
OONA, MAX AND THE WYWWYWI PRINCIPLE:
GENERALIZED HYPERTEXT AND MODEL MANAGEMENT

IN A SYMBOLIC PROGRAMMING ENVIRONMENT

Hemant Bhargava
Michael Bieber

Steven 0. Kimbrough
Department of Decision Sciences

University of Pennsylvania

1. INTRODUCTION

Progress in decision support systems comes in a variety of
forms. These include increased understanding of the or-
ganizational consequences of machine-mediated decision
making, improved knowledge regarding how to implement
DSSs (decision support systems), advances in techniques
for managing and maintaining DSSs, and improvements in
DSS technology that result in enhanced functionality or
reductions in the cost of building particular DSSs. The
progress in DSS reported here falls under the latter cate-
gory. The research motivation for this work may, briefly,
be described as follows.

A DSS is a software tool that facilitates working with data
and models. It is widely agreed that building particular
DSSs can be done faster and more economically if general-
purpose, reusable software is available for performing
standard DSS functions (Sprague and Carlson 1982; Kim-
brough 1986). Economies arise both from reusing existing
software and from working in a familiar, standardized
environment. For certain of the DSS functions or com-
ponents (e.g., business graphics, report writing, database
management) design principles and implementation techni-
ques are well advanced and commercial products of high
quality are on the market. For other DSS components
(e.g., model management systems, hypertext systems) there
is broad agreement that they are needed and valuable, yet
comparatively little is known about what functionality the
components should have or how that functionality should
be implemented.

In the case of hypertext, a few systems are on the market
but requirements and capabilities for DSS hypertext inter-
faces are far from being fully worked out and understood.
Research on these systems is only beginning. In the case
of model management, there has been extensive research
but it has not yielded consensus as to exactly what model
management is or what features a model management
system should have. Research model management systems
of limited scope have been implemented. For example,
WHIMS (Wharton Interactive Modeling System) manages
microanalytic simulation models (Katz and Miller 1986).
PLANETS (Productionbcationhalysis Network System)
allows analysts to define a business environment and spe-
cific business assumptions. It provides automatic feasibility

checks for any potential scenario and performs automatic
generation, solution, and interpretation for mathematical
models. It is used by General Motors and has resulted in
savings in excess of $1 billion (Breitman 1987). Commer-
cial model management systems are, however, non-existent.

We have explored hypertext and model management in
the context of DSS and have implemented two prototype
systems (Max and Oona) currently in use by the U.S. Coast
Guard. The purpose of this paper is to report on and
discuss our findings. In section 2, we begin by presenting
background material and briefly discussing the central
technical ideas (generalized hypertext and model manage-
ment) for these systems.

2. BACKGROUND

During the next ten years, the U.S. Coast Guard will in-
vest more than a billion dollars in acquiring replacement
assets (ships, airplanes, helicopters, etc.) for its present,
aging fleet. The cost of operating and maintaining these
assets will be several times the acquisition cost. Because
of the importance and complexity of the capital asset ac-
quisition problem, the Coast Guard has initiated a project
aimed, in part, at systematically developing software for
support of acquisition decisions. The goal is to produce a
series of specific decision support systems (also called
knowledge-based decision support systems, or KSSs) in
support of particular acquisition projects, but based on
generic and highly reusable system software. The work
reported here was done as part of the Coast Guard’s KSS
project.

Early on in the project, the decision was taken to build a
general environment--or shell--for building and running
particular KSSs. The concept of a KSS shell is similar in
some ways to that of a DSS generator (Sprague and Carl-
son 1982, p. 11). The idea is that the shell is a powerful,
general-purpose software system that facilities the con-
struction of particular DSSs (or KSSs) and provides a
variety of features. Because the technology employed
(symbolic programming) and the feature set implemented
(hypertext, expert systems inference engines, extensive
model management facilities) in our KSS shell design

179

greatly subsumes that of traditional products that go by
the name of DSS generators (Express, IFPS, Empire), it
seemed appropriate to use the term shell to describe the
focus of our efforts. (See Kimbrough [1986] for a related
discussion of the idea.)

There are three essential modules in our DSS (or KSS)
shells. First, there is a high-level process that makes in-
ferences and provides control over the entire DSS. As
currently implemented in both Max and Oona, this pro-
cess is in the form of a Prolog meta-interpreter (Sterling
and Shapiro 1986) and as such resembles an inference
engine for a conventional rule-based expert system. Be-
cause space is limited and because our current implemen-
tations (Max and Oona) are not innovative in this regard,
we will not discuss further the high-level control. The
second essential module is a model management system.
(In the existing prototypes, written in Prolog, data is
treated as a special type of model, so the model base
management system manages both data and models.) We
discuss design concepts and principles for model base
management in section 3. Finally, the third essential mo-
dule is a user interface, or display, (sub)system. Our de-
sign and implementations have been much influenced by
hypertext concepts, although we have added features not
found in other systems. We discuss these in section 4.

3. MODEL MANAGEMENT

Decision Support Systems employ, as do human decision-
makers, a variety of models to solve problems and re-
commend courses of action. A model is simply an ap-
proximation of some real-world phenomenon, or a set of
assumptions (e.g., architects construct models of the
buildings they plan to build, management scientists model
service departments as queue systems, etc.; here we are
concerned with computer-executable models). The model
management system must manage the tasks involved in
making, evaluating, and explaining the consequences of
these assumptions.

Hence a model management system must facilitate ex-
pression of knowledge about models, exercising this
knowledge, and explaining the results obtained from using
these models. It may be argued that such functionality
could be included in any DSS by writing procedures to do
each of those tasks; that would be to miss the point. The
idea of an MMS is to provide this functionality in a gene-
ral-purpose form (or as general as possible) which can be
applied to a wide class of applications or sets of models.

Broadly speaking, we recognize three user roles for an
MMS, corresponding to the three activities mentioned in
the previous paragraph model builders, who construct
the models and provide the domain knowledge that en-
ables the MMS to perform in that domain; model users
and analysts, who exercise these models or solve and ana-
lyze actual problems by providing the data and create

reports; and decision-makers, who may browse through
the reports and make decisions based on these analyses.
They are responsible for these decisions and must be able
to just@ them. Decision-justification, often omitted in
models of decision-making, is an important function of a
DSS and must be supported by its model management
component. In fact, we take the stronger view that the
main purpose of a DSS is to assist users in constructing
and evaluating arguments for courses of action (Kim-
brough 1987).

