Hypermedia

VOLUME 4 NUMBER2 1992

AUTOMATING HYPERMEDIA FOR DECISION SUPPORT

MICHAEL BIEBER

Boston College, Carroll School of Management
Chestnut Hill, MA 02167-3808 USA

Many ‘first generation’ hypermedia systems were designed to support applications,
which do not require the dynamic and general characteristics necessary for our domain
— decision support systems (DSS). The heart of our research is a dynamic model of
hypermedia incorporating virtual structures and computation, which we call
generalized hypermedia. Generalized hypermedia broadens and automates the ‘static’
or non-virtual notion of first generation hypermedia for a knowledge-based DSS shell.
The shell provides a hypermedia-style interface for navigating among DSS application
models, data and reports. Such a shell should support applications in a variety of
fields, e.g., engineering, manufacturing, finance, and therefore must provide
hypermedia support as general, system-level functionality. Generalized hypermedia
superimposes a hypermedia network on a DSS application, generating all hypermedia
nodes, links and link markers dynamically from the application’s standard, non-
hypermedia knowledge base. In this paper we demonstrate how automating
hypermedia can enhance decision making with a DSS. We describe generalized
hypermedia and discuss the challenges presented to it by a dynamic, real-time
environment.

INTRODUCTION

One of our main research goals is to make it easier and cheaper to build
and use decision support systems (DSS). We want to enable application
builders to construct DSS applications faster, and with more functionality
than traditional DSSs have. In this article we explore how a dynamic
view of hypermedia can support decision makers and their analysts.
(Our ‘dynamic’ focus is on the ever-changing knowledge within an
application, not the media of its elements. Our methodology should apply
to all media formats.)

The following scenario describes a decision support system
application for vehicle procurement that has a hypermedia-style
interface. We shall refer to this scenario throughout the article.

Scenario: A hypermedia-supported decision analysis

Imagine that, as Vice President for Operations, you are presented with
the final report of a procurement committee. You must decide whether
to accept its recommendation. The committee analyzed three
alternative vehicle fleet configurations for your division, each
involving complex financial calculations and reams of data. Some

83

HYPERMEDIA Vol. 4, no. 2, 1992

information used in the committee’s analysis is reliable, some is the
result of experienced guesswork. The committee’s report consists of a
one-page summary on paper and a floppy disk. You turn on your
personal computer and open the report. A summary appears in the
window entitled ‘Final Committee Report.’ (See Fig. 1a.) Boldface
text are hypermedia markers linked to additional information. You
shall be accessing all DSS operations directly from these markers in
the summary and lower-level documents. (While this scenario’s
figures include only text, other media formats are permissible and
their markers also would be highlighted in some manner.)

Final Committee Report

To: John Doe, Vice President of Finance

From: Precuremeat Committee

Subject: Fiasl Repoxt Regardiag Mew Fleet Configuratiea
Date: Cctober 7, 1930

This committee was to evaluate three alternative fleet configurations in response to
anticipated growth in our customer bage, Each alternative considers purchasing new

vehicles and rearranging their home bases in the greater regionm. In summary, the
three options were as follows.

€1) 10 new vehicles and no change in base hocations: $13.287.432
€2) 6 nev veh

() $new venEL === explain($13,287.437) e el

$13.287,423.90 i the Total Cost under Optiom (1). K
We recommend o Option (1) s a 10-year scenario where 0 additional sites | |
5 are cblained, @ current sites are decommissioned, and 10
hicles are added to the fleet. ﬂ
The Total Cost is computed using the model Fleet
Ceafiguratioa ar follows:
New Site Acquisitien Cest 1]
New Site Maintesnsace Cost $0
Cerreat Site Decommission Cest $o
Cezzeat Site Saviags b1}
Vehicle Purchase Cost $410,527.53
Vehicle Opexstion Cost $6.808,000.00
Vedicle Hainteasnce Cost $82,105.37
Additionsl Employee Cost $3.350.900 00
Tetsl Cost $13.287.432.90 q
7] IESE

Figure 13
Hypermedia-Supperted Decision Analysis

DECISION SUPPORT

You want to get a feel for the accuracy and feasibility of the
committee’s recommendation. First you explore the definitions of
parameters such as the ‘greater region’ and the composition of a ‘base.’
Next you select the cost projection for option (1): '$13,287,432." The
computer dynamically generates the explanation shown in the second
window in Fig. la. From here you examine the total vehicle purchase
cost in more detail. The computer generates a third report describing
the financial model and the data used in determining the cost,
including the individual vehicle sales price. (See Fig. 1b.) This

