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1. INTRODUCTION 

Progress in decision support systems comes in a variety of 
forms. These include increased understanding of the or- 
ganizational consequences of machine-mediated decision 
making, improved knowledge regarding how to implement 
DSSs (decision support systems), advances in techniques 
for managing and maintaining DSSs, and improvements in 
DSS technology that result in enhanced functionality or 
reductions in the cost of building particular DSSs. The 
progress in DSS reported here falls under the latter cate- 
gory. The research motivation for this work may, briefly, 
be described as follows. 

A DSS is a software tool that facilitates working with data 
and models. It is widely agreed that building particular 
DSSs can be done faster and more economically if general- 
purpose, reusable software is available for performing 
standard DSS functions (Sprague and Carlson 1982; Kim- 
brough 1986). Economies arise both from reusing existing 
software and from working in a familiar, standardized 
environment. For certain of the DSS functions or com- 
ponents (e.g., business graphics, report writing, database 
management) design principles and implementation techni- 
ques are well advanced and commercial products of high 
quality are on the market. For other DSS components 
(e.g., model management systems, hypertext systems) there 
is broad agreement that they are needed and valuable, yet 
comparatively little is known about what functionality the 
components should have or how that functionality should 
be implemented. 

In the case of hypertext, a few systems are on the market 
but requirements and capabilities for DSS hypertext inter- 
faces are far from being fully worked out and understood. 
Research on these systems is only beginning. In the case 
of model management, there has been extensive research 
but it has not yielded consensus as to exactly what model 
management is or what features a model management 
system should have. Research model management systems 
of limited scope have been implemented. For example, 
WHIMS (Wharton Interactive Modeling System) manages 
microanalytic simulation models (Katz and Miller 1986). 
PLANETS (Productionbcationhalysis Network System) 
allows analysts to define a business environment and spe- 
cific business assumptions. It provides automatic feasibility 

checks for any potential scenario and performs automatic 
generation, solution, and interpretation for mathematical 
models. It is used by General Motors and has resulted in 
savings in excess of $1 billion (Breitman 1987). Commer- 
cial model management systems are, however, non-existent. 

We have explored hypertext and model management in 
the context of DSS and have implemented two prototype 
systems (Max and Oona) currently in use by the U.S. Coast 
Guard. The purpose of this paper is to report on and 
discuss our findings. In section 2, we begin by presenting 
background material and briefly discussing the central 
technical ideas (generalized hypertext and model manage- 
ment) for these systems. 

2. BACKGROUND 

During the next ten years, the U.S. Coast Guard will in- 
vest more than a billion dollars in acquiring replacement 
assets (ships, airplanes, helicopters, etc.) for its present, 
aging fleet. The cost of operating and maintaining these 
assets will be several times the acquisition cost. Because 
of the importance and complexity of the capital asset ac- 
quisition problem, the Coast Guard has initiated a project 
aimed, in part, at systematically developing software for 
support of acquisition decisions. The goal is to produce a 
series of specific decision support systems (also called 
knowledge-based decision support systems, or KSSs) in 
support of particular acquisition projects, but based on 
generic and highly reusable system software. The work 
reported here was done as part of the Coast Guard’s KSS 
project. 

Early on in the project, the decision was taken to build a 
general environment--or shell--for building and running 
particular KSSs. The concept of a KSS shell is similar in 
some ways to that of a DSS generator (Sprague and Carl- 
son 1982, p. 11). The idea is that the shell is a powerful, 
general-purpose software system that facilities the con- 
struction of particular DSSs (or KSSs) and provides a 
variety of features. Because the technology employed 
(symbolic programming) and the feature set implemented 
(hypertext, expert systems inference engines, extensive 
model management facilities) in our KSS shell design 
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greatly subsumes that of traditional products that go by 
the name of DSS generators (Express, IFPS, Empire), it 
seemed appropriate to use the term shell to describe the 
focus of our efforts. (See Kimbrough [1986] for a related 
discussion of the idea.) 

There are three essential modules in our DSS (or KSS) 
shells. First, there is a high-level process that makes in- 
ferences and provides control over the entire DSS. As 
currently implemented in both Max and Oona, this pro- 
cess is in the form of a Prolog meta-interpreter (Sterling 
and Shapiro 1986) and as such resembles an inference 
engine for a conventional rule-based expert system. Be- 
cause space is limited and because our current implemen- 
tations (Max and Oona) are not innovative in this regard, 
we will not discuss further the high-level control. The 
second essential module is a model management system. 
(In the existing prototypes, written in Prolog, data is 
treated as a special type of model, so the model base 
management system manages both data and models.) We 
discuss design concepts and principles for model base 
management in section 3. Finally, the third essential mo- 
dule is a user interface, or display, (sub)system. Our de- 
sign and implementations have been much influenced by 
hypertext concepts, although we have added features not 
found in other systems. We discuss these in section 4. 

3. MODEL MANAGEMENT 

Decision Support Systems employ, as do human decision- 
makers, a variety of models to solve problems and re- 
commend courses of action. A model is simply an ap- 
proximation of some real-world phenomenon, or a set of 
assumptions (e.g., architects construct models of the 
buildings they plan to build, management scientists model 
service departments as queue systems, etc.; here we are 
concerned with computer-executable models). The model 
management system must manage the tasks involved in 
making, evaluating, and explaining the consequences of 
these assumptions. 

Hence a model management system must facilitate ex- 
pression of knowledge about models, exercising this 
knowledge, and explaining the results obtained from using 
these models. It may be argued that such functionality 
could be included in any DSS by writing procedures to do 
each of those tasks; that would be to miss the point. The 
idea of an MMS is to provide this functionality in a gene- 
ral-purpose form (or as general as possible) which can be 
applied to a wide class of applications or sets of models. 