The above discussion leads to the following two metapho-
rical statements about model management systems: an
MMS is like an operating system for models, i.e., it
handles models in general, as an operating system
handles files, irrespective of their content or application;
and an MMS is like an expert system for modeling: it
attempts, through intelligent-seeming behavior, to fill the
position of an human expert in modeling. This contrasts
somewhat with the view, taken in previous literature, in
which a model management system has been likened to a
data base management system ("models, like data, need
to be stored, retrieved, shared [Elam, Henderson and
Miller 1980; Liang 1986]), and described as "a structured
milieu for storing, manipulating, and retrieving models"
(Dolk and Konsynski 1984). The analogy with DBMSs,
though not inappropriate, does not sufficiently describe
the functionality of a model management system. We
attempt to develop a list of features by looking at the
steps in a modeling life cycle and the user roles that an
MMS should support. We will develop these using the
following example.

Example 1(A)

We consider here a part of the Vessel Acquisition pro-
cess in the U.S. Coast Guard. The process includes mea-
suring various attributes of different vessels and eval-
uating costs over their estimated life. Assume that we
are interested in a set of Vessel characteristics, Life Cycle
Cost, Designer, and Builder of the Vessel. Also assume
that the total Life Cycle Cost (LCC) is computed using a
simple mathematical model that sums various costs, in
this case, Acquisition Cost (AC), Maintenance Cost
(MC), and Personnel Cost (PC), i.e., LCC = AC + MC
+ PC.

Each of these components is computed using a mathema-
tical model. For example, the Maintenance Cost over the
vessel's lie is computed by adding the discounted values
for Maintenance Costs, for each year in the vessel's life.
The maintenance cost for year j, MCj, is calculated by
inflating a Base Cost by an inflation factor and then dis-
counting it to get the present value. Hence, if b is the
Base Cost, i is the percent annual increase in main-
tenance cost, r is the discount rate, and N is the vessel's
life span, we have

180

N
MC = c MC. /(l+(r/100))’

j = l J

Letting pv(T,R,A) be a function that returns the present
value of a cash flow A, that occurs T periods from now,
with a discount rate R, we have

N
MC = C pvCj,r,MC.), where MC. = b*/(l+(i/100))’

j = l J J

N
MC = Jc= pvCj,r, b*(l+ (i/100))’).

Further assume that the discount rate r varies over the
life span, and that the rate for each year is computed
using a model M1 that uses forecasts by OMB and by
RAND Corporation. For the moment we will ignore
other details of this example. We now examine what an
MMS should do in terms of the three user roles dis-
cussed earlier, using the above example for illustration.

(a) Model builders: A model builder would construct
the various models to support the Vessel evaluation
and comparison process. In the above description,
we decomposed the entire problem into smaller
problems. For example, the total life cycle cost is
computed as a simple summation of its components,
though there are more complicated models under-
lying each component. The MMS must similarly sup-
port building of complex models from simpler ones,
either by composing models or modifying them. This
is important since the sub-models may have indepen-
dent existence and multiple use. In order for the
builder to know about existing models (e.g., present
value model), the MMS should be able to describe
these models in terms of their essential characteris-
tics (e.g., the parameters and formula for the present
value model). The modeler should be able to ex-
press mathematical relationships in a natural mathe-
matical form without having to program the compu-
tation.

(b) Model users: Model users or analysts would be inte-
rested in analyzing or evaluating particular vessels by
providing values for different attributes of each ves-
sel. The MMS should identify and report on the
kind of data required for this evaluation and at a
level of detail that is at the user’s discretion (For a
vessel, we need its life cycle cost and other charac-
teristics; for the l i e cycle cost, we may need to know
the acquisition cost, maintenance cost, and personnel
cost; and so on.) It should also facilitate the declara-
tion or acquisition of this data in a flexible form. For
example, for vessel 1, the life cycle cost could simply
be a multiple of the life cycle cost of vessel 2, and the

cost €or vessel 2 may be an expected value of some
estimated costs, whereas for vessel 3, life cycle cost
may be computed at a further level of detail, i.e., by
computing the various components. Again, the MMS
should be able to explain various models and compo-
nents of models to the users.

(c) Decision makers: Finally, assume certain reports
have been created that contain outputs from models,
based on which decisions have to be made. The user
may want to know how certain results were com-
puted, what models were used, where the data was
obtained, etc. Most of these queries would be ad
hoc; hence, the MMS must have a general capability
to provide this information based on its knowledge
about the models. For example, an interaction bet-
ween the user and the system may be to the following
effect:

User:

System: It had the minimum Life Cycle Cost ($1000

Why was vessel 1 selected?

4.
User:

System: Life cycle cost = Acquisition cost + Main-
tenance cost + Personnel cost; for vessel 1,
Acquisition cost = $200 m, Maintenance cost
= $300 m, Personnel cost = $500 m. Hence
Life cycle cost = $1000 m.

How was this number computed?

User: What is Maintenance cost and how is that
computed?

Below, we briefly describe a set of features that need to
be present in a model management system. In sections 5
and 6, we describe how these are addressed in two imple-
mentations, Oona and Max. This discussion refers to
data models, mathematical models, and deductive models.
A data model is simply a vector of the type [Ml,M2, ... M,],
where the Mis are themselves arbitrary models. A math-
ematical model M is a symbol that assigns a value V to a
tuple T = (tl, t2, ... tJ according to some rule. A deduc-
tive model, in the present context, is like a set of IF-
THEN condition pairs and stipulates a set of conclusions
corresponding to a set of premises being satisfied.

Feature Categories of a Model Management System

(a) Construct new models, and integrate with existing
ones: this involves adding models, as well as know-
ledge about the models, to the model base (e.g., to
add a knapsack model to a mathematical program-
ming knowledge base, one would need to set up the
general form of the model, declare information about
solution algorithms and programs, and relate it to
other integer programming paradigms). A new

181

model may be created from scratch or be set up by
combining or modifying other existing models.

(b) Identify and formulate problems into known models:
formulate a model to determine the optimal product
mix (Bradley, Hax and Magnanti 1977) as a linear
program by defining the decision variables, objective
function and constraints.

(c) Describe models, parameters, other related models:
the system must be able to describe what it knows
(e.g., before using a product mix model, a user may
want a description about it, how to interpret its re-
sults, related concepts like the simplex method, or
where to look for aditional documentation).