Final Committee Report
Te: John Doe, Vice President of Finance

Frof explain($13,287,432)

Dub!
Dat{ $13.287.423.98 is the Total Cost under Optiea (1). [0}
Optioa (1) is 3 18-year scenario where @ additional sites

are obtained, ® ocurrent sites are decommissioned, and 19 p te
ant{ vehicles are added to the fleet. 3sing new
vel hmary, the
thrq The Tetal Cest is computed using the model Fleet
Coafiguration as follows:

New Site Acquisition Cost 30
New Site Maiatesance Cost : 3o B27.930
< t Site B izgion Cost b 1
Curreat Site Sevisgs $0
Vehicle Purchase Cost $418 5272.53

KT explain($410,527.53) IS

$410.527.53 is the Vehicle Parchase Cest uder [O]
Optioa (1). Opliea (1) is 2 10-yesx scenaric where @ |

additional sites are oblalned, 9 current sites are
m d isstoted, and 10 vehicles are added to the fleet.

o<

The Vebicle Puxch Ceost = puted using the model
Fleet Configuration as follows:

Vehisle Parchase Cost
» Vehicle Cost # Mumber of Vehicies + Tax

Here are the values: ’

Vehicle Cost $38.995.95
Number of Veticles 10

Tex $20.568.03 [}

G e origin($36,995.95) el
$38.995.95 15 the ocost of each vehicle (VeMole HO
Purohase Cost) in the scenario Ogtiea (1). It was entered

by Seady Imith en 10/1/90 at 5:05 pm. and was last
modified on 10/5/90 at 2.32 pm. by Sandy Smith. Hits
certainty factor is 168%. 5

Figure 1 & 12

Hypermedia Supported Decision Analysis

FIG. la. A hypothetical interactive document from the opening scenario's DSS
procurement application. Interactive documents provide the following Sunctionality. All
text highlighted in boldface are hypermedia link markers indicating the presence of
hypermedia links to documents and other related information. Here the user 'drills down”

FIG. 1b. To explore the vehicle purchase cost, the user selects the marker '$410,527.53'
in the second interactive document. The system generates the explanation in the third

for further detail by selecting the link marker '$13,287 432" representing the cost of report. Next the user selects the individual vehicle cost figure represented by the link

'Option (1).' The system generates and displays the explanation in the second interactive ‘ marker ..mwmhb”mbm. in .QR third to last N.h.xm. w.}m. system fraverses the corresponding link,
document. M generating the interactive document entitled 'origin ($38,995.95) -

84 : ” 85

HYPERMEDIA Vol. 4,no. 2, 1992

morning, however, you attended a meeting with the vice presidents of
operations in other divisions. One of your colleagues discussed a
purchase arrangement with a major auto maker. Its purchase price was
lower and you should be able to make the same deal. The number in
the committee’s report, therefore, seems too high, so you request its
origin to see when it was last updated. (See Fig. 1b.) Returning to the
summary document you select the ‘Procurement Committee’ marker
to get the name of the committee head. The system has a direct link to
the company’s personnel database and dials the phone number. You
ask the committee head to investigate a similar purchase arrangement.
She calls you back later with a revised price. Before requesting that
the computer update the analysis, you inquire where else the analysis
uses the purchase price. You also check which other documents
produced by the procurement committee use this parameter. You then
alter the purchase price in the database and return to the summary
sheet. All the figures reflect the change.

Next you look at the other options. The computer generates a more
detailed description of each. Most of the descriptions appear correct,
but one of the costs under the third option seems questionable.
Selecting this cost marker, you request the source and any other
information available. The source turns out to be a trusted adviser,
who has attached a comment about the data. Satisfied, you return to
the summary sheet. After a few more minutes of investigation you
feel confident about your decision.

GENERALIZED HYPERMEDIA

Our domain, decision support systems®* (DSS), is dynamic. Users
perform real-time analyses on application models and receive
automatically generated reports, which are linked to objects that change
without the user’s intervention, such as the price of a stock. Many of
today’s ‘first generation’ hypermedia systems, while successful and quite
appropriate to their particular domains, are limited in their dynamic
support. They were designed for ‘static’ environments, in which users
construct and alter hypermedia networks manually. To cope in a dynamic
environment we had to generalize and automate the manual, ‘static’
notion of hypermedia®. The result is our model of generalized
hypermedia***. We shall contrast these two views of hypermedia after
describing its role in decision support in the next section.