Broadly speaking, we recognize three user roles for an 
MMS, corresponding to the three activities mentioned in 
the previous paragraph model builders, who construct 
the models and provide the domain knowledge that en- 
ables the MMS to perform in that domain; model users 
and analysts, who exercise these models or solve and ana- 
lyze actual problems by providing the data and create 

reports; and decision-makers, who may browse through 
the reports and make decisions based on these analyses. 
They are responsible for these decisions and must be able 
to just@ them. Decision-justification, often omitted in 
models of decision-making, is an important function of a 
DSS and must be supported by its model management 
component. In fact, we take the stronger view that the 
main purpose of a DSS is to assist users in constructing 
and evaluating arguments for courses of action (Kim- 
brough 1987). 

The above discussion leads to the following two metapho- 
rical statements about model management systems: an 
MMS is like an operating system for models, i.e., it 
handles models in general, as an operating system 
handles files, irrespective of their content or application; 
and an MMS is like an expert system for modeling: it 
attempts, through intelligent-seeming behavior, to fill the 
position of an human expert in modeling. This contrasts 
somewhat with the view, taken in previous literature, in 
which a model management system has been likened to a 
data base management system ("models, like data, need 
to be stored, retrieved, shared [Elam, Henderson and 
Miller 1980; Liang 1986]), and described as "a structured 
milieu for storing, manipulating, and retrieving models" 
(Dolk and Konsynski 1984). The analogy with DBMSs, 
though not inappropriate, does not sufficiently describe 
the functionality of a model management system. We 
attempt to develop a list of features by looking at the 
steps in a modeling life cycle and the user roles that an 
MMS should support. We will develop these using the 
following example. 

Example 1(A) 

We consider here a part of the Vessel Acquisition pro- 
cess in the U.S. Coast Guard. The process includes mea- 
suring various attributes of different vessels and eval- 
uating costs over their estimated life. Assume that we 
are interested in a set of Vessel characteristics, Life Cycle 
Cost, Designer, and Builder of the Vessel. Also assume 
that the total Life Cycle Cost (LCC) is computed using a 
simple mathematical model that sums various costs, in 
this case, Acquisition Cost (AC), Maintenance Cost 
(MC), and Personnel Cost (PC), i.e., LCC = AC + MC 
+ PC. 

Each of these components is computed using a mathema- 
tical model. For example, the Maintenance Cost over the 
vessel's lie is computed by adding the discounted values 
for Maintenance Costs, for each year in the vessel's life. 
The maintenance cost for year j, MCj, is calculated by 
inflating a Base Cost by an inflation factor and then dis- 
counting it to get the present value. Hence, if b is the 
Base Cost, i is the percent annual increase in main- 
tenance cost, r is the discount rate, and N is the vessel's 
life span, we have 
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N 
MC = c MC. /(l+(r/100))’ 

j = l  J 

Letting pv(T,R,A) be a function that returns the present 
value of a cash flow A, that occurs T periods from now, 
with a discount rate R, we have 

N 
MC = C pvCj,r,MC. ), where MC. = b*/(l+(i/100))’ 

j = l  J J 

N 
MC = Jc= pvCj,r, b*(l+ (i/100))’). 

Further assume that the discount rate r varies over the 
life span, and that the rate for each year is computed 
using a model M1 that uses forecasts by OMB and by 
RAND Corporation. For the moment we will ignore 
other details of this example. We now examine what an 
MMS should do in terms of the three user roles dis- 
cussed earlier, using the above example for illustration. 

(a) Model builders: A model builder would construct 
the various models to support the Vessel evaluation 
and comparison process. In the above description, 
we decomposed the entire problem into smaller 
problems. For example, the total life cycle cost is 
computed as a simple summation of its components, 
though there are more complicated models under- 
lying each component. The MMS must similarly sup- 
port building of complex models from simpler ones, 
either by composing models or modifying them. This 
is important since the sub-models may have indepen- 
dent existence and multiple use. In order for the 
builder to know about existing models (e.g., present 
value model), the MMS should be able to describe 
these models in terms of their essential characteris- 
tics (e.g., the parameters and formula for the present 
value model). The modeler should be able to ex- 
press mathematical relationships in a natural mathe- 
matical form without having to program the compu- 
tation. 

(b) Model users: Model users or analysts would be inte- 
rested in analyzing or evaluating particular vessels by 
providing values for different attributes of each ves- 
sel. The MMS should identify and report on the 
kind of data required for this evaluation and at a 
level of detail that is at the user’s discretion (For a 
vessel, we need its life cycle cost and other charac- 
teristics; for the l i e  cycle cost, we may need to know 
the acquisition cost, maintenance cost, and personnel 
cost; and so on.) It should also facilitate the declara- 
tion or acquisition of this data in a flexible form. For 
example, for vessel 1, the life cycle cost could simply 
be a multiple of the life cycle cost of vessel 2, and the 

cost €or vessel 2 may be an expected value of some 
estimated costs, whereas for vessel 3, life cycle cost 
may be computed at a further level of detail, i.e., by 
computing the various components. Again, the MMS 
should be able to explain various models and compo- 
nents of models to the users. 

(c) Decision makers: Finally, assume certain reports 
have been created that contain outputs from models, 
based on which decisions have to be made. The user 
may want to know how certain results were com- 
puted, what models were used, where the data was 
obtained, etc. Most of these queries would be ad 
hoc; hence, the MMS must have a general capability 
to provide this information based on its knowledge 
about the models. For example, an interaction bet- 
ween the user and the system may be to the following 
effect: 

User: 

System: It had the minimum Life Cycle Cost ($1000 

Why was vessel 1 selected? 

4. 
User: 

System: Life cycle cost = Acquisition cost + Main- 
tenance cost + Personnel cost; for vessel 1, 
Acquisition cost = $200 m, Maintenance cost 
= $300 m, Personnel cost = $500 m. Hence 
Life cycle cost = $1000 m. 

How was this number computed? 

User: What is Maintenance cost and how is that 
computed? 