(d) Identify data requirements: the system should figure
out what data is required to execute a model (e.g.,
for the product mix model, it would need a list of raw
materials with availabilities, final products with unit
profits, and activity coefficients).

(e) Data extraction: very often the data to run a model
would be available elsewhere in the database and
could be obtained automatically by a set of projec-
tions from different relations in the database. The
above two are important steps in integrating models
with data, or more precisely, integrating mathemati-
cal models with data models, while retaining the in-
dependence between them. They have received some
attention in research on expert database systems
(Kershberg 1986; Jarke and Vassiliou 1984), but not
much in modeling systems.

(f) Verlfy model validity: it may be possible to perform
certain automatic checks for model validity (e.g.,
there is probably an error if a new model being set
up adds the outputs of two models, one of which out-
put is a character string).

(g) Verify data validity: the system should recognize an
error if, in the present value model, the value for the
interest rate has dimension feet.

(h) Solve/execute models: the system would need to de-
termine an appropriate program or solution techni-
que to solve a model, instantiate the model, and
execute it. Execution includes rewriting a model in
an equivalent form, re-expressing it after certain sub-
stitutions, computing the output as a number, com-
puting an analytic solution, or drawing certain conclu-
sions.

(i) Explain model results/outputs: this involves an inter-
pretation of the results, how the results were com-
puted, parameters and their values, source and reli-
abililty of data, and other factors required to justify a
decision made using these results.

(j) Analyze changes: this includes computing the effects
of changes in parameter values, either numerically or
analytically (e.g., the rate of change by taking first
derivatives).

(k) Manage the model base: the system needs to man-
age the storage, retrieval, access (perhaps concurrent
and shared) and updating of models, and integrity
and consistency of the model base.

This list is not meant to be definitive. Various re-
searchers have proposed different feature sets (Liang
1986; Geoffrion 1987; Applegate, Konsynski and Nuna-
maker 1986), and it is not yet absolutely clear exactly
what features must be supported in modeling systems.
The above model management activities correspond to
different phases in a modeling life cycle and are meant to
serve the three categories of users mentioned earlier.
For example, the end-users in categories (b) and (c)
would benefit most from activities (b), (c), (d), (e) and
(i), whereas model base developers would benefit from a
high-level implementation of (a), (f) and (h), as well as a
facility to build in the knowledge required for the other
activities.

Model Management Implementation

Given the above set of features for a model management
system, we identify four specific issues as being central to
the implementation of such a system: model representa-
tion, model base organization, a modeling language to
express knowledge about models to derive this represen-
tation, and rules to process and manipulate this represen-
tation.

The issue of model representation has been addressed
from the viewpoints of database systems, artificial intel-
ligence, and decision support systems (Bonczek, Hols-
apple and Whinston 1982; Konsynski 1980; Blanning
1986). Three main techniques have been used for model
representation: models as subroutines, models as data,
and models as statements in a modeling language
(Sprague and Carlson 1982; Dolk and Konsynski 1984;
Blanning 1986). Our implementation approach is to re-
present models symbolically, as symbols that represent
various concepts related to a model. Knowledge about
models is represented as statements in a modeling lan-
guage. Due to the lack of distinction between programs
and data in a symbolic language, model-independent
manipulation rules can directly manipulate this knowledge
("Thought consists of the manipulation of sentences in the
language of thought" [Pollock 1986, p. 163]), and we can
view models both as statements and as data. Our philo-
sophical approach to model representation is that models
are (complex) individuals, about which predication may
be applied. The model individuals are named (using sym-
bols) in the model declaration language. Properties of
these individuals may be declared or inferred using the

182

declarations in the model declaration language (and in-
ference engines for inferred properties). These declara-
tions may be logically quite complex, including such fea-
tures and quantification across sentence operators if need
be. Given this logical point of view, Prolog is a natural
choice for a programming language to implement the mo-
del management system, but it is hardly necessary. Any
symbolic computing environment will do.

4. THE DISPLAY SYSTEM

Meeting the following requirements is, we believe, largely
the responsibility of the user interface (or display)
module for a generalized DSS shell.

1. Users (and system builders) should have access to
any system entity (e.g., data, models, meta-knowledge
about data and models) consistent with security and
integrity requirements.

Access to system entities should be facilitated by con-
text. For example, a component of a model would be
a system entity. Access to this component might be
had noncontextually by allowing the user to request a
standard report on the component at any time. Con-
text-based access could occur, by having the user dis-
play the model, point to the model component, pull
down a window menu of available options, and
choose the option that generates the standard report
on the component currently pointed to. Besides faci-
litating such context-dependent access to information,
the system should provide material assistance to a
user in traversing (navigating through) various con-
texts and returning to the desired point in the sys-
tem's context space.

2.

Together, these two requirements generate what we call
the WYwwYWI ("what you want, when you want it,"
pronounced "weeweewee") principle for DSS interface
design. Implementing them, and supporting communica-
tions to the model management system, is the job of the
user interface. It is difficult to overemphasize the impor-
tance of a good interface.

Understanding model behavior may de-
pend less on the actual models than on
how the models are packaged The user
interface should facilitate and not hinder
the editing process Developing insight
on model behavior is ultimately a pro-
cess of discovery, of finding trends, sur-
prising behaviors and comparing the be-
havior of the model to what is expected
or observed. [Jones 1987

It is well established that people can only cognitively
handle small amounts of information at one time (Miller

1956). When faced with complex problems, people will
decompose them into increasingly smaller subproblems
until they are of a manageable size (Shneiderman 1987).
Different people will choose to break problems down in
different ways and by different cognitive methods. A DSS
should help us to understand and work in a complex do-
main and should aid us in the decomposition of a large
problem into manageable chunks. In implementing this
we must ask Can we provide an interface that allows a
user to regulate the amount of information visible at any
given time while retaining access to all other knowledge
concerning the problem domain? Can we provide an in-
terface that gives a user the ability to format both the
viewing environment and the knowledge displayed within
it? Generalized hypertext (an extension of traditional
hypertext) enables the implementation of WYWWYWI
for an affirmative answer to these concerns.

