewed as occurrence relationships based on the temporal attributes of before, during, and after (Allen, 1983) (Frank, 1998) (Cobb & Petry, 1998) (Egenhofer & Herring, 1990) (Rodriquez et al., 1999). The following questions are examples to help determine occurrence relationships (Yoo, 2000).

· Where else does this item appear in the domain?

· Where else is this item used in this system and in other systems?

· What are all uses of this item?

· Where was this item used before?

· Where else is the item used now?

· Where will this item be used later?

The system focus is depicted in Figure 5.

Figure 5 System Focus

[image: image4.wmf]Structure

Occurrence

Transformation Focus

Transformations are changes or modifications of various kinds, of existing or known information in its attributes, meaning, role, or use (Guilford, 1967). A transformation is a matter of redefining an element. In essence, it is the ability to see potential changes of interpretations of elements and situations dependent upon a particular activity (Meeker, 1969). Therefore, it represents an element in the context of its activities.

Activities can be identified by combining SADT activity diagrams (Mylopoulos, 1998) and case relationships (Fillmore, 1968). These relationship types cover activities that involve input or output, and deal with agents and elements involved in the activities.

Convergent transformation concerns how an item can be modified focusing on the item itself and how it can change. The following knowledge elicitation questions are examples to help determine modify relationships.

· What can this item change into?

· What output results from the item’s inputs?

· What resources and mechanisms are required to modify this item?

· Who can modify this item?

· Which activities result in this item being modified?

Guilford views divergent production of a semantic transformation as the ability to produce responses involving reinterpretations or new emphasis on some aspect of an element or situation (Guilford, 1967). Meeker extends this definition and argues that it is the ability to produce responses remote in time, remote in space, and remote in sequence (Meeker, 1969). Divergent transformations are those that transpose an item, reusing it in different contexts or viewing it in different ways. Transpose relationships change an item in form or nature, or re-conceptualize it. The following list is an example of questions to help determine transpose relationships.

· How can this item be reused?

· How can this item be viewed differently?

· Can this item be used in a different context?

Transformation focus is depicted in Figure 6 with an item being modified or changed, as well as a shape being transposed into another (in this case a square being squeezed into a circle).

Figure 6 Transformation Focus

[image: image5.wmf]Transpose

Modify

Implication Focus

Implication emphasizes expectancies, anticipations, and predictions—the fact that one item of information leads naturally to another (Guilford, 1967). Meeker argues that cognition of semantic implication is the ability to anticipate consequences of a given situation in meaningful terms (Meeker, 1969). In essence, it is the ability to anticipate consequences of an item of interest in an organization or a social setting.
Convergent implication is dependence and control relationships both on an element and by an element, exhibiting some type of influence on other elements. It is how an element of information influences, controls, impacts, or (if conscience) thinks about other people or things in the social environment. The following knowledge elicitation questions are examples to help determine influence relationships (Yoo, 2000).

· What items or people cause this item to be created, changed, or deleted?

· What items or people have control over this item?

· What is this item dependent on?

· What is dependent on this item?

Divergent production of a semantic implication is the ability to produce many antecedents, concurrents, or consequents of given information (Guilford, 1967) (Meeker, 1969). In contrast, to influence relationships, there is more freedom to produce information in divergent production of semantic implications. In context of a social setting, relationships are extrapolated from the given information. Divergent implication is impacts, consequences, extrapolations, rationale, deductions, and opinions both on an element and by an element. The following questions are examples to help determine extrapolate relationships (Yoo, 2000).

· Which goals, issues, and arguments involve this item?

· What are the positions and statements on the item?

· What are the comments on this item?

· What are the opinions on this item?

· What is the rationale for this decision?

Implication focus is depicted in Figure 7.

Figure 7 Implication Focus

[image: image6.wmf]Influence

Extrapolate

V. RELATIONSHIP ANALYSIS PROCESS

The Relationship Analysis Process (RAP) is a rigorous and systematic technique to identify the relationship structure of an application domain. A systematic process is an essential element to process improvement (Becker-Kornstaedt, 2001). A systematic approach to knowledge elicitation makes requirements gathering and problem understanding less dependent on the experience level of the process engineer (Bandinelli, 1995). A systematic approach to requirements elicitation helps to improve accuracy and provide a greater level of detail.

The RAP uses two steps in its elicitation process. The first step utilizes use-case analysis as a way to acquire system familiarity. The process then acquires detailed knowledge from information obtained from use-cases by explicitly identifying the relationships of the system using a Relationship Analysis Template (RAT). The resulting relationship information is then depicted in a Relationship Analysis Diagram (RAD). The process consists of the following four process steps:

· Perform a use-case analysis to identify items of interest

· Isolate items of interest

· Identify the Relationship Structure utilizing the Relationship Analysis Templates (RAT)

· Graphically depict the relationships utilizing the Relationship Analysis Diagrams (RAD)

The RAP is best-realized utilizing expertise from different team members in a collaborative fashion. System analysts work collaboratively to identify the system’s main use-cases and other items of interest. The identified actors and use-cases represent the high-level items of interest and in addition, use-case descriptions provide narratives in which low-level items of interest can be selected. Booch describes the identification of objects by a process of noun extraction (Booch, 1994). This technique can be employed to identify low-level items of interest. This perspective is not implementation-oriented but stresses instead what the user expects from the system. This approach to problem description helps to track a project by goals. In addition, use-case analysis increases the chances that the system being developed meets user needs and expectations thereby increasing user satisfaction and acceptance.