Below, we briefly describe a set of features that need to 
be present in a model management system. In sections 5 
and 6, we describe how these are addressed in two imple- 
mentations, Oona and Max. This discussion refers to 
data models, mathematical models, and deductive models. 
A data model is simply a vector of the type [Ml,M2, ... M,], 
where the Mis are themselves arbitrary models. A math- 
ematical model M is a symbol that assigns a value V to a 
tuple T = (tl, t2, ... tJ according to some rule. A deduc- 
tive model, in the present context, is like a set of IF- 
THEN condition pairs and stipulates a set of conclusions 
corresponding to a set of premises being satisfied. 

Feature Categories of a Model Management System 

(a) Construct new models, and integrate with existing 
ones: this involves adding models, as well as know- 
ledge about the models, to the model base (e.g., to 
add a knapsack model to a mathematical program- 
ming knowledge base, one would need to set up the 
general form of the model, declare information about 
solution algorithms and programs, and relate it to 
other integer programming paradigms). A new 
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model may be created from scratch or be set up by 
combining or modifying other existing models. 

(b) Identify and formulate problems into known models: 
formulate a model to determine the optimal product 
mix (Bradley, Hax and Magnanti 1977) as a linear 
program by defining the decision variables, objective 
function and constraints. 

(c) Describe models, parameters, other related models: 
the system must be able to describe what it knows 
(e.g., before using a product mix model, a user may 
want a description about it, how to interpret its re- 
sults, related concepts like the simplex method, or 
where to look for aditional documentation). 

(d) Identify data requirements: the system should figure 
out what data is required to execute a model (e.g., 
for the product mix model, it would need a list of raw 
materials with availabilities, final products with unit 
profits, and activity coefficients). 

(e) Data extraction: very often the data to run a model 
would be available elsewhere in the database and 
could be obtained automatically by a set of projec- 
tions from different relations in the database. The 
above two are important steps in integrating models 
with data, or more precisely, integrating mathemati- 
cal models with data models, while retaining the in- 
dependence between them. They have received some 
attention in research on expert database systems 
(Kershberg 1986; Jarke and Vassiliou 1984), but not 
much in modeling systems. 

( f )  Verlfy model validity: it may be possible to perform 
certain automatic checks for model validity (e.g., 
there is probably an error if a new model being set 
up adds the outputs of two models, one of which out- 
put is a character string). 

(g) Verify data validity: the system should recognize an 
error if, in the present value model, the value for the 
interest rate has dimension feet. 

(h) Solve/execute models: the system would need to de- 
termine an appropriate program or solution techni- 
que to solve a model, instantiate the model, and 
execute it. Execution includes rewriting a model in 
an equivalent form, re-expressing it after certain sub- 
stitutions, computing the output as a number, com- 
puting an analytic solution, or drawing certain conclu- 
sions. 

(i) Explain model results/outputs: this involves an inter- 
pretation of the results, how the results were com- 
puted, parameters and their values, source and reli- 
abililty of data, and other factors required to justify a 
decision made using these results. 

(j) Analyze changes: this includes computing the effects 
of changes in parameter values, either numerically or 
analytically (e.g., the rate of change by taking first 
derivatives). 

(k) Manage the model base: the system needs to man- 
age the storage, retrieval, access (perhaps concurrent 
and shared) and updating of models, and integrity 
and consistency of the model base. 

This list is not meant to be definitive. Various re- 
searchers have proposed different feature sets (Liang 
1986; Geoffrion 1987; Applegate, Konsynski and Nuna- 
maker 1986), and it is not yet absolutely clear exactly 
what features must be supported in modeling systems. 
The above model management activities correspond to 
different phases in a modeling life cycle and are meant to 
serve the three categories of users mentioned earlier. 
For example, the end-users in categories (b) and (c) 
would benefit most from activities (b), (c), (d), (e) and 
(i), whereas model base developers would benefit from a 
high-level implementation of (a), ( f )  and (h), as well as a 
facility to build in the knowledge required for the other 
activities. 

Model Management Implementation 

Given the above set of features for a model management 
system, we identify four specific issues as being central to 
the implementation of such a system: model representa- 
tion, model base organization, a modeling language to 
express knowledge about models to derive this represen- 
tation, and rules to process and manipulate this represen- 
tation. 

The issue of model representation has been addressed 
from the viewpoints of database systems, artificial intel- 
ligence, and decision support systems (Bonczek, Hols- 
apple and Whinston 1982; Konsynski 1980; Blanning 
1986). Three main techniques have been used for model 
representation: models as subroutines, models as data, 
and models as statements in a modeling language 
(Sprague and Carlson 1982; Dolk and Konsynski 1984; 
Blanning 1986). Our implementation approach is to re- 
present models symbolically, as symbols that represent 
various concepts related to a model. Knowledge about 
models is represented as statements in a modeling lan- 
guage. Due to the lack of distinction between programs 
and data in a symbolic language, model-independent 
manipulation rules can directly manipulate this knowledge 
("Thought consists of the manipulation of sentences in the 
language of thought" [Pollock 1986, p. 163]), and we can 
view models both as statements and as data. Our philo- 
sophical approach to model representation is that models 
are (complex) individuals, about which predication may 
be applied. The model individuals are named (using sym- 
bols) in the model declaration language. Properties of 
these individuals may be declared or inferred using the 
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declarations in the model declaration language (and in- 
ference engines for inferred properties). These declara- 
tions may be logically quite complex, including such fea- 
tures and quantification across sentence operators if need 
be. Given this logical point of view, Prolog is a natural 
choice for a programming language to implement the mo- 
del management system, but it is hardly necessary. Any 
symbolic computing environment will do. 

4. THE DISPLAY SYSTEM 

Meeting the following requirements is, we believe, largely 
the responsibility of the user interface (or display) 
module for a generalized DSS shell. 

1. Users (and system builders) should have access to 
any system entity (e.g., data, models, meta-knowledge 
about data and models) consistent with security and 
integrity requirements. 