At its most basic level, hypermedia’® is simply the concept of linking
any two pieces of information and providing a computer-aided
mechanism for navigating between them. (Hypermedia subsumes the

86

DECISION SUPPORT

term hypertext, in which the information — technically — is purely

textual.) We refer to the pieces of information at either end of the link as
nodes. We signal the existence of a link from a node by highlighting a
portion of the node’s display text, which we call a button or link marker.
When a user selects a link marker the computer traverses its link and
displays an appropriate representation of its destination node. Minch®
provides an extensive discussion of hypertext and DSS.

In generalized hypermedia we broaden the models of hypermedia
components — nodes, links, link markers, etc — in two basic ways.
First we take advantage of three of Halasz’ proposed extensions to
hypermedia'®: virtual structures, computation, and filtering or ‘tailoring’.
We use these to generate hypermedia components on the fly from basic
declarations we call bridge laws. As we shall see later, we use bridge
laws to separate application-specific details (such as all the numbers in
Fig. 1b) from the hypermedia components to which they are mapped.
Bridge laws enable generalized hypermedia to superimpose a
hypermedia network on a DSS application, generating all nodes, links
and link markers dynamically from the application’s standard, non-
hypermedia data or knowledge base. Embedding generalized hypermedia
functionality at the system-level of an information system enables us to
provide hypermedia support independent of individual applications®.
This makes hypermedia functionality transparent to application builders,
yet available to application users.

Our second set of generalizations takes advantage of bridge laws to
extend the functionality of hypermedia components and provide a more
flexible mapping. For example, we model two classes of nodes'>*:
abstract concept nodes, which have no ‘natural’ display contents®, and
display nodes, which readily can be displayed. In addition, we can model
virtual nodes as any object to which information currently is linked,
including the session log, formatting templates, link markers and other
links. Another useful generalization is to associate multiple n-ary links'
with a single link marker. We explain this second set of generalizations
and the flexibility it provides for different tasks and types of users in
other papers*%'s,

In the following sections we discuss hypermedia’s benefits and the
challenges it faces in the dynamic environment of decision analysis. We
set the stage by explaining how a hypermedia-oriented DSS can support
decision makers. This demonstrates why we need a dynamic view of
hypermedia. Then we show how generalized hypermedia extends what
we call static hypermedia, the way hypermedia often has been
implemented. Next we look at the problems posed by dynamic

87

HYPERMEDIA Vol. 4, no. 2, 1992

environments. We conclude with a challenge for the hypermedia
community.

HYPERMEDIA AND DECISION SUPPORT

We shall analyze the process of decision support using Simon’s
intelligence-design-choice model of decision making'® and Mintzberg et
al.’s authorization". Intelligence is the act of gathering information;
design involves developing alternative scenarios or problem solutions;
choice is selecting the ‘best’ option; authorization is the process of
justifying the recommendation or decision made to those affected by it.
In a typical decision analysis, these stages are interwoven, not sequential.
They implement the argumentation theory of DSS, according to which
‘the main purpose of a DSS is to support the construction, evaluation and
comparison of arguments for courses of action®"”. These ‘arguments’ also
can justify the course of action. Hypermedia should facilitate such
support, giving the user easy access to information and operations within
the DSS application without overwhelming him or her with details.

The argumentation theory of DSS is separate from — but does
support — the concept underlying many hypermedia-oriented
argumentation systems (e.g., AAA%, Aquanet”, EUCLID**, gIBIS*,
JANUS?*, PHIDIAS?*, RelType”). Argumentation systems, often based
on Rittel’s Issue Based Information System (IBIS) framework®, use
typed nodes and links to express the deliberations of the participants in
some process, thereby capturing the logic mBEowoa in arriving at a
decision. Such systems can support decision makers in Eo four stages of
decision making and justification.

In the paragraphs that follow we discuss the synergism between DSS
and hypermedia in each of the four stages. In preparation, a short primer
on DSS applications is in order. DSS applications contain decision
models and data scenarios — the complete set of input data values for a
model’s variables. Variables without input data values are calculated by
executing the model with a data scenario. For example, consider a simple
model calculating the total vehicle cost:

Total Vehicle Cost = Single Vehicle Cost * Number of Vehicles

A data scenario could contain input data values $20,000 for the variable
single vehicle cost and 5 for number of vehicles. Executing this model
calculates the value for the variable total vehicle cost. Often an m:m_v\mﬁ
will construct several ‘data scenarios to test a model under various
circumstances (such as the range of possible prices for replacement
vehicles five years from now) or a new situation (such as acquiring snow
removers instead of delivery vehicles). There are many types of decision

88

DECISION SUPPORT

models: algebraic models (e.g., the combined set of formulas on a single
spreadsheet), optimization models (e.g., the set of equations used in a
single linear program), simulation models, etc.