The identified use-cases are the feeder into the RAP. The RAP explicitly identifies the relationship structure of an application domain. This provides more information than use-case analysis alone and helps in the creation of class diagrams.

Relationship Analysis Template (RAT)

Each item of interest can be described in terms of relationships based on the RAM. Each relationship focus has its own relationship analysis template (RAT), outlined in Table 4, that can be used to document the relationships discovered during the elicitation process. Each RAT is used to record the analysis results and help to track analysis decisions (Booch et al., 1998).

Table 4 Generic Relationship Analysis Template

	Item of Interest
	Each item of interest should have a unique name suggesting its purpose.

	Description
	Description and purpose of the item of interest, including the source(s) for the requirements.

	Focus
	Unit, Collection, Comparison, System, Transformation, or Implication. {Each template takes one focus.}

	Convergent Relationship
	Specification, Membership, Generalization/Specialization, Structure, Modify, or Influence. {Corresponds to the template focus.}

	Generic Question(s)

(Optional)
	The generic questions provided in Section IV for the corresponding convergent relationships could be contained in this cell. This helps generate the specific question(s) to ask for a particular application domain.

	Specific Question(s)
	This cell contains the exact question(s) to ask to determine appropriate convergent relationships and is/are tailored to the particular application domain.

	Results
	The results generated from the specific question(s) are recorded in this cell.

	Divergent Relationship
	Elaboration, Aggregation, Similar/Dissimilar, Occurrence, Transpose, or Extrapolate. {Corresponds to the template focus.}

	Generic Question(s)

(Optional)
	The generic questions provided in Section IV for the corresponding divergent relationships, could be contained in this cell.

	Specific Question(s)
	This cell contains the exact question(s) to ask to determine divergent relationship and is/are tailored to the particular application domain.

	Results
	The results generated from the specific question(s) are recorded in this cell.

It is important to note that the template provides a way for analysts to communicate and document the process of discovering relationships. To this end, the template provides cells that contain brainstorming questions to help elicit and identify specific relationships. In particular, the template contains a cell that captures domain independent generic questions. These generic questions can be used to help create more domain dependent specific questions, which are also captured in the template. The results recorded in the template systematically document both the process and the relationships.

Relationship Analysis Diagram (RAD)

In addition to capturing the relationship structure in the aforementioned templates, it is also possible to present the information in a graphical representation—see figure 8.

Figure 8 Generic Relationship Analysis Diagram (RAD)

[image: image7.emf]Item of Interest

Unit

Collection

Comparison

System

Transformation

Implication

Specification

Elaboration

textual desciption

textual desciption

Membership

Aggregation

textual desciption

textual desciption

Generalization /

Specialization

Similar /

Dissimilar

textual desciption

textual desciption

Structure

Occurrence

textual desciption

textual desciption

Modify

Transpose

textual desciption

textual desciption

Influence

Extrapolate

textual desciption

textual desciption

Both the RAT and RAD represent a new way to document the relationship structure of a domain, which will greatly assist in developing class diagrams. The relationships of each item of interest are documented in six templates and one diagram. The collection of all RAT and RAD components comprise the relationship structure of the problem domain. The RAD provides an information rich graphic, while more details can be accessed via the information recorded in the templates. Utilizing the collection of RADs of a problem domain, which depict the discovered relationships, should enhance the generation of class diagrams.

VI. EXPERIMENT

An experiment was designed to assess whether RA is an effective technique to explicitly identify the relationship structure of a problem domain. RA is geared at improving the analysis phase of the software development life-cycle process. While not an integral aspect of this study, the experiments were conducted using groups of analysts. Software product development is a team effort. Teams have been shown to generate better solutions than individual solutions (Baroudi et al., 1986) (DeSanctis & Gallupe, 1987) (Connolly et al., 1990) (Gallupe et al., 1988) (Sommerville, 2001) (Kontonya & Sommerville, 1996) (Rumbaugh, 1994) (Goguen & Linde, 1993).

Furthermore, the experiment was designed to assess whether a rigorous and systematic process helps low experienced groups achieve a similar level of quality as high experienced groups process (Amento et al., 2000) (Schenk et al., 1998) (Saleem, 1996) (Spence & Brucks, 1997) (Hillerbrand & Claiborn, 1990) (Carter et al., 1988) (Becker-Kornstaedt, 2001) (Bandinelli, 1995).

Hypotheses: Analysis Quality

1. The class diagram generated by performing a Relationship Analysis will be more accurate and complete than by groups using use-case analysis alone.

2. The groups with high experience will generate more accurate and complete class diagrams than low experience groups.

3. The high experience groups utilizing Relationship Analysis will generate the most accurate and complete class diagrams.

Analysis quality measures the quality of the class diagram generated by all group subjects that accomplished the same task utilizing different means. This hypothesis is based on Schenk’s et al. findings that novices exhibited less detail in problem-solving tasks than did experts, resulting in lower quality (Schenk et al., 1998). In addition, a study of novice and expert programmers found that novices tended to employ weak methods for their tasks (Vessey, 1985). The results indicate that novices were unable to formulate an overall structure to the task. However, these experiments did not include a model or process to follow. We speculate that low experience groups utilizing the systematic RA process will produce documents of equal quality as high experience groups. This speculation is supported by Spence & Brucks, who provide convincing empirical evidence that the benefits of expertise are less pronounced when analyzing and solving a problem with a well-defined technique (Spence & Brucks, 1997). In addition, another study concluded that experts, compared to novices make qualitatively different inferences in their reasoning, focus on different problem features, and thereby reason to different conclusions (Hillerbrand & Claiborn, 1990). We speculate that the very nature of a well-defined process, namely RA, will permit novices to reach the same conclusions as experts.