Access to system entities should be facilitated by con- 
text. For example, a component of a model would be 
a system entity. Access to this component might be 
had noncontextually by allowing the user to request a 
standard report on the component at any time. Con- 
text-based access could occur, by having the user dis- 
play the model, point to the model component, pull 
down a window menu of available options, and 
choose the option that generates the standard report 
on the component currently pointed to. Besides faci- 
litating such context-dependent access to information, 
the system should provide material assistance to a 
user in traversing (navigating through) various con- 
texts and returning to the desired point in the sys- 
tem's context space. 

2. 

Together, these two requirements generate what we call 
the WYwwYWI ("what you want, when you want it," 
pronounced "weeweewee") principle for DSS interface 
design. Implementing them, and supporting communica- 
tions to the model management system, is the job of the 
user interface. It is difficult to overemphasize the impor- 
tance of a good interface. 

Understanding model behavior may de- 
pend less on the actual models than on 
how the models are packaged .... The user 
interface should facilitate and not hinder 
the editing process .... Developing insight 
on model behavior is ultimately a pro- 
cess of discovery, of finding trends, sur- 
prising behaviors and comparing the be- 
havior of the model to what is expected 
or observed. [Jones 1987 

It is well established that people can only cognitively 
handle small amounts of information at one time (Miller 

1956). When faced with complex problems, people will 
decompose them into increasingly smaller subproblems 
until they are of a manageable size (Shneiderman 1987). 
Different people will choose to break problems down in 
different ways and by different cognitive methods. A DSS 
should help us to understand and work in a complex do- 
main and should aid us in the decomposition of a large 
problem into manageable chunks. In implementing this 
we must ask Can we provide an interface that allows a 
user to regulate the amount of information visible at any 
given time while retaining access to all other knowledge 
concerning the problem domain? Can we provide an in- 
terface that gives a user the ability to format both the 
viewing environment and the knowledge displayed within 
it? Generalized hypertext (an extension of traditional 
hypertext) enables the implementation of WYWWYWI 
for an affirmative answer to these concerns. 

Hypertext 

Traditional hypertext is the concept of linking related in- 
formation entities or nodes and facilitating the rapid com- 
puterized transfer between them. Any computer program 
that supports this informational structure can be called a 
hypertext system. For example, in a hypertext encyclope- 
dia article, a user could specify a reference and the sys- 
tem could automatically transfer him/her to the article 
referred to in the reference. A mechanized version of 
hypertext was first proposed in Bush's Memex system 
(Bush 1945). The first computerized hypertext system 
was implemented by Engelbart more than twenty years 
ago (Engelbart and English 1968). Heretofore, con- 
strained by the availability of abundant and inexpensive 
computer processing and memory, hypertext has only re- 
cently enjoyed widespread implementation and use. (For 
a discussion of hypertext design issues see (Akscyn, Mc- 
Cracken and Yoder [1987]. For a detailed survey of the 
field see Conklin [1987].) 

Hypertext encourages (but does not restrict the user to) 
the display of information in small portions. Nodes 
should ideally represent a single concept and the links 
should implicitly or explicitly convey the relationship bet- 
ween two or more nodes. Hypertext systems enable 
people to communicate in a non-sequential, multi-path 
fashion. Information is not restricted to a single thread 
of text with one start and one end point as in a normal 
text document and users are free to follow links and ex- 
plore information nodes in any order they wish. Thus a 
central distinction of a hypertext system is that it is speci- 
fically designed to allow users to browse through volumes 
of information (Marchionini and Shneiderman 1988). 
The user and builder should be able easily to check what 
further information is available at any time, and then 
transfer to that new knowledge. Of course, it is impor- 
tant to implement this in a manner that will not over- 
whelm the user of the system. 
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Generalized Hypertext 

Generalized hypertext will give both the builders and 
users of applications and models access to hypertext fea- 
tures in all functions and parts of the DSS shell and its 
applications. It is the mechanism for implementing the 
WYwwYWI concept in which the user is able to regu- 
late the amount and format of information visible at any 
given time at all levels of the DSS process, including DSS 
construction, analysis and control. 

Nodes and Buttons 

The concept and implementation of nodes varies from 
one hypertext system to the next. In traditional systems, 
a node is the origin or destination of a l i i .  Sometimes it 
will be a point (e.g., a word); more often it is one or 
more paragraphs of text. Many systems fur the size of a 
destination node (Conklin 1987). We have generalized 
the concept of the node to that of a generalized hypertext 
button. A button is simply any entity known to the sys- 
tem. Any button may be linked to any other button. 
This means that any system entity (DSS application, 
model, datum, document, key word, link, etc.) can be 
l iked to any other entity. Alternatively, a button could 
be logically connected only to the knowledge reasoned 
about it. As part of our research, we are developing a 
formal framework for generalized hypertext buttons. 

Linking 

Traditionally, hypertext systems have been intended to 
deal with the presentation of ideas. Builders of hypertext 
nodes are generally authors expressing their thoughts or 
research in a nonlinear fashion, representative of the 
structure of their ideas. Users are readers who initially 
may follow the links established by authors, but are able 
to create additional links and make on-the-spot annota- 
tions at will. 

In most hypertext systems, liiks are (usually) explicitly 
established by an author or user, although occasionally 
they are implicitly generated by a system action. Gene- 
rally two types of explicit links are supported, organiza- 
tional links and referentiul links. 

Organizational links exist in systems supporting a struc- 
tured node hierarchy similar to a semantic net. Textnet 
(Trigg 1983), for example, has toc (table of content) 
nodes that contain an outline of the underlying text struc- 
ture for a given relation. Organizational links connect the 
parent toc node with its corresponding children, either 
lower level toc nodes or chunk nodes containing the ac- 
tual text. 

Referential links are links employed by the author or user 
to establish a connection between two arbitrary nodes. 

Many systems allow these referential links to be typed. 
For example, Textnet, a system for authoring and criti- 
quing documents, has 54 link types such as "refutation," 
"explanation," and "generalization." These link types are 
important in establishing a structure for the node network 
and can guide a user in visualizing the relationship bet- 
ween a series of nodes. 