Intelligence

During the intelligence stage, the decision maker or analyst explores the
decision domain — the collection of information directly or indirectly
pertinent to an area of interest — either looking for a problem or
opportunity, or responding to one. A DSS can help by maintaining the
pertinent decision models, data and reports. For example, for a mortgage
domain the DSS would contain models, data and reports about the
economy, interest rates and the housing market. The models would help a
loan officer evaluate a client’s risk profile and determine what rate to
charge. In a procurement domain the DSS would contain life cycle cost
models (e.g., construction, operation and maintenance equations) as well
as exact or statistical data on the items being purchased or constructed.
Reports would record the decisions made and document their
justifications in case of management questions, audits or even lawsuits
regarding the vendors chosen. Similarly, scientific and engineering
domains would have their own sets of models, data and standard reports.

The DSS should do more than maintain models, data and reports. It
should assist the analyst in accessing and understanding them.
Hypermedia can help. Presenting concise information displays embedded
with links reduces the cognitive overhead ™ of manoeuvering within the
complex domain of DSS models and scenarios. Analysts can explore
selectively, choosing what they want and bypassing what they understand
or consider less important. Several types of objects should be linked to
provide this access. Related models, data and reports should be linked.
Models should be linked to their submodels and variables. These
variables should be linked to all possible data values registered in an
application data base. All the above should be linked to any execution
results derived from them, especially when these results appear in
reports. The user should be able to retrieve comments, annotations,
definitions, explanations and any background information inferable about
items of interest. (See Fig. 2.)

In sum, the DSS interface can use hypermedia concepts when
structuring and presenting relevant information in a comprehensible and
useful format to DSS**®*', Hypermedia-style markers can act as
embedded menus®, giving the analyst ‘context-sensitive’ access to DSS
operations and background information. We have dubbed this

hypermedia-style accessibility the WYWWYWI (‘what you want, when
you want it') principle®.

89

HYPERMEDIA Vol. 4, no. 2, 1992

Final Committee Report

To: John Doe, Yice President of Finance

From: Procazement Coramittes

Subject: Final Repert Begerdiag Wew Fleet Configaratioa
Date: October 7, 1990

This committee was to evaluate three alternative fleet configurations in response to
antielpated growth in our customer base. Each alternative considers purchasing new
vehicles and rearranging their home bases in the grestexr regiea. In summary, the
three options were as follows.

(1) 10 new vehicles and no change in base locations: $13.2687.432
{2) 6 new vehicles and 2 additional bases: $12.587.409
{3) 8 new vehicles, close 2 existing bases and cpen 3 new bases: $11,327.980

We recomimend optioa(3) as the most fiscally desirable. r.
Ll opkion(3). ~$13.287,432 ¢
1 Information Available:

(1) descride scenario
(2) apply scenario

(3) start new user link
(4) create new comment

Information Available:

(1) explein

(2) re-evaluate

(3) show comments

(4) start new user link

E Select -VD E Seleot --VI

Canoel | Option) Cancel | Option

.

Figure 2
Selecting Links and Hypermedia Commands in 3 Generalized Hypermedia Interface

FIG. 2. This is the precursor to Fig. la. The user has selected two link markers, the
‘option (3)" data scenario and the execution result '$13,287,432.' The system then
displayed all appropriate DSS operations and connections to information related to these
markers, e.g., describe the selected model, execute the selected model, explain the
selected execution result. Each of these application-specific operations represents a
hypermedia link. In addition, the hypermedia engine adds several hypermedia-specific
commands for creating user-defined links and comments, as well as a link fo existing
comments for the execution result selected. The user can choose a link to traverse or
command to invoke. In this illustration the user has chosen an 'explanation' link for the
marker '$13,287,432," i.e., the user has typed 'I' in the second query dialog. Traversing
the explanation link results in the second interactive document of Fig. la.

Design

To address the opportunity or problem-at-hand, the analyst designs
possible solution scenarios. Doing so can involve creating additional
decision models and developing alternate data scenarios. To support
hypermedia-style navigation, the DSS must register the new models and
scenarios, and create the hypermedia network representing them — the
nodes, links and link markers that the analyst will use to access them®.
This also is an opportune time for the analyst to make comments about
the scenario values and add links to related information.

90

DECISION SUPPORT

Choice

‘Choice’ involves evaluating the alternative solution scenarios. According
to the principle of limited search'®, the analyst will use the DSS to
investigate alternatives until he makes an optimum choice (if one can be
determined) or quits, at which time he will choose the best alternative
found (assuming it is ‘satisfactory’). Normal DSS operations for
evaluation include executing models, and performing ‘what if’ and
“sensitivity” analysis. For example, an analyst evaluating the cost of
operating different vehicles may check model results over a range of
possible petroleum prices or under fluctuating inflation rates.