Hypertext

Traditional hypertext is the concept of linking related in-
formation entities or nodes and facilitating the rapid com-
puterized transfer between them. Any computer program
that supports this informational structure can be called a
hypertext system. For example, in a hypertext encyclope-
dia article, a user could specify a reference and the sys-
tem could automatically transfer him/her to the article
referred to in the reference. A mechanized version of
hypertext was first proposed in Bush's Memex system
(Bush 1945). The first computerized hypertext system
was implemented by Engelbart more than twenty years
ago (Engelbart and English 1968). Heretofore, con-
strained by the availability of abundant and inexpensive
computer processing and memory, hypertext has only re-
cently enjoyed widespread implementation and use. (For
a discussion of hypertext design issues see (Akscyn, Mc-
Cracken and Yoder [1987]. For a detailed survey of the
field see Conklin [1987].)

Hypertext encourages (but does not restrict the user to)
the display of information in small portions. Nodes
should ideally represent a single concept and the links
should implicitly or explicitly convey the relationship bet-
ween two or more nodes. Hypertext systems enable
people to communicate in a non-sequential, multi-path
fashion. Information is not restricted to a single thread
of text with one start and one end point as in a normal
text document and users are free to follow links and ex-
plore information nodes in any order they wish. Thus a
central distinction of a hypertext system is that it is speci-
fically designed to allow users to browse through volumes
of information (Marchionini and Shneiderman 1988).
The user and builder should be able easily to check what
further information is available at any time, and then
transfer to that new knowledge. Of course, it is impor-
tant to implement this in a manner that will not over-
whelm the user of the system.

183

Generalized Hypertext

Generalized hypertext will give both the builders and
users of applications and models access to hypertext fea-
tures in all functions and parts of the DSS shell and its
applications. It is the mechanism for implementing the
WYwwYWI concept in which the user is able to regu-
late the amount and format of information visible at any
given time at all levels of the DSS process, including DSS
construction, analysis and control.

Nodes and Buttons

The concept and implementation of nodes varies from
one hypertext system to the next. In traditional systems,
a node is the origin or destination of a l i i . Sometimes it
will be a point (e.g., a word); more often it is one or
more paragraphs of text. Many systems fur the size of a
destination node (Conklin 1987). We have generalized
the concept of the node to that of a generalized hypertext
button. A button is simply any entity known to the sys-
tem. Any button may be linked to any other button.
This means that any system entity (DSS application,
model, datum, document, key word, link, etc.) can be
l iked to any other entity. Alternatively, a button could
be logically connected only to the knowledge reasoned
about it. As part of our research, we are developing a
formal framework for generalized hypertext buttons.

Linking

Traditionally, hypertext systems have been intended to
deal with the presentation of ideas. Builders of hypertext
nodes are generally authors expressing their thoughts or
research in a nonlinear fashion, representative of the
structure of their ideas. Users are readers who initially
may follow the links established by authors, but are able
to create additional links and make on-the-spot annota-
tions at will.

In most hypertext systems, liiks are (usually) explicitly
established by an author or user, although occasionally
they are implicitly generated by a system action. Gene-
rally two types of explicit links are supported, organiza-
tional links and referentiul links.

Organizational links exist in systems supporting a struc-
tured node hierarchy similar to a semantic net. Textnet
(Trigg 1983), for example, has toc (table of content)
nodes that contain an outline of the underlying text struc-
ture for a given relation. Organizational links connect the
parent toc node with its corresponding children, either
lower level toc nodes or chunk nodes containing the ac-
tual text.

Referential links are links employed by the author or user
to establish a connection between two arbitrary nodes.

Many systems allow these referential links to be typed.
For example, Textnet, a system for authoring and criti-
quing documents, has 54 link types such as "refutation,"
"explanation," and "generalization." These link types are
important in establishing a structure for the node network
and can guide a user in visualizing the relationship bet-
ween a series of nodes.

In a traditional hypertext system, implicit links can be
generated by the system when it performs a keyword
search. Normally, the user browses the information base
by explicitly traversing established links among nodes.
However, when a user searches for an arbitrary keyword,
the system will often create internal links to move the
user from his present position to a node representing the
search outcome (Conklin 1987).

Links may have associated weights or other characteristics
to direct the linking process or they may have procedures
attached that are invoked when the link is traversed. Al-
ternatively, they may simply contain or represent pointers
between nodes.

One of the main differences between text found in a DSS
and that in a more standard hypertext system is the type
of information represented. Traditionally, hypertext sys-
tems represent ideas recorded by authors. Most links
tend to be explicit because the system is generally unable
to comprehend the meaning of text and determine rela-
tionships between common ideas or topics. Some hyper-
text researchers are currently addressing this issue of con-
tent analysis (Hammwohner and Thiel 1987) and others
are looking into other ways to establish relationships bet-
ween nodes through the structure of node hierarchies,
typed nodes and typed links automatically (Trigg 1983;
Conklin 1987). Because its elements (e.g., data and
models) can be thought of as entities whose names and
components are recognizable expressions (ie., nodes), a
DSS lends itself to the automation of hypertext linking.
An intelligent knowledge-based system can use these ex-
pressions automatically to establish direct and indirect
connections among the various entities known to it. One
of our contributions has been to greatly extend the do-
main of implicit, system-generated links. In both Max
and Oona, most of the links among nodes are automati-
cally generated by the system. We believe that a general
theory of system-generated linking is possible, but discus-
sion of that is beyond the ambitions of this payer.

Disorientation

An important issue in the design of any hypertext system
is "managing the hyperspace." The representation and
execution of buttons and links will affect how a user navi-
gates through the system knowledge, application and do-
cument base. It is easy to become disoriented while navi-
gating the myriad of links and nodes in an environment
that encourages one to transfer among a plethora of dis-

184

tinct pieces of information (Bernstein 1987). We are ex-
ploring methods of enabling the user to maintain his or
her orientation at all times (e.g., by providing a computed
"Where am I?" function), but at present we rely on a sys-
tem log that can be recalled and used to move to a pre-
viously-occupied node. At the very least, we hope to add
a graphical view of the current system status.

Meta-Level Control

To allow for a truly flexible system with applications be-
yond the intentions of the shell designers, all aspects of
the system should be customizable. The user should be
able to create new button types and append to or replace
any shell or application routine. Alternatively, the user
should be able to insert a "demon" (a procedure which
monitors the system, performing an action only when an
activating condition takes place) (Gevarter 1987). Such
changes, moreover, should be capable of being made un-
der program control (rather than merely by editing). Our
existing prototypes lack any si&icant form of meta-level
control, as do all present hypertext systems of which we
are aware.