In a traditional hypertext system, implicit links can be 
generated by the system when it performs a keyword 
search. Normally, the user browses the information base 
by explicitly traversing established links among nodes. 
However, when a user searches for an arbitrary keyword, 
the system will often create internal links to move the 
user from his present position to a node representing the 
search outcome (Conklin 1987). 

Links may have associated weights or other characteristics 
to direct the linking process or they may have procedures 
attached that are invoked when the link is traversed. Al- 
ternatively, they may simply contain or represent pointers 
between nodes. 

One of the main differences between text found in a DSS 
and that in a more standard hypertext system is the type 
of information represented. Traditionally, hypertext sys- 
tems represent ideas recorded by authors. Most links 
tend to be explicit because the system is generally unable 
to comprehend the meaning of text and determine rela- 
tionships between common ideas or topics. Some hyper- 
text researchers are currently addressing this issue of con- 
tent analysis (Hammwohner and Thiel 1987) and others 
are looking into other ways to establish relationships bet- 
ween nodes through the structure of node hierarchies, 
typed nodes and typed links automatically (Trigg 1983; 
Conklin 1987). Because its elements (e.g., data and 
models) can be thought of as entities whose names and 
components are recognizable expressions (ie., nodes), a 
DSS lends itself to the automation of hypertext linking. 
An intelligent knowledge-based system can use these ex- 
pressions automatically to establish direct and indirect 
connections among the various entities known to it. One 
of our contributions has been to greatly extend the do- 
main of implicit, system-generated links. In both Max 
and Oona, most of the links among nodes are automati- 
cally generated by the system. We believe that a general 
theory of system-generated linking is possible, but discus- 
sion of that is beyond the ambitions of this payer. 

Disorientation 

An important issue in the design of any hypertext system 
is "managing the hyperspace." The representation and 
execution of buttons and links will affect how a user navi- 
gates through the system knowledge, application and do- 
cument base. It is easy to become disoriented while navi- 
gating the myriad of links and nodes in an environment 
that encourages one to transfer among a plethora of dis- 
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tinct pieces of information (Bernstein 1987). We are ex- 
ploring methods of enabling the user to maintain his or 
her orientation at all times (e.g., by providing a computed 
"Where am I?" function), but at present we rely on a sys- 
tem log that can be recalled and used to move to a pre- 
viously-occupied node. At the very least, we hope to add 
a graphical view of the current system status. 

Meta-Level Control 

To allow for a truly flexible system with applications be- 
yond the intentions of the shell designers, all aspects of 
the system should be customizable. The user should be 
able to create new button types and append to or replace 
any shell or application routine. Alternatively, the user 
should be able to insert a "demon" (a procedure which 
monitors the system, performing an action only when an 
activating condition takes place) (Gevarter 1987). Such 
changes, moreover, should be capable of being made un- 
der program control (rather than merely by editing). Our 
existing prototypes lack any si&icant form of meta-level 
control, as do all present hypertext systems of which we 
are aware. 

5. OONA 

Oona is a prototype DSS employing the shell, the model 
management, and (to a degree) the hypertext concepts 
discussed above. Oona is written in Prolog and runs in 
the VAX V M S  environment, using VT240 and above 
(mouseless graphics) terminals. The model (and data) 
management system is central to the shell and includes 
two key elements. The first is a series of conventions for 
declaring models (and data) and for declaring properties 
of models (and data), including such information as the 
type of model (e.g., external FORTRAN, internal, written 
in the system's modeling language; interactive, requiring 
user inputs - a unidimensional utility function elicitation 
program is included) as well as other information about 
the model (e.g., source, reliability, location of documenta- 
tion). These conventions may aptly be described as a 
model declaration language. The second key element to 
the model management system is an evaluator. This eval- 
uator is able to match models to appropriate data sets. 
In the event that the model is expressed in the system's 
modeling language, the evaluator is able to evaluate the 
model and produce the result. If the model is, an exter- 
nal FORTRAN model, the evaluator is able to direct ap- 
propriate calls to the operating system and to report back 
the results of running the model. If the model is written 
in Prolog, but not in the system's modeling language, the 
evaluator is able to call the appropriate Prolog routine 
and to report back. Finally, the evaluator keeps track (in 
conjunction with other elements of the system) of model 
results that are already known so that requests for model 
outputs will not needlessly result in model execution. 

Control of the system is via a high-level meta-interpreter 
that results in a cascading model graph architecture 

(Kimbrough, et al. 1986). The user interface is menu- 
and (primarily) command-driven. Once a model is de- 
clared and known to the system, generic commands are 
available for displaying the model in symbolic form and 
for further (recursive) exploring of the constituent sym- 
bols in the displayed model. To illustrate, three models 
are integrated via a multiattribute utility function. There 
are two performance models (SAR, performance on 
search and rescue, and ELT, performance on enforce- 
ment of laws and treaties), both written in FORTRAN. 
The model declaration language associates symbols with 
these routines. The third model is a cost model (CASH- 
WHARS) and is written in the system's modeling lan- 
guage. At the top level, a user could see the utility model 
expressing the overall value of a given ship: 

u(ship1) = 
k(l)*u(l,sar(shipl)) + k(2)*u(2,elt(shipl)) + k(3)*u(3,cost(shipl)) 

At this point, generic commands are available for ex- 
ploring shipl, k(2), u(3,*), or any symbol declared in the 
model declaration language and known to the system. 
These generic commands work on any such symbol, and 
so are reused from one particular DSS to another. To 
emphasize the point, the generic commands effectively 
produce automatic linking of declared objects (and their 
parts) in the model base, which objects become (virtual) 
hypertext nodes. (For an earlier implementation of some 
of the user interface ideas in Oona, see Chesapeake De- 
cision Sciences [1986]) As in any DSS, users may inter- 
actively run models and retrieve data; they may alter in- 
put data and, to a degree, the models themselves, and see 
the consequences of changed assumptions. In addition, 
with Oona users may interactively explore the logical rela- 
tionships among model elements and may ask, what the 
source of gasoline price was and where this parameter is 
used in the models known to the system. 