As before, hypermedia provides easy access to DSS operations such
as model executions and explanations, as well as other relevant
information. (See Fig. 2.) At this point, analysts should annotate each
scenario further, explaining how they tested it and why they did or did
not choose it. This will be especially important for justifying
recommendations during the authorization stage.

Authorization

The decision maker not only has to reach a decision, but also must
convince others of its validity. Analysts should be able to elicit a DSS’s
help in promoting an action, presumably through a report that both
describes the recommendation and supports it with data. (If the analyst
works for the decision maker, as the procurement committee effectively
did in the opening scenario, the report first must persuade the decision
maker.) The decision maker then can use this report both to convince
others and to document the decision made.

The report’s reader is now self-sufficient. He can explore the report
and all supporting information by browsing on the computer without
active assistance from the report’s author. The DSS (ideally) produces
the answer to any question the reader has, especially if analysts or
decision makers have added comments. He can investigate any piece of
information, exploring all the way ‘down’ to its origin (as we saw in Fig.
1b), thereby increasing his overall understanding of, and confidence in,
the decision.

Annotated trails such as guided tours* and scripted documents®
provide another justification tool. Trails lead a reader along a specific
path through a hypermedia network. In a DSS, trails can represent entire
decision schemata®. The trail would present the analysis in a logical
sequence and include comments describing the options, analyses and
decisions made. As noted previously, argumentation-style information
also could help in documenting decisions.

91

HYPERMEDIA Vol. 4, no. 2, 1992

AUTOMATING HYPERMEDIA

Building an adequate hypermedia network to support even the
authorization stage is impractical in a static hypermedia system.
Consider the interactive documents supporting the summary report in
Fig. 1b. Normally an analyst would have to construct these manually.
Suppose the system could generate them automatically, as well as all
other lower-level definitions and explanations. This would expedite the
analyst’s task dramatically! It is this functionality that we describe now.
We begin by demonstrating limitations of static hypermedia.

Boundaries of static hypermedia

Static hypermedia systems were not designed to support the DSS
environment we just described and could do so only with a great
restriction in functionality. To illustrate this, in Appendix 1 we give the
internal code for part of the static hypermedia knowledge base defining
the interactive documents of Figs. la and 1b. The system would generate
such code for each node, link and link marker created by the application
builder through the DSS’s interface. This long list of declarations,
however, highlights a problem — static hypermedia knowledge bases
generally consist of explicit, pre-declared entries. This means that each
application builder must anticipate his users and declare a priori all the
nodes (e.g., decision models and variables), links (e.g., the relationships
between models and DSS operations for them) and markers (e.g., the
names and display values of nodes appearing in each report) he believes
users will want to access in the future. The number of hypermedia
components grows exponentially with the number of models, variables,
scenarios and reports. All the possible executions, execution results and
explanations implicit in Figs. 1a, 1b and 2 would require an immense
amount of pre-analysis. Besides, an application builder could not pre-
declare all the hypermedia elements in his application because a DSS
usually is dynamic. Its knowledge base contains definitions, models, data
and documents, but not execution results or their explanations. The latter
are produced dynamically upon user request, and so must any
hypermedia links mapped to them. Our only feasible option is to generate
the hypermedia network automatically upon demand.

Knowledge-based DSS shell
Understanding the architecture of our DSS shell will frame our
discussion of bridge laws and the hypermedia engine and help illustrate
how we automate hypermedia.

We implement generalized hypermedia as system-level functionality
within the interface of a knowledge-based DSS shell that supports

92

DECISION SUPPORT

multiple DSS applications (see Fig. 3). By a knowledge-based system we
mean one that stores ‘’knowledge’ about its external environment (e.g.,
user profiles, communication protocols, application-specific decision
models, data and commands, external database information) and its
internal computations (e.g., the current context, hypermedia commands,
bridge laws). Shells**** provide standard functionality and a common
‘look’ to a range of applications, with the goal of decreasing the effort
involved in building and using them. For example, we can consider
spreadsheet packages such as Lotus 1-2-3 as shells. They provide a
standard interface (the tabular worksheet), a set of functions (e.g.,
statistical, financial, arithmetic) and a set of menu commands. The
applications are the individual worksheets or sets of interrelated
worksheets built by entering formulas and data values in the interface
provided.