Method

The method of the experiment is a 2 x 2 factorial design. The two independent variables are experience and analysis tool, depicted in Table 5.

Table 5 Factorial Design Experiment

	2 x 2 Factorial Design
	Experience

	
	Low
	High

	Analysis

Tool
	Use-case
	
	

	
	Use-case & RA
	
	

Therefore, the four conditions in this experiment are:

· Use-case, low experience

· Use-case & RA, low experience

· Use-case, high experience

· Use-case & RA, high experience

The use-case analysis tool represents the control group category and the treatment group represents the use-case & RA category. Thus, it is possible to measure the effects of the RA technique.

Experience has been used extensively in experiments to determine its effect on the learning process (Amento et al., 2000) (Schenk et al., 1998) (Saleem, 1996) (Spence & Brucks, 1997) (Hillerbrand & Claiborn, 1990) (Carter et al., 1988). To determine experience level, subjects completed a pre-experiment questionnaire that identified academic background, software background, and professional work experience relating to software system analysis and design. Experts divided the subjects into low and high experience based upon the criteria determined from the pre-experiment questionnaire. The low experience subjects were randomly selected and placed in a team consisting of three low experience individuals. Similarly, high experience subjects were randomly selected and placed in a team consisting of three high experience individuals.

Subjects

The subjects in the experiment consisted of both undergraduate and graduate students enrolled in the College of Computing Science Department at the New Jersey Institute of Technology.

Procedures

The main experiment took place in the Fall 2003 semester and lasted one week, whereby the first day included a training session. One week prior to the experiment, the subjects completed a pre-experiment questionnaire to determine analysis experience level. Then each group was placed in one of the four conditions. Each team, from the four different group types, performed the same task. This permits the pure effect of the treatments to be isolated because the difference in tasks is controlled. This will increase the internal validity of the research (Straub, 1989).

The experiment was conducted at the end of the semester so all subjects had some level of modeling experience. All subjects were taught how to develop use-case analysis diagrams and generate class diagrams prior to the experiment. The treatment groups were trained in Relationship Analysis. To eliminate any training effect, the control groups were provided an equivalent enrichment topic, namely entity relationship (E/R) analysis. After the training, all groups were provided the same task to solve with their team members. All groups had one hour to create the use-case analysis diagram. This afforded all groups time to familiarize themselves with the problem domain. At the conclusion of the session, all groups were provided with an expert-generated use-case analysis diagram to the problem statement. All groups used this as a basis to complete the remaining experimental steps. The control groups generated class diagrams after use-case analysis. The treatment groups performed Relationship Analysis and then generated class diagrams. This allows the effect of Relationships Analysis to be measured. All groups had one week to complete the task and submit all analysis documents and class diagrams.

Measures

Two professional software engineers were deemed as experts. Each rated the quality of each group’s generated class diagram. Expert judges have been used in many studies to evaluate quality of system design and decision-making (Shaft & Vessey, 1998) (Ocker et al., 1998).

The expert judges had their own training session to ensure that their evaluations were compatible. The expert judges used a 10-point scale whereby a 10 represents a perfect score. In order to eliminate potential bias of individual experts, each expert judge evaluated each group’s class diagrams independently and the average evaluation was computed and used as the final score. Whenever the difference in their evaluations exceeded 1 point (an acceptable 10% threshold), the two experts met to resolve the issues and cooperatively assigned a final score.

Empirical Evidence

Table 6 provides the quality grade mean and standard deviation calculations for each of the conditions.

Table 6 Quality Grade Mean and Standard Deviation Calculations

	2 x 2 Factorial Design
	Experience

	
	Low
	High

	Analysis

Tool
	Use-case
	Mean = 5.87

SD = 2.53

N =15
	Mean = 6.81

SD = 0.97

N = 13

	
	Use-case & RA
	Mean = 7.78

SD = 0.55

N = 16
	Mean = 7.96

SD = 0.78

N = 13

Main Effect 1:

The analysis tool independent variable main effect shows a significant effect at alpha = 0.05 level (p=0.0001) and mean score of 38.36 and 19.30 (Table 7) for UC&RA and UC respectively.

Table 7 Quality Grade Main Effect 1 (Analysis Tool)

	Independent Variable
	N
	Mean
	Significance

	Use-case
	28
	19.303
	0.0001

	Use-case & Relationship Analysis
	29
	38.362
	

The results shown in Table 7 support H1 and indicate that this variable is statistically significant at alpha = 0.05 level. The mean score of those using RA (38.36) is much better than not using RA (19.30) and indicate that RA significantly improves analysis quality.

Main Effect 2:

The experience level independent variable main effect does not show a significant effect at alpha = 0.05 level (p=0.5892) and mean scores of 30.27 and 27.94 (Table 8) for high and low experience respectively.