6. MAX 

Max (MacIntosh KSS) is a general-purpose, reusable en- 
vironment for creating and working with Knowledge- 
based Decision Support Systems (KSS). It is a tool to 
help KSS builders and users and is implemented in Pro- 
log on the MacIntosh. Max manages the common tasks 
in problem-solving, model management, and user- 
machine interaction that are independent of any particu- 
lar application, freeing the builder to focus on the appli- 
cation knowledge. It consists of three main modules: a 
user interface module, a model (and data) management 
module, and a control module. A specific KSS is ob- 
tained by combining Max with a specific knowledge base 
written in the modeling language of Max. 

Model Management in Max 

Model Representation 

In Max, models are represented as statements in a 
modeling language that represent various concepts related 

185 



to a model. A conceptual model is defined as a collec- 
tion of symbols and relations between symbols, or sets of 
symbols, on which a variety of actions can be performed. 
An action is a process that manipulates symbols and sym- 
bol-relation sets. A symbol is different from its name; it 
stands for concepts and information about it. For exam- 
ple, the symbol Q standsdamong other things), for con- 
cepts such as lim(x->Q,e /.!) = Q. A symbol can be a 
simple object like Cost or Name or a compound object 
like Linear Program. 

Each symbol has an associated symbol structure. In Max, 
the basic building blocks or primitives for symbol struc- 
tures are atoms, lists, and tuples. An atom is a unit: a 
number, alphabet, or word. A list has an arbitrary num- 
ber of objects of the same type and the order is irrelevant 
@e., is treated as irrelevant by the system). A tuple has a 
fixed ordering of a given number of objects of arbitrary 
types. Thus, a symbol has one of the following structures: 
a) atomic, b) list of the form [I.(], where I.( is a symbol 
structure, or c) tuple of the form (I.(,, p2, ... fin, where pi is a 
symbol structure for i = 1, ... n @1). The notation L#i is 
used to refer to the it' element of a symbol L of structure 
list. Similarly T@X is the value corresponding to ele- 
ment X in tuple T. Note that the definition is recursive, 
since the I.( and I.(+, in b) and c) respectively, may be non- 
atomic, and is sufficient in the sense that any object of 
any arbitrary structure as defined above can be classified 
as above. 

Model Base Organization 

The entire model base is organized as an attributed acyc- 
lic graph of definitional dependencies. There is indepen- 
dence between the general structure of a model and the 
detailed data for instances of it. For example, the various 
instances of a model to determine the optimal product 
mix would share properties of the general product mix 
model. Thus, models are partitioned into classes, where 
all instances of a class share certain common properties. 
The classes are themselves organized into an is-a gene- 
ralization hierarchy to form a taxonomy of models that 
permits further inheritance of properties and also relates 
a model to other models. A model is definitionally de- 
pendent on its attributes and can be viewed as an aggre- 
gation of these attributes, which can themselves be non- 
primitive models. Such organization principles are often 
used in knowledge representation (Jones 1985; Brodie, 
Mylopoulos and Schmidt 1983) and modeling (Geoffrion 
1987; Mannino, Greenberg and Hong 1988) since they 
encourage modularity and stepwise specification as well 
as aggregating models from smaller ones, and support 
both top-down and bottom-up design. 

The model base is viewed as a graph with models as 
nodes, and typed arcs corresponding to the kind of rela- 
tion between the participating nodes. In addition to the 
above three types of relations, other relations may be de- 

fined and these correspond to new arc types in the graph. 
An example is the relation "solves" for a pair (Al, AJ, 
where A, is a technique to solve problems in the class A,. 
This organization is the knowledge representation link to 
hypertext and facilitates easy and meaningful navigation 
in the knowledge base. For example, the set of objects 
reachable from an object A under a transitive relationship 
R is the transitive closure of A under R and can be com- 
puted recursively. 

Modeling Language 

We earlier emphasized the need for a symbolic represen- 
tation for models. The knowledge to be represented is 
normally available from domain experts and users of the 
system. A modeling language is a vehicle to express this 
knowledge and, hence, must provide features to declare 
the information necessary to perform the functionality 
listed above (in Features of a Model Management Sys- 
tem). Secondly, a specific DSS requires the creation of 
an application knowledge base by users in categories b) 
and c); hence, the language should be usable by domain 
experts and end-users who may be non-programmers. It 
has also been argued that the language should be com- 
puter-executable as well as suitable for communication 
(Geoffrion 1987; Fourer 1983; Meeraus 1983) and this 
essentially clinches the case for algebraic notation and a 
symbolic modeling language, which is better suited for 
user-machine communication, modification, and docu- 
mentation. 

In Max, this is achieved via a Model Declaration Lan- 
guage (MoDeL) that consists of several statements to 
declare various properties about models and is meant to 
be used primarily by model base developers. These state- 
ments include a brief textual definition of the concept, 
declaration of definitional dependencies, classification of 
the object, any mathematical equations, dimensions, as- 
sumptions, and relations to other objects. Mathematical 
equations are stated in an algebraic form that is close to 
a natural mathematical representation. The language is 
declarative so that order of the statements is irrelevant. 
It also includes special structures to represent frequently 
occurring data types in modeling real-world problems. 
For instance, in various classes of models, there is a need 
to represent data objects which have a variable number of 
values of the same type (e.g., series of cash flows in a 
financial model). The notation listof(X) is used to repre- 
sent a variable number of occurrences of type X and cor- 
responds to a vector having elements of type X. (A simi- 
lar strategy is used in Oona, except for model hier- 
archies.) 