DSS Shell
interface Subdsystem
Application Msnager
Dispisy Hypermedia{ }—
.m «cv-<-..3__ Engine Subaystem

| Financisi Dss A

[Enginesring 0S8 Application} * * *
[imptuirl; g DSS A 1, 1 _

Figure 3: DSS Shelt and Applications

| Hesith_Care 0SS Application]

FIG. 3: DSS shell and applications

Our knowledge-based DSS shell produces interactive documents,
such as those in Figs. la and 1b. Interactive documents give direct,
context-sensitive access to reports, operations and other components of
DSS applications. Ideally the reports generated by a DSS will be concise
— focused on a specific component or analysis with access embedded to
further details and related information. Generalized hypermedia provides
this access dynamically.

The shell has two major subsystems — the interface subsystem and
the application manager subsystem.

The interface subsystem

The interface subsystem contains the hypermedia engine" and the
display subsystem. The hypermedia engine creates interactive
documents and menus from application requests. In doing so, it maps
hypermedia nodes, links and markers to the requests’ contents. The
hypermedia engine adds value by maintaining user-declared links and

93

HYPERMEDIA Vol. 4, no. 2, 1992

comments on behalf of applications. The display subsystem shows the
menus and interactive documents, and passes back user requests for
analysis.

The application manager subsystem
The application manager subsystem provides the interface between
the hypermedia engine and individual DSS applications. DSS
applications contain decision models and data specific to their
individual domain. The application manager subsystem provides the
commands that execute the models, provide explanations and
generate the contents of decision reports. (In this way it is analogous
to spreadsheet packages and programming languages, which provide
the commands that users of individual worksheets and programs
employ.)

When automating hypermedia, it is important to implement its
functionality — creating, exploiting and managing links and linked
information items, etc. — in a general manner that will work for both
existing and future shell applications. Like database systems and user
interface management systems, the hypermedia engine, therefore, must
be an application-independent, system-level tool for providing
hypermedia functionality.

We have implemented many of these concepts in a text-based
prototype system called Max, which is used by the U S Coast Guard®*.
While Max supports most of the functionality described in this article, it
currently implements a preliminary version of bridge laws, our technique
for generating a hypermedia network for a DSS application.

Bridge laws: a technique for automating hypermedia

How do we automate hypermedia in a knowledge-based DSS? The
hypermedia engine cannot take an arbitrary application’s knowledge base
and magically infer which elements correspond to hypermedia nodes and
links. Instead, the shell’s application manager subsystem must provide
some translation routines that the engine can use to make its inferences.
We adapted the term bridge laws®** for these translation routines
because they serve as a 'bridge’ or connection between elements defined
in the language of the application’s knowledge base and those in the
shell’s hypermedia engine. Bridge laws are at the heart of our model of
generalized hypermedia. Generalized hypermedia bridge laws exploit
logical quantification, i.e., they apply to all cases that satisfy the set of
conditions specified within the bridge law. For example, one may declare
a bridge law with a structure similar to:

For each variable that satisfies conditions X, Y and Z:
map a hypermedia link between the variable and the decision

94

DECISION SUPPORT

model using it, and
map a hypermedia link between the variable and its data value in
each scenario compatible with the model.

Logical quantification (i.e., specifying ‘for each’ or, in Appendix 2’s
logical equations, 'V") enables individual laws to map entire classes of
application objects (e.g., models or calculations) to hypermedia
components; the same bridge law will map every object in the
application knowledge base that satisfies the bridge law’s conditions.

As an example, in Fig. 2 three links emanate from the ‘$13,287,432'
marker in the Final Committee Report. This marker represents the
calculated cost for the configuration scenario labeled ‘option(1).’ The first
two links, ‘explain’ and ‘re-evaluate,’ represent DSS operations. The third,
'show comments,” is a link to user comments about the calculation. (For
the sake of this discussion we shall ignore the two interface-level
commands, ‘start new user link’ and ‘create new comment.") How can the
hypermedia engine generate this set of links in a general manner that
applies to any calculation, not just this specific one? Given any link
marker representing a DSS calculation, in Appendix 2 we describe a set
of seven bridge laws that generates this trio of links. These bridge laws
will work for every DSS calculation — existing or future — resulting
from executing a DSS applicationt model. We describe similarly compact
sets of bridge laws that map application models, variables, data
scenarios, etc. to hypertext components elsewhere®. This methodology
provides for a relatively small and stable set of bridge laws serving a
broad range of applications.