Table 8 Quality Grade Main Effect 2 (Experience Level)
	Independent Variable
	N
	Mean
	Significance

	High Experience
	26
	30.269
	0.5892

	Low Experience
	31
	27.935
	

The results shown in Table 8 do not support H2 and indicate that this variable is not statistically significant at alpha = 0.05 level. This is a substantial finding because the mean scores of Table 6 show that UC&RA with low experience (7.78) is higher than the mean score of UC with high experience (6.81) indicting an interaction effect. Although this finding is inclusive due to the alpha level, it suggests that low experience analysts utilizing RA could be more effective than experience analysts without RA.

Interaction Effect:

The interaction effect between analysis tool and low experience level does show a significant effect at the alpha = 0.05 level (p=0.0003).

Table 9 Quality Grade Interaction Effect (analysis tool and low experience level)

	Independent Variable
	Number of Groups
	Mean
	Significance

	Use-case
	15
	10.433
	0.0003

	Use-case & Relationship Analysis
	16
	21.219
	

The interaction effect between analysis tool and high experience level does show a significant effect at the alpha = 0.05 level (p=0.0017).

Table 10 Quality Grade Interaction Effect (analysis tool and high experience level)

	Independent Variable
	Number of Groups
	Mean
	Significance

	Use-case
	13
	9.192
	0.0017

	Use-case & Relationship Analysis
	13
	17.808
	

The results shown in Tables 9 and 10 support H3 and indicate that this variable is statistically significant at the alpha = 0.05 level. The mean score difference between UC and UC&RA in low experience groups is 10.79 (21.22-10.43 from Table 9). In contrast, the mean score difference between UC and UC&RA in high experience groups is 8.62 (17.81-9.19 from Table 10). Thus, the effect of UC and UC&RA is bigger in low experience groups than high experience groups. Also, the mean score of those using RA is much better than not using RA for both groups. This represents a positive synergistic effect and suggests that low experience analysts utilizing RA could be more effective than high experience analysts without RA. Figure 9 depicts the quality grade for the high and low experience level groups.

Figure 9 Quality Grade for Groups

[image: image8.emf]5

5.5

6

6.5

7

7.5

8

8.5

UC UC&RA

Low

High

VII. CONCLUSION

Relationship Analysis (RA) provides the software community a usable technique that improves an analyst’s effectiveness in relationship discovery and documentation. RA offers both theoretical and practical contributions. The contributions encompass a theory-based systematic discovery process to classify, identify, and document the complete relationship structure of an application domain. The Relationship Analysis Model (RAM) presented is the first theory-based taxonomy to categorically classify the complete range of relationships of a problem domain. The model was applied and a practical technique (the RA Process or RAP) developed to explicitly identify and document the relationship structure of an application domain, thereby filling a void in the systems analysis process. A rigorous evaluation showed that the RAP does provide a fuller and richer systems analysis, resulting in improved quality of class diagrams, and that RA enables analysts of varying experience levels to achieve a similar level of quality of class diagrams. RA significantly enhances the systems analyst’s effectiveness, especially in the area of relationship discovery and documentation, resulting in improved analysis and design artifacts.

Starting with a theoretical basis enabled us to develop the RAM with a sound set of distinct relationship categories. In practice we find analysts blur the distinctions, thinking of a relationship during one set of brainstorming questions that another analyst might discover with a different category’s questions. We believe this occurs because, as the process moves on to the next category, the analyst will still inherently be thinking about the prior activities in the back of his or her mind. Asking a new question will cause one to think back (or even mentally jump to an upcoming category). After all, RAM’s categories are well-specified foci or views of an interrelated set of elements of interest within a complex system. While the model is not redundant, cognitively people are wired to synthesize and reflect. This is the beauty of a brainstorming process, and the experimental evidence attests to its success.

The encouraging results provide convincing incentive to begin positioning RA within the software community as a useful and practical technique. In a post-experiment debrief session many subjects mentioned that current software object-oriented analysis techniques provide little assistance in identifying classes and how they interrelate. Much of the system analysis process and class diagram creation is delegated to highly experienced system analysts. RA attempts to level the playing field among analysts of varying experience by providing a process to explicitly identify and document classes and their relationships. RA is poised to serve as the missing link, which can supplement the everyday techniques for documenting and creating class diagrams.

Although a methodology independent technique, RA can be positioned seamlessly between the use-case analysis and class diagram generation steps of the widely-used object-oriented paradigm. In future work we hope to conduct field trials at various types of organizations. Showing that RA improves the development process, is compatible with current approaches, and that practitioners are satisfied with and accept it will be the first stage towards RA’s inclusion into the object-oriented paradigm and toolkits used by software engineers.

We envision a day when standard practice dictates fully analyzing and documenting the relationship structure of new information systems, and clients are more satisfied with the richness and robustness of their systems because of this.

ACKNOWLEDGMENTS

We gratefully appreciate funding support for this research by the United Parcel Service, the New Jersey Institute of Technology, the National Science Foundation under grants IIS-0135531, DUE-0226075 and DUE-0434581, and the Institute for Museum and Library Services under grant LG-02-04-0002-04.
REFERENCES

Abbott, R.J., (1983), “Program Design by Informal English Descriptions,” Communications of the ACM, Vol. 26, No. 11, pp. 882-894.

Allen, J. (1983). “Maintaining Knowledge About Temporal Intervals,” Communication of the ACM, Vol. 26, No. 11, pp. 832-843.