Example 1(B) 

We will use some of the models from Example 1(A) to 
illustrate the model declaration language in Max. For the 
sake of brevity, we will omit details of other parts and 
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present only one level of detail. We use the abbreviations 
LCC, AC, MC, and PC for Life Cycle Cost, Acquisition 
Cost, Maintenance Cost, and Personnel Cost respectively. 
Assume we have predefined models to compute present 
value (pv) of a cash flow, and expected value of a series 
of probabilistic outcomes. 

pv: [amount, interest rate, time] 
pv(a,r,t) = a/((l+r/l00)"t). 
expected value: [listof(Outcomes), listof(Probabilities)]. 
expected value(X,P) = C(i,l,length(X),X#i * P#i). 

Model Declaration Language Statements 

Vessel: [Vessel Characteristics, LCC, designer, ship 
builder]; "A vessel is a marine vehicle owned by 
the U.S. Coast Guard." 

Vessel Characteristics: [Displacement, Speed, Length, 
Propulsion] 

LCC [AC, MC, PC]; "The life cycle costs for a vessel 
are determined by adding the present values of 
various cost categories over the vessel's estimated 
life." 

LCC(AC, MC, PC) = AC + MC + PC. 

LCC is - a Discounted Cost. 

MC: [Base Cost (b), Inflation factor (f), No of years 
(N); "The maintenance cost for a vessel is ...." 

MC(BC,If,N,D) = C(i,l,N, pv(b*(l + f/100)"i,'Ml7#i,i). 

MC is - a Discounted Cost. 

The second category of users who create knowledge are 
analysts who are mainly concerned with instantiating and 
executing models. Hence, an important feature of the 
modeling language is how it deals with data declaration 
for model parameters. In MoDeL, the data values for 
various parameters may be entered directly by the user, 
be retrieved by a database reference, or be the output of 
another model. For example, a value for a parameter 
"interest rate" may be a number (e.g., 7.50), the output of 
a deductive model (e.g., interest rate = 7.0 if Conditionl, 
8.0 if Condition2) or the output of a mathematical model 
(e.g., expected value([(8.5, 0.4), (8.0, 0.3), (7.5, 0.3)])). 
This atlows the user a high level of flexibility and encou- 
rages non-redundancy through use of logical references. 

Example 1(C) 

Suppose that a user wants to evaluate a certain vessel 
(say, Vessel#4) that is a candidatate for acquisition. The 
system will then determine from statements about the 
model Vessel the kind of information required to create 

an instance of it. We will illustrate a part of this process. 
Suppose the system is prompting the user for a value for 
Maintenance Cost (Figure 1). The user can specify the 
value in a number of ways: 

i) Enter a number, e.g., 1O00, or a non-numerical value, 
e.g., "mc." 

ii) Select to specify the value at a further level of detail; 
the system then responds with prompts for the Base 
Cost, Inflation factor and the number of years over 
which the cost is to be computed (Figure 2). 

iii) Specify the cost by reference to some other known 
value, e.g., 2*(Vessell@LCC@MC). 

iv) Select some other model to determine the value. For 
example, if it estimated that the cost is 1500 with pro- 
bability 0.6 and lo00 with probability 0.4, the user 
may enter "expected value([1500,1000], [0.6,0.4])". 

v) enter an expression which is some combination of the 
above, e.g., 2*Vessell@LCC@MC + expectedvalue 
([ 1600,Vessel3@LCC@MC],[0.6,0.4]). 

At various stages the user may also obtain help or infor- 
mation about the models in question, e.g., the user may 
want to know about maintenance cost. 

W-Create hew Instance o f  Uetret - 
instance Naae: /UeSsel #4  

Rttribute Stack (Top  Level +Current Rttribute): 
l i f e  Cycle Cost 
Maintenance Cost 

Current Rttribute: Maintenance Cost 
List Position: 
Constraints: none 

0 Actual Value 0 symbolic Ualue 

F k r e  1. Further Depth Gives You Maintenance Cost's Components 

For existing instances, users may query about or modify 
data values, or they may ask for explanations for com- 
puted values. Data may also be transfered into reports or 
documents. For computed values, the system displays the 
result but maintains knowledge about how the value was 
computed so that an explanation may later be generated. 
Hence, if some of the parameter values happen to be 
changed after the report was created, the report will 
automatically show the new output. Figures 3 and 5 show 

(Figure 2) 
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the result of a command to explain the Maintenance cost 
of Vessel#4 which appears in a document (Figure 4). 
This explanation is computed dynamically by a general 
rule to explain data values. The user may also ask for 
explanations at a deeper level of detail; e.g., how the Base 
Cost was computed. 

i ns t  once Home: I Uesset *4 

R t t r i b u t e  Stock (Top Level 4 C u r r s n t  R t t r i b u t e ) :  

Life Cycle Cost 
Maintenance Cost 
[Base Cost','X Rnnual increase','No of years1 

Current R t t r i b u t e : B a s e  Cost 
L i s t  P o s i t i o n :  1 
Cons t ra in t s :  none 

Unlue: [t10.000,000 

Figure 2. Entering a Value for Base Cost, a Component of 
Maintenance Cost 

<Maintenance Cost 534449 540743, 

Heres how 
(ATTRIBUTE.VALUE) PAIRS 
[(Base cost, I oooOooo),(x Annual lncrease,5).(No of  years.2O)l 

FORMULA ZI ,  I .No of  years,pv([l,USCG rates*l,Base Cast * (  I +X Annual 
increase)'! I ) )  

RESULTING VALUE 5344449 540743 

Figure 3. Explanation for Maintenance Cost 

Model Manipulation Rules 

The symbolic representation for models is derived from 
statements in the model declaration language. These 
statements are also treated as data and can be manipu- 
lated to perform the features described in Section 3. Ac- 
tions are processes to manipulate symbolic expressions 
based on the representation of the model. The manipu- 
lation rules are based on model structure, rather than 
models themselves, and are therefore general-purpose 
and domain-independent. In spite of the generalizations, 
we need a mechanism to handle exceptions. This is done 
by letting the specific rules, if any, for any action, over- 
ride the general rules for that action. In the current im- 
plementation, there are rules to support features (c), (d), 
(e), (h), and (i), and partially support features (a), (g), 6) 
and (k), and we illustrate some of these in Example 1(C). 