Our methodology applies beyond DSS*. Bieber and Isakowitz, for
example, have developed bridge laws mapping a relational database
management system*'. The model of generalized hypermedia achieves
this broad applicability, in part, by providing each mappable hypermedia
component with arbitrary attributes that can represent any aspect of the
target system (including its media formats). For example, we can use
these attributes to represent the node and link types we find in
argumentation systems. Indeed, we have mapped a generalized
hypermedia network to a static hypermedia argumentation system®.

Bridge laws should be developed by the person who knows the
application manager subsystem the best — the systems programmer who
builds or maintains it. Once in place they should map a hypermedia
network to any application, as long as the application builder declares its
models and data in a format the application manager subsystem can
recognize. This, however, is simply analogous to expecting each

spreadsheet builder to use the standard formulas of his spreadsheet
package.

95

HYPERMEDIA Vol. 4,n0. 2, 1992

Thus, application builders and users need have no w:oé_o@ma of
bridge laws. To them, hypermedia functionality occurs automatically!
We summarize this point in Fig. 4. The application manager subsystem
provides the bridge laws that the hypermedia engine uses to map
hypermedia nodes, links and link markers to an application’s oEomﬁm .n.Sa
operations. The user navigates among and exercises the mg:owc.on
components indirectly through their hypermedia representation, yielding
the benefits described earlier. We discuss bridge laws in more detail and

provide additional examples in other papers*>'>*!,

DSS Application Bulider
develops an application-specific knowledge base in a format
compatible with the applicati bsy

Ganerslized R Applicstion Manager Subsystem
Hypermedia supplics a set of general bridge laws that the hypermedia engine
uses W map the knowledge bases of individual applications to
hypermedia components (nodes, links and link markers)

Figure 4; DSS Application User

Automatically Mapping an uses hypermedia-style navigation within DSS applications
Application to Hypermedia

FIG. 4. Automatically mapping an application to \cﬁmzzmmi —_

Three aspects combined distinguish generalized hypermedia from
other hypermedia approaches: (1) generalized hypermedia is a
fundamentally dynamic model; (2) it can provide system-level support to
any application software with commands and data in a well-defined
internal structure; and (3) it uses general bridge laws as a method of
mapping a hypermedia network to an application without adding to or
deleting from the application’s data or knowledge base. Generalized
hypermedia is not the only dynamic model of hypermedia. Systems such
as Expertext®?, KMS*, NoteCards®, Guide* and HyperCard* do support
dynamic (‘virtual) linking and node generation (‘computation’) on an ad
hoc basis. Schnase and Leggett provide a specific example in KMS*.
StrathTutor”, for example, processes all components dynamically. Many
of the recent hypermedia modelling efforts (e.g., Trellis®, Dexter®,
HyperBase") also allow dynamic elements. Generalized hypermedia is
not the only model providing general, system-level hypermedia
functionality. There are operating system-level hypermedia toolkits for
adding hypermedia constructs — nodes, links, markers, etc. — to
application data (e.g., the Andrew Toolkit*, and Maurer and Tomek’s
proposed ‘core system'™). Others have developed autonomous facilities
that run as separate components providing hypermedia services to
distributed applications running concurrently in networked environments

96

DECISION SUPPORT

(e.g., PROXHYS51 and the Sun Link Service®). Few methods externally
superimpose hypermedia constructs over an application without adding
to the application’s data or knowledge base (e.g., Puttress and
Guimaraes’s Hypertext Object-oriented Toolkit®). Our methodology of
bridge laws is, however, a unique approach to generating a hypermedia
network for ‘non-hypermedia’ applications.

Generalized hypermedia bridge laws make extensive use of three
features that Halasz' identifies among the outstanding issues in
hypermedia research*: (1) creating and manipulating virtual structures of
hypermedia components; (2) computing over the knowledge base during
link traversal; and (3) tailoring the hypermedia network.

Virtual hypermedia component structures .

Generalized hypermedia bridge laws are examples of virtual
components. By virtual we mean not fully resolved; not all the
parameters have been instantiated or filled in with values. The
uninstantiated parameters can take any value compatible with the bridge
law’s conditions. For example, the '$13,287,432' link marker in Fig. 2 is
virtual when the user selects it because the hypermedia engine does not
determine which links are associated with it until someone selects it.
(This is the hypermedia equivalent of ‘just in time’ delivery.) In this
example the hypermedia engine uses link bridge laws such as those in
Appendix 2 to resolve two compatible instantiations: a link to the
number’s explanation and a link to its reevaluation. One can think of
virtual components being represented by templates that prescribe both
the component’s internal format — what its parameters are — and how,
during link traversal, the hypermedia engine should infer the values for
these parameters. When the hypermedia engine has instantiated all its
parameters, we say that the virtual component is resolved and that the
hypermedia engine has created or generated a specific instance of the
component.