Amento, B., Terveen, L., & Hill, W. (2000). “Does Authority Mean Quality? Predicting Expert Quality Ratings of Web Documents,” AT&T Shannon Laboratories.

Auramäki, E., Lehtinen, E., & Lyytinen, K. (1988). “A Speech-Act-Based Office Modeling Approach,” ACM Transactions on Office Information Systems, Vol. 6, No. 2, pp. 126-152.

Bandinelli, S. (1995). “Modeling and Improving an Industrial Software Process,” IEEE Transactions on Software Engineering, Vol. 21, No. 5, pp. 440-454.

Baroudi, J., Olson, M., & Ives, B. (1986). “An Empirical Study of the Impact of User Involvement on System Usage and Information Satisfaction,” Communications of the ACM, pp. 232-238.

Becker-Kornstaedt, U. (2001). “Towards Systematic Knowledge Elicitation for Descriptive Software Process Modeling,” Proceedings of PROFES, pp. 118.

Belkin, N., & Croft, W. (1987). “Retrieval Techniques,” Annual Review of Information Science and Technology (ARIST), Vol. 22, Chapter 4, pp. 109131.

Beraha, S., & Su, J. (1999). “Support for Modeling Relationships in Object Oriented Databases,” Data & Knowledge Engineering, Vol. 29, No. 3, pp. 227-257.

Bieber, M. (1998). “Hypertext and Web Engineering,” Proceedings of the Ninth ACM Conference on Hypertext and Hypermedia, ACM Press, pp. 277-278.

Bieber, M., & Yoo., J. (1999). “Hypermedia: A Design Philosophy,” ACM Computing Surveys 31(4es).

Bloomberg, M., & Weber, H. (1976). An Introduction to Classification and Number Building in Dewey, 19th Edition, Libraries Unlimited, Inc., Littleton, Colorado.

Boggs, W., & Boggs, M. (2002). UML with Rational Rose 2002, SYBEX Inc., California.

Booch, G. (1986). “Object-Oriented Development,” IEEE Transactions on Software Engineering, SE-12, 2, pp. 211-221.

Booch, G. (1994). Object-Oriented Analysis and Design, Second Edition, Benjamin/Cummings Publishing Company, California.

Booch, G., Jacobson, I., & Rumbaugh, J. (1998). The Unified Modeling Language Users Guide, Addison Wesley, Massachusetts.

Borgida, A., Mylopoulos, J., & Wong, H. (1984). “Generalization/Specialization as a Basis for Software Specification,” On Conceptual Modeling: Perspectives from Artificial Intelligence, Databases, and Programming Languages, pp. 87-117.

Brachman, R. (1983). “What IS-A Is and Isn’t: An Analysis of Taxonomic Links in Semantic Networks,” IEEE Computer, pp. 30-36.

Brodie, M. (1981). “Association: A Database Abstraction for Semantic Modeling,” Entity-Relationship Approach to Information Modeling and Analysis, P.P. Chen (ed.), ER Institute, pp. 583-608.

Brodie, M. (1984). On Conceptual Modeling, Springer-Verlag, New York.

Bunge, M. (1979). Treatise on Basic Philosophy: Vol. 4: Ontology II: A World of Systems, Reidel Publishing Co., Inc., New York.

Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. (1988). “Expert-Novice Differences in Perceiving and Processing Visual Classroom Information,” Journal of Teacher Education, pp. 25-31.

Catanio, J. (2004a). “Relationship Analysis: Improving The Systems Analysis Process,” Ph.D. Dissertation, New Jersey Institute of Technology.

Catanio, J., Nnadi, N., Zhang, L., Bieber, M., and Galnares, R., (2004b) “Ubiquitous Metainformation and the WYWWYWI* Principle,” Journal of Digital Information, Volume 5, Issue 1, April 2004. (*What you want, when you want it)

Chen, P. (1983) “English Sentence Structure and Entity-Relationship Diagrams,” Information Sciences, Vol. 29, No. 2-3, pp. 127-149.

Chen, P. (1976). “The Entity-Relationship Model – Toward a Unified View of Data,” ACM Transactions on Database Systems, Vol. 1, No. 1.

Coad, P., & Yourdon, E. (1990). Object-Oriented Analysis, Yourdon Press / Prentice-Hall, Englewood Cliffs, New Jersey.

Cobb, M., & Petry, F. (1998). “Modeling Spatial Relationships within a Fuzzy Framework,” Journal of the American Society for Information Science, Vol. 49, No. 3, pp. 253-266.

Codd, E.F. (1979). “Extending the Database Relational Model to Capture More Meaning,” ACM Trans. Database Systems, Vol. 4, No. 4, pp. 397-434.

Connolly, T., Jessup, L., & Valacich, J. (1990). “Effects of Anonymity and Evaluation Tone on Idea Generation in Computer-Mediated Groups,” Management Science, Vol. 36, No. 6, pp. 305-319.

Daniels, W., & Martin, C. (2000). “Dewey Applications for the Simple Arrangement of a Link Library: The Case of ScienceNet,” Journal of Internet Cataloging, Vol. 3, No. 1, pp. 67-77.

Davis, G. (1982). “Strategies for Information Requirements Determinations,” IBM Systems Journal, Vol. 21, No. 1, pp. 4-30.