5. OONA

Oona is a prototype DSS employing the shell, the model
management, and (to a degree) the hypertext concepts
discussed above. Oona is written in Prolog and runs in
the VAX V M S environment, using VT240 and above
(mouseless graphics) terminals. The model (and data)
management system is central to the shell and includes
two key elements. The first is a series of conventions for
declaring models (and data) and for declaring properties
of models (and data), including such information as the
type of model (e.g., external FORTRAN, internal, written
in the system's modeling language; interactive, requiring
user inputs - a unidimensional utility function elicitation
program is included) as well as other information about
the model (e.g., source, reliability, location of documenta-
tion). These conventions may aptly be described as a
model declaration language. The second key element to
the model management system is an evaluator. This eval-
uator is able to match models to appropriate data sets.
In the event that the model is expressed in the system's
modeling language, the evaluator is able to evaluate the
model and produce the result. If the model is, an exter-
nal FORTRAN model, the evaluator is able to direct ap-
propriate calls to the operating system and to report back
the results of running the model. If the model is written
in Prolog, but not in the system's modeling language, the
evaluator is able to call the appropriate Prolog routine
and to report back. Finally, the evaluator keeps track (in
conjunction with other elements of the system) of model
results that are already known so that requests for model
outputs will not needlessly result in model execution.

Control of the system is via a high-level meta-interpreter
that results in a cascading model graph architecture

(Kimbrough, et al. 1986). The user interface is menu-
and (primarily) command-driven. Once a model is de-
clared and known to the system, generic commands are
available for displaying the model in symbolic form and
for further (recursive) exploring of the constituent sym-
bols in the displayed model. To illustrate, three models
are integrated via a multiattribute utility function. There
are two performance models (SAR, performance on
search and rescue, and ELT, performance on enforce-
ment of laws and treaties), both written in FORTRAN.
The model declaration language associates symbols with
these routines. The third model is a cost model (CASH-
WHARS) and is written in the system's modeling lan-
guage. At the top level, a user could see the utility model
expressing the overall value of a given ship:

u(ship1) =
k(l)*u(l,sar(shipl)) + k(2)*u(2,elt(shipl)) + k(3)*u(3,cost(shipl))

At this point, generic commands are available for ex-
ploring shipl, k(2), u(3,*), or any symbol declared in the
model declaration language and known to the system.
These generic commands work on any such symbol, and
so are reused from one particular DSS to another. To
emphasize the point, the generic commands effectively
produce automatic linking of declared objects (and their
parts) in the model base, which objects become (virtual)
hypertext nodes. (For an earlier implementation of some
of the user interface ideas in Oona, see Chesapeake De-
cision Sciences [1986]) As in any DSS, users may inter-
actively run models and retrieve data; they may alter in-
put data and, to a degree, the models themselves, and see
the consequences of changed assumptions. In addition,
with Oona users may interactively explore the logical rela-
tionships among model elements and may ask, what the
source of gasoline price was and where this parameter is
used in the models known to the system.

6. MAX

Max (MacIntosh KSS) is a general-purpose, reusable en-
vironment for creating and working with Knowledge-
based Decision Support Systems (KSS). It is a tool to
help KSS builders and users and is implemented in Pro-
log on the MacIntosh. Max manages the common tasks
in problem-solving, model management, and user-
machine interaction that are independent of any particu-
lar application, freeing the builder to focus on the appli-
cation knowledge. It consists of three main modules: a
user interface module, a model (and data) management
module, and a control module. A specific KSS is ob-
tained by combining Max with a specific knowledge base
written in the modeling language of Max.

Model Management in Max

Model Representation

In Max, models are represented as statements in a
modeling language that represent various concepts related

185

to a model. A conceptual model is defined as a collec-
tion of symbols and relations between symbols, or sets of
symbols, on which a variety of actions can be performed.
An action is a process that manipulates symbols and sym-
bol-relation sets. A symbol is different from its name; it
stands for concepts and information about it. For exam-
ple, the symbol Q standsdamong other things), for con-
cepts such as lim(x->Q,e /.!) = Q. A symbol can be a
simple object like Cost or Name or a compound object
like Linear Program.

Each symbol has an associated symbol structure. In Max,
the basic building blocks or primitives for symbol struc-
tures are atoms, lists, and tuples. An atom is a unit: a
number, alphabet, or word. A list has an arbitrary num-
ber of objects of the same type and the order is irrelevant
@e., is treated as irrelevant by the system). A tuple has a
fixed ordering of a given number of objects of arbitrary
types. Thus, a symbol has one of the following structures:
a) atomic, b) list of the form [I.(], where I.(is a symbol
structure, or c) tuple of the form (I.(,, p2, ... fin, where pi is a
symbol structure for i = 1, ... n @1). The notation L#i is
used to refer to the it' element of a symbol L of structure
list. Similarly T@X is the value corresponding to ele-
ment X in tuple T. Note that the definition is recursive,
since the I.(and I.(+, in b) and c) respectively, may be non-
atomic, and is sufficient in the sense that any object of
any arbitrary structure as defined above can be classified
as above.

Model Base Organization

The entire model base is organized as an attributed acyc-
lic graph of definitional dependencies. There is indepen-
dence between the general structure of a model and the
detailed data for instances of it. For example, the various
instances of a model to determine the optimal product
mix would share properties of the general product mix
model. Thus, models are partitioned into classes, where
all instances of a class share certain common properties.
The classes are themselves organized into an is-a gene-
ralization hierarchy to form a taxonomy of models that
permits further inheritance of properties and also relates
a model to other models. A model is definitionally de-
pendent on its attributes and can be viewed as an aggre-
gation of these attributes, which can themselves be non-
primitive models. Such organization principles are often
used in knowledge representation (Jones 1985; Brodie,
Mylopoulos and Schmidt 1983) and modeling (Geoffrion
1987; Mannino, Greenberg and Hong 1988) since they
encourage modularity and stepwise specification as well
as aggregating models from smaller ones, and support
both top-down and bottom-up design.

The model base is viewed as a graph with models as
nodes, and typed arcs corresponding to the kind of rela-
tion between the participating nodes. In addition to the
above three types of relations, other relations may be de-

fined and these correspond to new arc types in the graph.
An example is the relation "solves" for a pair (Al, AJ,
where A, is a technique to solve problems in the class A,.
This organization is the knowledge representation link to
hypertext and facilitates easy and meaningful navigation
in the knowledge base. For example, the set of objects
reachable from an object A under a transitive relationship
R is the transitive closure of A under R and can be com-
puted recursively.