253919.,7# 
$ 3 8 9 6 0 f < d ]  

naintennnce C o a t  
Personnel t o a t  

Button Information Window ................................ 
Button links... 

(generated value) 
This value was retrieved dire& from the KSS Information Base. 
It is the retrieved value of - 
<Vessel #4 @ Life Cycle Cost @ Maintenance Cash. 

Figure 4. Selecting $534449 (the Maintenance Cost for Vessel #4) 
causes a "pop-up menu" to appear with valid operations for 
the selection. Note that key words are underlined in the do- 
cument, generated values are boldface and links are itali- 
cued. 

Figure 5. Choosing "Button Short Description" calls up the [Defi- 
nition] window shown here. 

The rule-based action processing subsystem is the infe- 
rence engine of the modeling system. It captures user 
commands, determines and obtains a set of information 
to execute the command, and triggers off rules for model 
manipulation with this information as arguments or data. 
For example, if a user asks for an explanation for the 
number 534449, the system determines that it is the 
Maintenance Cost for Vessel#4 and triggers the rule ex- 
plain(X), with X = Vessel#4@Life Cycle Cost@Mainte- 
nance Cost. The rules manipulate higher-order concepts 
(such as is - a, listof, 2). For example, for any relation R, 
R(Y), X is-a Y + R(X); or if R is transitive, R(A,B), 
R(B,C) -+ R(A,C). 

As in most DSSs, there are sets of rules to process 
various actions on models: retrieve data, transform data, 
query and modify, describe concepts, explain data values, 
analyze changes, create new class instances, etc. For ex- 
ample, to execute any model, the system determines the 
data required and obtains it from the database or from 
the user, transforms the data for the appropriate model, 
and executes the model. The rule to describe a model 
generates an initial description about a model (which is 
not a pre-defined "help-text"), and provides the user with 
a set of related concepts which the user may choose to 
pursue for further information. 

Maxi: Implementation of a Hypertext User Interface 

Maxi is the user interface subsystem of Max. It is bi- 
modal in that it can both access the knowledge base 
directly and control a user workspace, called a document, 
into which text and model results may be placed. Docu- 
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ments are integrated workspaces combining such objects 
as standard text, business graphics, and spreadsheets. 
These objects can be stored, queried and linked just as 
any other system entity. The discretionary display of in- 
formation (WYWWYWI) is implemented in several ways. 
First, Maxi will recognize and process several types of 
generalized hypertext buttons: 

(1) Keywords: character strings registered in the know- 
ledge base. (These include the names of all system 
entities: models, data, documents, links and other 
genr d i e d  hypertext but tons.) 

(2) Generated Values: retrievable results from the know- 
ledge base. (These include both data that my be 
looked up and model results that must be calculated.) 

(3) Link Elements: both implicit system-generated and 
explicit user-specified logical connections between 
any two system entities 

(4) Exchanges: document sections that can be hidden 
from view or replaced by an alternative document 
section. 

(5) User-defined users may specify new button types 
and provide instructions for how the system should 
react to their selection. 

Max provides several meta-level functions operating on 
these buttons: 

(1) Location: Maxi will determine which button(s) on 
the computer screen have been selected and will offer 
a list of options available. (See Figure 4 for an ex- 
ample.) 

(2) Descriptions: Maxi can generate a description of any 
registered entity, telling what it is, how it was created, 
or by whom it was entered, and what is directly re- 
lated to it. In doing so, it makes use of whatever 
model managment system is installed. 

(3) Explanations: For generated values, Maxi can deter- 
mine which model, function and data instance were 
used to create it. (See Figure 5 for an example.) 

(4) Linking: Two link paths logging the actions of the 
user are maintained at aU times. A user can, at any 
time, initiate a knowledge search (or information de- 
tour) following explicit user-specified or implicit sys- 
tem-generated links. The user can return to any 
point along the lid paths. For example, while exe- 
cuting a present value model, the user could request 
information on interest rates. This would generate a 
description including related keywords. The user 
could then request information on any of these key- 
words, and so on to the limits of the declared know- 
ledge within the system. 

(5) Adding Knowledge: 

(a) A user can permanently record comments about 
any system entity at any time, thus adding to the 
organization’s knowledge base. 

(b) A user can add new data instances of models 
(scenarios) and new documents at any time. 

(c) The KSS builder will be able to add new models 
at any time. 

(6) Suspending Operations: Whenever an operation 
passes control to the user (for example, while waiting 
for user input in a model execution), the user will be 
able to stop working on this operation and start any 
other (including halting the session). Later the link 
paths can be used to return to where the work left 
off. 

Customizing the Interface 

Maxi allows the user to customize most aspects of the 
interface. For example, one may have several different 
style modes for any given document. All text and busi- 
ness graphic buttons may be highlighted or just certain 
button types displayed; there may be a formal presenta- 
tion mode, and a casual revision mode. One may swap 
between modes by specifymg a mode index. In the fu- 
ture, the user will be able to activate and deactivate links 
with the same mode index, which will also be used to in- 
stall one’s choice of exchange button sections. Finally, 
the user may choose among several methods of high- 
lighting. (See Figure 4 for some examples.) 

7. CONCLUSION 

Generalized hypertext and model management for DSS 
are well-established concepts. That they are here to stay 
is obvious. What forms they will take--what features they 
will have, how they will be implemented--is yet far from 
clear. The main results to date of our research and re- 
flection on the problem of designing these DSS subsys- 
tems are reported above. Two prototype systems, Max 
and Oona, have been implemented for the U.S. Coast 
Guard. Initial reaction from users has been enthusiastic. 
Research and development will continue and will be the 
subject of future reports. 
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