DeChampeaux, D., Lea, D., & Faure, P. (1993). Object-Oriented System Development, Addison-Wesley, Reading, Massachusetts.

DeSanctis, G., & Gallupe, B. (1987). “A Foundation for the Study of Group Decision Support Systems,” Management Science, Vol. 33, No. 5, pp. 589609.

Egenhofer, M., & Herring, J. (1990). “Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases,” Technical Report, Department of Surveying Engineering, University of Maine.

Embley, D., Kurtz, B., & Woodfield, S. (1992). Object-Oriented Systems Analysis: A Model-Driven Approach, Prentice-Hall, Englewood Cliffs, New Jersey.

Faulk, S. (2000). “Software Requirements: A Tutorial,” Software Requirements Engineering, Second Edition, IEEE, Los Alamitos, California, pp. 158-179.

Fillmore, C.J. (1968). “The Case for Case,” Universals in Linguistic Theory.

Firesmith, D. (1993). Object-Oriented Requirements Analysis and Logical Design: A Software Engineering Approach, Wiley, New York.

Fornara, N., & Colombetti, M. (2003). “Defining Interaction Protocols using a Commitment-Based Agent Communication Language,” AAMAS, Melbourne, Australia, pp. 520-527.

Frank, A. (1998). “Different Types of Times in GIS,” Spatial and Temporal Reasoning in Geographic Information Systems, Eds. Egenhofer, M., and Golledge, R., Chapter 3, pp. 41-62.

Gallupe, B., DeSanctis, G., & Dickson, G. (1988). “Computer-Based Support for Group Problem-Finding: An Experimental Investigation,” MIS Quarterly, Vol.12, No. 2, pp. 277-296.

Giles, C.L., Bollacker, K., & Lawrence, S. (1998). “CiteSeer: An Automatic Citation Indexing System,” Digital Libraries 98: Third ACM Conf. on Digital Libraries, ACM Press, New York, pp. 89-98.

Goguen, J., & Linde, C. (1993). “Techniques for Requirements Elicitation,” Proceedings from the International Symposium on Requirements Engineering, pp. 152-164.

Goldstein, R.C., & Storey, V. (1999). “Data Abstractions: Why and How?,” Data and Knowledge Engineering, Vol. 29, pp. 293-311.

Guilford, J.P. (1950). “Creativity,” American Psychologist, 5, pp. 444-454.

Guilford, J.P. (1956). “The Structure of Intellect,” Psychological Bulletin 53(4), pp. 267-293.

Guilford, J.P. (1967). The Nature of Human Intelligence, McGraw-Hill, New York.

Hammer, M., & McLeod, D. (1981). “Database Description with SDM: A Semantic Database Model,” ACM Trans. Database Systems, Vol. 6, No. 3, pp. 351-386.

Henderson-Sellers, B. (1997). “OPEN Relationships-Compositions and Containments,” Journal of Object-Oriented Programming, pp. 51-72.

Henderson-Sellers, B & Edwards, J. (1994). Book Two of Object-Oriented Knowledge, Englewood Cliffs, New Jersey.

Hillerbrand, E., & Claiborn, C. (1990). “Examining Reasoning Skill Differences Between Expert and Novice Counselors,” Journal of Counseling & Development, Vol. 68 , pp. 684-691.

Jacobson, I., Christerson, M., Johnsson, P., & Overgaard, G. (1992). ObjectOriented Software Engineering: A Use Case Driven Approach, Addison Wesley, Reading, Massachusetts.

Jasper, R., & Uschold, M. (1999). “A Framework for Understanding and Classifying Ontology Applications,” Proceeding of the IJCAI-99 Ontology Workshop.

Kay, P., Berlin, P., & Merrifield, W. (1991). “Biocultural Implications of Systems of Color Naming,” Journal of Linguistic Anthropology 1(1), pp. 12-25.

King, R., & McLeod, D. (1984). “A Unified Model and Methodology for Conceptual Database Design,” In On Conceptual Modeling, Perspectives from Artificial Intelligence, Databases, and Programming Languages, M.L. Brodie, J. Mylopoulos, and J.W. Schmidt, Eds. Springer-Verlag, New York, pp. 313-327.

Kobryn, C. (2000). “Modeling Components and Frameworks with UML,” Communications of the ACM, Vol. 43, No. 1, pp. 31-38.

Kotonya, G., & Sommerville, I. (1996). “Requirements Engineering with Viewpoints,” Software Engineering Journal Vol. 11, No. 1, pp. 5-18.

Martin, J., & Odell, J. (1995). Object-Oriented Methods: A Foundation, Prentice Hall, Englewood Cliffs, New Jersey.

Meeker, M. (1969). The Structure of Intellect: Its Interpretations and Uses, Merrill Publishing, Columbus, Ohio.

Motschnig-Pitrik, R., & Storey, V. (1995). “Modeling of Set Membership: The Notion and the Issues,” Data & Knowledge Engineering, Vol. 16, pp. 147-185.

Mylopoulos, J. (1998). “Information Modeling in the Time of the Revolution,” Information System, Vol. 23, No. 3/4, pp. 127-155.

Mylopoulos, J., Bernstein, P.A., & Wong, H.K.T. (1980). “A Language Facility for Designing Database Intensive Applications,” ACM Transactions Database Systems, Vol. 5, No. 2, pp. 186-207.