Modeling Language

We earlier emphasized the need for a symbolic represen-
tation for models. The knowledge to be represented is
normally available from domain experts and users of the
system. A modeling language is a vehicle to express this
knowledge and, hence, must provide features to declare
the information necessary to perform the functionality
listed above (in Features of a Model Management Sys-
tem). Secondly, a specific DSS requires the creation of
an application knowledge base by users in categories b)
and c); hence, the language should be usable by domain
experts and end-users who may be non-programmers. It
has also been argued that the language should be com-
puter-executable as well as suitable for communication
(Geoffrion 1987; Fourer 1983; Meeraus 1983) and this
essentially clinches the case for algebraic notation and a
symbolic modeling language, which is better suited for
user-machine communication, modification, and docu-
mentation.

In Max, this is achieved via a Model Declaration Lan-
guage (MoDeL) that consists of several statements to
declare various properties about models and is meant to
be used primarily by model base developers. These state-
ments include a brief textual definition of the concept,
declaration of definitional dependencies, classification of
the object, any mathematical equations, dimensions, as-
sumptions, and relations to other objects. Mathematical
equations are stated in an algebraic form that is close to
a natural mathematical representation. The language is
declarative so that order of the statements is irrelevant.
It also includes special structures to represent frequently
occurring data types in modeling real-world problems.
For instance, in various classes of models, there is a need
to represent data objects which have a variable number of
values of the same type (e.g., series of cash flows in a
financial model). The notation listof(X) is used to repre-
sent a variable number of occurrences of type X and cor-
responds to a vector having elements of type X. (A simi-
lar strategy is used in Oona, except for model hier-
archies.)

Example 1(B)

We will use some of the models from Example 1(A) to
illustrate the model declaration language in Max. For the
sake of brevity, we will omit details of other parts and

186

present only one level of detail. We use the abbreviations
LCC, AC, MC, and PC for Life Cycle Cost, Acquisition
Cost, Maintenance Cost, and Personnel Cost respectively.
Assume we have predefined models to compute present
value (pv) of a cash flow, and expected value of a series
of probabilistic outcomes.

pv: [amount, interest rate, time]
pv(a,r,t) = a/((l+r/l00)"t).
expected value: [listof(Outcomes), listof(Probabilities)].
expected value(X,P) = C(i,l,length(X),X#i * P#i).

Model Declaration Language Statements

Vessel: [Vessel Characteristics, LCC, designer, ship
builder]; "A vessel is a marine vehicle owned by
the U.S. Coast Guard."

Vessel Characteristics: [Displacement, Speed, Length,
Propulsion]

LCC [AC, MC, PC]; "The life cycle costs for a vessel
are determined by adding the present values of
various cost categories over the vessel's estimated
life."

LCC(AC, MC, PC) = AC + MC + PC.

LCC is - a Discounted Cost.

MC: [Base Cost (b), Inflation factor (f), No of years
(N); "The maintenance cost for a vessel is"

MC(BC,If,N,D) = C(i,l,N, pv(b*(l + f/100)"i,'Ml7#i,i).

MC is - a Discounted Cost.

The second category of users who create knowledge are
analysts who are mainly concerned with instantiating and
executing models. Hence, an important feature of the
modeling language is how it deals with data declaration
for model parameters. In MoDeL, the data values for
various parameters may be entered directly by the user,
be retrieved by a database reference, or be the output of
another model. For example, a value for a parameter
"interest rate" may be a number (e.g., 7.50), the output of
a deductive model (e.g., interest rate = 7.0 if Conditionl,
8.0 if Condition2) or the output of a mathematical model
(e.g., expected value([(8.5, 0.4), (8.0, 0.3), (7.5, 0.3)])).
This atlows the user a high level of flexibility and encou-
rages non-redundancy through use of logical references.

Example 1(C)

Suppose that a user wants to evaluate a certain vessel
(say, Vessel#4) that is a candidatate for acquisition. The
system will then determine from statements about the
model Vessel the kind of information required to create

an instance of it. We will illustrate a part of this process.
Suppose the system is prompting the user for a value for
Maintenance Cost (Figure 1). The user can specify the
value in a number of ways:

i) Enter a number, e.g., 1O00, or a non-numerical value,
e.g., "mc."

ii) Select to specify the value at a further level of detail;
the system then responds with prompts for the Base
Cost, Inflation factor and the number of years over
which the cost is to be computed (Figure 2).

iii) Specify the cost by reference to some other known
value, e.g., 2*(Vessell@LCC@MC).

iv) Select some other model to determine the value. For
example, if it estimated that the cost is 1500 with pro-
bability 0.6 and lo00 with probability 0.4, the user
may enter "expected value([1500,1000], [0.6,0.4])".

v) enter an expression which is some combination of the
above, e.g., 2*Vessell@LCC@MC + expectedvalue
([1600,Vessel3@LCC@MC],[0.6,0.4]).

At various stages the user may also obtain help or infor-
mation about the models in question, e.g., the user may
want to know about maintenance cost.

W-Create hew Instance o f Uetret -
instance Naae: /UeSsel #4

Rttribute Stack (Top Level +Current Rttribute):
l i f e Cycle Cost
Maintenance Cost

Current Rttribute: Maintenance Cost
List Position:
Constraints: none

0 Actual Value 0 symbolic Ualue

F k r e 1. Further Depth Gives You Maintenance Cost's Components

For existing instances, users may query about or modify
data values, or they may ask for explanations for com-
puted values. Data may also be transfered into reports or
documents. For computed values, the system displays the
result but maintains knowledge about how the value was
computed so that an explanation may later be generated.
Hence, if some of the parameter values happen to be
changed after the report was created, the report will
automatically show the new output. Figures 3 and 5 show

(Figure 2)

187

the result of a command to explain the Maintenance cost
of Vessel#4 which appears in a document (Figure 4).
This explanation is computed dynamically by a general
rule to explain data values. The user may also ask for
explanations at a deeper level of detail; e.g., how the Base
Cost was computed.

i ns t once Home: I Uesset *4

R t t r i b u t e Stock (Top Level 4 C u r r s n t R t t r i b u t e) :

Life Cycle Cost
Maintenance Cost
[Base Cost','X Rnnual increase','No of years1

Current R t t r i b u t e : B a s e Cost
L i s t P o s i t i o n : 1
Cons t ra in t s : none

Unlue: [t10.000,000

Figure 2. Entering a Value for Base Cost, a Component of
Maintenance Cost

<Maintenance Cost 534449 540743,

Heres how
(ATTRIBUTE.VALUE) PAIRS
[(Base cost, I oooOooo),(x Annual lncrease,5).(No of years.2O)l

FORMULA ZI , I .No of years,pv([l,USCG rates*l,Base Cast * (I +X Annual
increase)'! I))

RESULTING VALUE 5344449 540743

Figure 3. Explanation for Maintenance Cost

Model Manipulation Rules

The symbolic representation for models is derived from
statements in the model declaration language. These
statements are also treated as data and can be manipu-
lated to perform the features described in Section 3. Ac-
tions are processes to manipulate symbolic expressions
based on the representation of the model. The manipu-
lation rules are based on model structure, rather than
models themselves, and are therefore general-purpose
and domain-independent. In spite of the generalizations,
we need a mechanism to handle exceptions. This is done
by letting the specific rules, if any, for any action, over-
ride the general rules for that action. In the current im-
plementation, there are rules to support features (c), (d),
(e), (h), and (i), and partially support features (a), (g), 6)
and (k), and we illustrate some of these in Example 1(C).

253919.,7#
$ 3 8 9 6 0 f < d]

naintennnce C o a t
Personnel t o a t

Button Information Window
Button links...

(generated value)
This value was retrieved dire& from the KSS Information Base.
It is the retrieved value of -
<Vessel #4 @ Life Cycle Cost @ Maintenance Cash.

Figure 4. Selecting $534449 (the Maintenance Cost for Vessel #4)
causes a "pop-up menu" to appear with valid operations for
the selection. Note that key words are underlined in the do-
cument, generated values are boldface and links are itali-
cued.

Figure 5. Choosing "Button Short Description" calls up the [Defi-
nition] window shown here.

The rule-based action processing subsystem is the infe-
rence engine of the modeling system. It captures user
commands, determines and obtains a set of information
to execute the command, and triggers off rules for model
manipulation with this information as arguments or data.
For example, if a user asks for an explanation for the
number 534449, the system determines that it is the
Maintenance Cost for Vessel#4 and triggers the rule ex-
plain(X), with X = Vessel#4@Life Cycle Cost@Mainte-
nance Cost. The rules manipulate higher-order concepts
(such as is - a, listof, 2). For example, for any relation R,
R(Y), X is-a Y + R(X); or if R is transitive, R(A,B),
R(B,C) -+ R(A,C).

As in most DSSs, there are sets of rules to process
various actions on models: retrieve data, transform data,
query and modify, describe concepts, explain data values,
analyze changes, create new class instances, etc. For ex-
ample, to execute any model, the system determines the
data required and obtains it from the database or from
the user, transforms the data for the appropriate model,
and executes the model. The rule to describe a model
generates an initial description about a model (which is
not a pre-defined "help-text"), and provides the user with
a set of related concepts which the user may choose to
pursue for further information.

Maxi: Implementation of a Hypertext User Interface

Maxi is the user interface subsystem of Max. It is bi-
modal in that it can both access the knowledge base
directly and control a user workspace, called a document,
into which text and model results may be placed. Docu-

188

ments are integrated workspaces combining such objects
as standard text, business graphics, and spreadsheets.
These objects can be stored, queried and linked just as
any other system entity. The discretionary display of in-
formation (WYWWYWI) is implemented in several ways.
First, Maxi will recognize and process several types of
generalized hypertext buttons:

(1) Keywords: character strings registered in the know-
ledge base. (These include the names of all system
entities: models, data, documents, links and other
genr d i e d hypertext but tons.)

(2) Generated Values: retrievable results from the know-
ledge base. (These include both data that my be
looked up and model results that must be calculated.)

(3) Link Elements: both implicit system-generated and
explicit user-specified logical connections between
any two system entities

(4) Exchanges: document sections that can be hidden
from view or replaced by an alternative document
section.

(5) User-defined users may specify new button types
and provide instructions for how the system should
react to their selection.

Max provides several meta-level functions operating on
these buttons:

(1) Location: Maxi will determine which button(s) on
the computer screen have been selected and will offer
a list of options available. (See Figure 4 for an ex-
ample.)

(2) Descriptions: Maxi can generate a description of any
registered entity, telling what it is, how it was created,
or by whom it was entered, and what is directly re-
lated to it. In doing so, it makes use of whatever
model managment system is installed.

(3) Explanations: For generated values, Maxi can deter-
mine which model, function and data instance were
used to create it. (See Figure 5 for an example.)

(4) Linking: Two link paths logging the actions of the
user are maintained at aU times. A user can, at any
time, initiate a knowledge search (or information de-
tour) following explicit user-specified or implicit sys-
tem-generated links. The user can return to any
point along the lid paths. For example, while exe-
cuting a present value model, the user could request
information on interest rates. This would generate a
description including related keywords. The user
could then request information on any of these key-
words, and so on to the limits of the declared know-
ledge within the system.

(5) Adding Knowledge:

(a) A user can permanently record comments about
any system entity at any time, thus adding to the
organization’s knowledge base.

(b) A user can add new data instances of models
(scenarios) and new documents at any time.

(c) The KSS builder will be able to add new models
at any time.

(6) Suspending Operations: Whenever an operation
passes control to the user (for example, while waiting
for user input in a model execution), the user will be
able to stop working on this operation and start any
other (including halting the session). Later the link
paths can be used to return to where the work left
off.

Customizing the Interface

Maxi allows the user to customize most aspects of the
interface. For example, one may have several different
style modes for any given document. All text and busi-
ness graphic buttons may be highlighted or just certain
button types displayed; there may be a formal presenta-
tion mode, and a casual revision mode. One may swap
between modes by specifymg a mode index. In the fu-
ture, the user will be able to activate and deactivate links
with the same mode index, which will also be used to in-
stall one’s choice of exchange button sections. Finally,
the user may choose among several methods of high-
lighting. (See Figure 4 for some examples.)

7. CONCLUSION

Generalized hypertext and model management for DSS
are well-established concepts. That they are here to stay
is obvious. What forms they will take--what features they
will have, how they will be implemented--is yet far from
clear. The main results to date of our research and re-
flection on the problem of designing these DSS subsys-
tems are reported above. Two prototype systems, Max
and Oona, have been implemented for the U.S. Coast
Guard. Initial reaction from users has been enthusiastic.
Research and development will continue and will be the
subject of future reports.