Neelameghan, A., & Maitra, R. (1978). “Non-Hierarchical Associative Relationships Among Concepts: Identification and Typology,” Part A of FID/CR report No. 18, Bangalore: FID/CR Secretariat Document Research and Training Center.

Nixon, B., Chung, L., Lauzen, I., Borgida, A., Mylopoulos, J., & Stanley, M. (1987). “Implementation of a Compiler for a Semantic Data Model: Experience with Taxis,” Proceedings of the ACM SIGMOD Conferences (San Francisco, California.), ACM, New York, pp. 118-131.

O’Brien, P. (1983). “An Integrated Interactive Design Environment for Taxis,” Proceedings of SOFTFAIR: A Conference on Software Development Tools, Techniques, and Alternatives (Silver Spring, Maryland.), IEEE, New York, pp. 298-306.

Ocker, R., Fjermestad, J., Hiltz, S.R., & Johnson, K. (1998). “Effects of Four Modes of Group Communication on the Outcomes of Software Requirements Determination,” Journal of Management Information Systems.

Odell, J. (1994). “Six Different Kinds of Composition,” Journal of Object-Oriented Programming, pp. 10-15.

Parsons, J., & Wand, Y. (1997). “Choosing Classes in Conceptual Modeling,” Communications of the ACM Vol. 40, No. 6, pp. 63-69.

Ranganathan, S.R. (1965). The Colon Classification, Vol. IV, The Rutgers Series on Systems for the Intellectual Organization of Information, New Brunswick, New Jersey.

Rodriguez, M., Egenhofer, M., & Rugg, R. (1999). “Assessing Semantic Similarities Among Geospatial Feature Class Definitions,” Interop 1999, Zurich, Switzerland, in: A. Vckovski (editor), Lecture Notes in Computer Science, New York.

Rosch, E. (1978). Cognition and Categorization, Erlbaum, Hillsdale, New Jersey.

Ross, D. (1986). “Classifying Ada Packages,” Ada Letters, Vol. 6, No. 4.

Rumbaugh, J. (1991). Object-Oriented Modeling and Design, Prentice-Hall, New Jersey.

Rumbaugh, J. (1994). “Getting Started: Using Use Cases to Capture Requirements,” Object-Oriented Programming, pp. 8-12.

Saleem, N. (1996). “An Empirical Test of the Contingency Approach to User Participation in Information Systems Development,” Journal of Management Information Systems, Vol. 13, No. 1, pp. 145-166.

Schenk, K.D., Vitalari, N., & Davis, K. (1998). “Differences Between Novice and Expert Systems Analysts: What Do We Know and What Do We Do?,” Journal of Management Information Systems, Vol. 15, No. 1, pp. 9-50.

Shaft, T. M. & Vessey, I. (1998). “The Relevance of Application Domain Knowledge: Characterizing the Computer Program Comprehension Process,” Journal of Management Information Systems, Vol. 15 No. 1, pp. 51-78.

Shipman, D.W. (1981). “The Functional Data Model and the Data Language DAPLEX,” ACM Trans. Database Systems, Vol. 6, No. 1, pp. 140-173.

Shlaer, S., & Mellor, S. (1992). Object Life-Cycles: Modeling the World in States, Prentice-Hall, Englewood Cliffs, New Jersey.

Shoval, P., & Frumermann, I. (1994). “OO and EER Conceptual Schemas: A Comparison of User Comprehension,” Journal of Database Management, Vol. 5, No. 4, pp. 28-38.

Siau, K. (1996), “Empirical Studies in Information Modeling: Interpretation of the Object Relationship,” Ph.D. Dissertation, University of British Columbia.

Siau, K. (1997), “Theoretical Foundations for Relationship Construct in Information Modeling – Relation Element Theory,” Association for Information Systems 1997 Americas Conference (AIS 1997), Indianapolis, Indiana, August 15-17, pp. 622-624.

Smith, J., & Smith, D. (1977). “Database Abstractions: Aggregation and Generalization,” ACM Transactions on Database Systems, Vol. 2, No. 2, pp. 105- 133.

Sommerville, I. (2001). Software Engineering, Sixth Edition, Addison-Wesley Publishers, Massachusetts.

Spence, M. T., & Brucks, M. (1997). “The Moderating Effects of Problem Characteristics on Experts’ and Novices’ Judgements,” Journal of Marketing Research, Vol. XXXIV, pp. 233-247.

Straub, D. W. (1989). “Validating Instruments in MIS Research,” MIS Quarterly, pp. 147-169.

Su, S.Y.W. (1983). “SAM: A Semantic Association Model for Corporate and Scientific-Statistical Databases,” Information Science, Vol. 29, pp. 151-199.

Takagaki, K., & Wand, Y. (1991). “An Object-Oriented Information System Model Bases on Ontology,” Proceedings of the IFIP Working Group 8.1 Conference, Quebec.

Topi, H., & Ramesh, V. (2002). “Human Factors Research on Data Modeling: A Review of Prior Research, an Extended Framework and Future Research Directions,” Journal of Database Management, Vol. 13, No. 2, pp. 3-19.

Tosca, S.P. (2000). “A Pragmatics of Links,” Hypertext, San Antonio, Texas, pp. 77-84.

Turoff, M., Rao, U., & Hiltz, S.R. (1991). “Collaborative Hypertext in Computer Mediated Communications,” Proceedings of the 24th Annual Hawaii International Conference on System Sciences, Vol. IV.

Uschold, M. (1998). “Knowledge Level Modeling: Concepts and Terminology,” Knowledge Engineering Review, Vol. 13, No. 1.

Vessey, I. (1985). “Expertise in Debugging Computer Programs: A Process Analysis,” Journal of Man-Machine Studies, Vol. 23, pp. 459-494.

Wand, Y., Monarchi, D., Parsons, J., & Woo, C.C. (1995). “Theoretical Foundations for Conceptual Modeling in Information Systems Development,” Decision Support Systems, Vol. 15, pp. 285-304.

Wand, Y., Storey, V., & Weber, R. (1999). “An Ontological Analysis of the Relationship Construct in Conceptual Modeling,” ACM Transactions on Database Systems, Vol. 24, No. 4, pp. 494-528.

Wand, Y., & Weber, R. (1995). “On the Deep Structure of Information Systems,” Eur. J.Inf. Syst., Vol. 5, pp. 203-223.

Weber, R., & Zhang, Y. (1996). “An Ontological Evaluation of NIAM’s Grammar for Conceptual Schema Diagrams,” Eur. J. Inf. Syst., Vol. 6, No. 2, pp. 147–170.

Wieringa, R. (1998). “A Survey of Structured and Object-Oriented Software Specification Methods and Techniques,” ACM Computing Surveys, Vol.30, No. 4, pp. 459-527.

Yoo, J. (2000). “Relationship Analysis,” Ph.D. Dissertation, Rutgers University.

Yoo, J., and Bieber, M. (2000a), “Towards a Relationship Navigation Analysis,” Proceedings of the 33rd Hawaii International Conference on System Sciences, IEEE Press, Washington, D.C., January 2000.

Yoo, J., and Bieber, M. (2000b), “A Relationship-based Analysis,” Hypertext 2000 Proceedings, San Antonio, ACM Press, June 2000.
Yoo, J., Catanio, J., Bieber, M., and Paul R., (2004) “Relationship Analysis in Requirements Engineering,” Requirements Engineering Journal, Springer Verlag London Ltd., October, 2004.
BIBLIOGRAPHY

Joseph Catanio is an Assistant Professor in the Mathematics and Computer Science Department of the College of Arts & Sciences at LaSalle University.

He teaches both graduate and undergraduate students in various Computer Science and Information Systems courses. His primary area of research is in systems analysis techniques and software engineering. Prior to his appointment at LaSalle University, he worked as a professional software engineer for 15 years managing and performing application development and embedded systems. His research interests include software engineering, systems analysis, creativity and innovation, project management, the learning process, educational software tools and environments, collaborative systems, and group support systems. He holds a Ph.D. in Information Systems from the New Jersey Institute of Technology. Further information is available at http://lasalle.edu/~catanio.

Michael Bieber is an Associate Professor in the Information Systems Department of the College of Computing Sciences at the New Jersey Institute of Technology. He teaches both on-campus and in the distance learning program, often combining the students in both modes. He conducts research in several related areas: hypermedia functionality, automatically generating hypermedia links and services for analytical applications and for digital libraries, Web engineering, incorporating hypermedia into WWW applications, relationship analysis, supporting knowledge and learning within virtual communities, asynchronous learning networks and distance education, and infrastructures for future educational software. Dr. Bieber co-directs NJIT's Collaborative Hypermedia Research Laboratory. He holds a Ph.D. in Decision Sciences from the University of Pennsylvania. Further information is available at http://web.njit.edu/~bieber.

� EMBED PBrush ���

� At the time of Guilford’s writing of the SI theory, analysis, as it pertains to software systems development, did not exist. The term class has a different connation in present day software engineering methodologies. As in Guilford’s definition, a class is a grouping of information or a collection of information. To prevent confusion with the term “class” in software engineering methodologies, the term “collection” is used in its place.

� This terminology continues our references to the appropriate cells of Table 2.

� To prevent confusion with the term “relationship in RA”, the term “comparison” is used in place of Guilford’s term “relation”.

49

[image: image10.png]CONTENTS _ yrsyey

Bipithey
Soneortt

L/ e
/R

erODUCTS
o

cLasses
RELATIONS
R
s
————— mPLicATIoNs

_geerarions

IR

EveLyaTIon
EORGERTERT propucrion
BIVERBENT PRODUETION
FeoRY

e on

I

_1135839073.vsd
�

Unit�

Elaboration�

Specification�

_1139911503.vsd
�

Modify�

Transpose�

_1140160897.vsd
Structure�

Occurrence�

_1169715250.vsd
textual desciption�

Collection�

textual desciption�

Comparison�

�

Membership�

Item of Interest�

Unit�

�

Specification�

Elaboration�

Aggregation�

textual desciption�

textual desciption�

�

Generalization / Specialization�

Similar / Dissimilar�

System�

textual desciption�

textual desciption�

�

Structure�

Transformation�

Occurrence�

textual desciption�

textual desciption�

�

Implication�

Modify�

Transpose�

textual desciption�

textual desciption�

�

Influence�

Extrapolate�

textual desciption�

textual desciption�

_1139911655.vsd
Influence�

Extrapolate�

�

�

_1139904765.vsd
�

Similar�

Dissimilar�

�

�

Generalization/
Specialization�

_1134893741.vsd
�

�

Membership�

Aggregation�

�

�

_1097054560