8. ACKNOWLEDGEMENTS

The work reported on in this paper was funded in part by
the U.S. Coast Guard Research and Development Center,
Groton, Connecticut, with Steven 0. Kimbrough as Prin-
cipal Investigator (contract number DTCG39-86-C-
80348).

189

9. REFERENCES

Akscyn, R.; McCracken, D.; and Yoder, E. "KMS: A
Distributed Hypermedia System for Managing Knowledge
in Organizations." Proceedings of Hypertat-87, November
1987, pp. 1-20.

Applegate, L. M.; Konsynski, B.; and Nunamaker, J.
"Model Management Systems: Design for Decision Sup-
port." Decision Support Systems, Vol. 2, 1986.

Bernstein, M. The Bookmark and the Compass: Orienta-
tion Tools for Hypert4xt Users. Eastgate Systems, Inc., 138
Brighton Avenue Suite 206, Boston, MA 02134,1987.

Blaming, R. W. "An Entity-Relationship Approach to
Model Management." Decision Support Systems, Vol. 2,
1986.

Bonczek, R. H.; Holsapple, C. W.; and Whinston, A. B.
Foundations of Decision Support Systems, New York
Academic Press, 1982.

Bradley, S.; Hax, A.; and Magnanti, T. Applied Mathe-
matical Programming. Reading, MA: Addison-Wesley,
1977.

Breitman, R. "PLANETS: A Modeling System for Busi-
ness Planning." Znterjaces, Vol. 17, No. 1, January/Feb-
ruary 1987.

Brodie, M.; Mylopoulos, J.; and Schmidt, J. (eds.). On
Conceptual Modeling. New York Springer-Verlag, 1983.

Bush, V. "As We May Think." Atlantic Monthly, Vol,
176, July 1945, pp. 101-108.

Chesapeake Decision Sciences, Inc. MZMZ/Mk Manager
for Interactive Modeling Znterjaces. 1986.

Conklin, J. "A Survey of Hypertext." MCC Technical
Report #STP-356-86, Rev. 2, 12/3/87.

Dolk, D., and Konsynsk, B. "Knowledge Representation
for Model Management Systems." ZEEE Transactions on
Software Engineering, Vol. SE-10, No. 6, November 1984.

Elam, J.; Henderson, J.; and Miller, L. "Model Manage-
ment Systems: An Approach to Decision Support in
Complex Organizations." Proceedings of the Zntemational
Conference on Znfomation Systems, 1980.

Engelbart, D. C., and English, W. K. "A Research Cen-
ter for Augmenting Human Intellect." AFZPS Conference
Proceedings, Vol. 33 Part 1, Washington, D.C., The
Thompson Book Company, 1968.

Fourer, R. "Modeling Languages Versus Matrix Genera-
tors for Linear Programming." ACM Transactions of
Mathematical Software, Vol. 9, No. 2, June 1983.

Geoffrion, A. "An Introduction to Structured Modeling."
Management Science, Vol. 33, No. 5, May 1987.

Gevarter, W. B. "The Nature and Evaluation of Com-
mercial Expert System Building Tools." Computer, May
1982, pp. 42-41.

Hammerwohner, R., and Thiel, U. "Content Oriented
Relations Between Text Units: A Structural Model for
Hypertexts." Proceedings of Hypertat-87 Conference, Nov-
ember 1987, pp. 155-174.

Jarke, M., and Vassiliou, Y. "Coupling Expert Database
Systems." In W. Reitman (ed.), AI Applications for Busi-
ness, Norwood, NJ: Ablex, 1984.

Jones, C. V. Graph-based Models. Unpublished Ph.D.
Dissertation, Cornel1 University, 1985.

Jones, C. V. "User Interfaces." University of Pennsyl-
vania, Decision Sciences Department Working Paper 87-
11-10, 1987.

Katz, N., and Miller, L. "A Model Management System
to Support Policy Analysis." Decision Support Systems,
Vol. 2, No. 1, March 1986.

Kimbrough, S. 0. "On Shells for Decision Support Sys-
tems." University of Pennsylvania, Department of Deci-
sion Sciences Working Paper, 1986.

Kimbrough, S. 0. "The Argumentation Theory of Deci-
sion Support." University of Pennsylvania, Department of
Decision Sciences Working Paper, 1987.

Kimbrough, S. 0.; Coe, T.; Pritchett, C.; Roehring, S.;
Smith, J. A.; and Sprague, M. "A Decision Support Sys-
tem for Evaluation of Advanced Marine Vehicles." In
Jane Fedorowics (ed.), Transactions of DSS-86, Sixth Zn-
temational Conference on Decision Support Systems,
Washington, D.C., April 21-24, 1986, pp. 15-26.

Konsynski, B. R. "On the Structure of a General Model
Management System." Proceedings of the Fourteenth
Hawaii Zntemational Conference on System Sciences, 1980.

Liang, T. P. "Toward the Development of a Knowledge-
Based Model Management System." Ph.D. Dissertation,
University of Pennsylvania, Department of Decision
Sciences Working Paper 86-11-01, 1986.

Mannino, M.; Greenberg, B.; and Hong, S. N. "Know-
ledge Representation for Model Libraries." In B. R.
Konsynski (ed.), Proceedings of the Twenty-First Hawaii

190

Intemational Conference on System Sciences, Vol. 111,
1988, pp. 349-355.

Marchionini, G., and Shneiderman, B. "Finding Facts
versus Browsing Knowledge in Hypertext Systems." Com-
puter, January 1988, pp. 70-80.

Meeraus, A. "An Algebraic Approach to Modeling."
Joumal of Economic Dynamics and Control, Vol. 5, 1983.

Miller, G. A. "The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capability for Pro-
cessing Information." Psychological Science, Vol. 63,
1956, pp. 81-97.

Pollock, J. L.
Totowa, NJ: R o m a n & Littlefield Publishers, 1986.

Contemporary Theories of Knowledge.

Shneiderman, B. Designing the User Interfuce: Strategies
for Effective Human-Computer Interaction. Reading, MA:
Addison- Wesley Publishing Company, 1987.

Sprague, R. H., Jr., and Carlson, E. D. Building E'ective
Decision Support Systems. Englewood Cliffs, NJ: Pren-
tice-Hall Inc., 1982.

Sterling, L., and Shapiro, E. The Art of Prolog: Advanced
Programming Techniques. Cambridge, MA: The MIT
Press, 1986.

Trig, R. A Network-based Approach to T m Handling for
the Online Scientific Community. Unpublished Ph.D.
Thesis, University of Maryland, 1983.

191