When the user selects the ‘$13,287,432' link marker, the hypermedia
engine uses the bridge laws for link markers and links to infer which
links could exist for this marker. The engine tentatively fills in a template
for each link with values drawn from models and data in the application
knowledge base. The user then chooses one of the tentative links to
traverse, as shown in Fig. 2. At this point the link marker is resolved, but
not yet the link. The hypermedia engine now must infer several pieces of
information to finish resolving the link chosen. One is the type of link —
its DSS operator (e.g., ‘explain’ or ‘re-evaluate’). Another is the link’s
destination. The hypermedia engine uses additional bridge laws to infer
these from the contents of the application knowledge base. Once these

97

HYPERMEDIA Vol. 4, no. 2, 1992

parameters are known, we consider the link fully resolved because the
template is complete. We have yet, however, to generate the destination
we have identified.

Computing over the knowledge base during link traversal

The next step is computation, i.e., actually generating the contents of the
destination node specified by the link. Normally, a DSS operation (e.g.,
executing a decision model) must be performed within the application
manager subsystem to create the destination node (e.g., a decision report
describing the results of the operation). Once created, the hypermedia
engine prepares the outcome for display in an interactive document using
bridge laws to determine which portions to highlight as new link
markers. These new markers will be virtual, for as we saw, none will be
associated with a link until a user selects it and the resolution cycle
repeats.

Tailoring the hypermedia network

Applications should tailor processing and resuitant reports to a given
user’s skill level and the specific task for which he is using the DSS
application. The shell can do this by maintaining multiple filter sets or
modes, each associated with a different ‘'view’ of application knowledge
base components and with a different set of report formats. Bridge laws
invoke different views by including filters in their sets of conditions*?,
The hypermedia engine checks filter settings as part of every inference it
performs.

In summary, we say that link traversal in generalized hypermedia
follows a select-infer-traverse-infer pattern. The user is interested in
some object in an interactive document. If that object is a link marker, he
can select it. The display subsystem from Fig. 3 passes the marker’s
internal identifier to the hypermedia engine. The hypermedia engine now
infers the set of links that the user can traverse from this marker. The
hypermedia engine applies the marker’s identifier to two sets of bridge
laws. The application manager subsystem provided one set. The
hypermedia engine uses these to infer the DSS operations available for
the object that the link marker represents, mapping each operation to a
separate link. The second set of bridge laws was provided by the
hypermedia engine itself. These generate links to interface-level items
such as comments about the object that the link marker represents. The
result is a set of virtual links displayed to the user as in Fig. 2. The user
chooses one of these for traversal. Traversing a link representing a DSS
operation causes the application manager subsystem to perform that
operation upon the appropriate objects in the application knowledge

98

DECISION mc.EvOW..H

base. This ‘computation’ generates execution results, which the
application manager subsystem embeds in a report passed to the
hypermedia engine as a ‘request for display’ message. The hypermedia
engine now determines how to display the message’s components.
Usually it creates an interactive document. Compiling an interactive
document includes inferring which parts to highlight as hypermedia link
markers and which to leave as plain text*2. (We note that the hypermedia
engine uses filters pervasively in this cycle.) Displaying this report
concludes the select-infer-traverse-infer cycle. It is this process that
enables users to access DSS applications through a hypermedia interface.

Thus, link traversal in generalized hypermedia is a dynamic process.
If the contents of an application knowledge base or the filter settings
change, it is quite possible that traversing a link today will yield different
results from that of its traversal yesterday. Dynamically mapping
hypermedia to a set of objects presents challenges that static hypermedia
systems do not face. These are the topic of the next section.

CHALLENGES IN A DYNAMIC ENVIRONMENT

In this section we consider problems caused when the elements
underlying the hypermedia network change without warning beforehand
or notification afterwards.

For purposes of comparison, consider the standard problem of a link
endpoint document having been deleted — with or without the
knowledge of the hypermedia system — and therefore no longer being
available as a link destination. This problem arises in forward traversal as
well as backtracking. (Utting and Yankelovich discuss this, for example,
in conjunction with Intermedia’s "Web Views'™.) In a DSS, not only may
user documents be deleted, but so may objects in application knowledge
bases. Even when objects remain, their data and parameter values may
change. Imagine a document reporting the current value of a stock.

How does this affect a dynamically generated hypermedia network?
The user can never be sure that the link he traverses today will be valid
or even available tomorrow. This can lead to surprises for users who do
not anticipate changes, and link to or comment upon an application
object that does change (e.g., data scenarios, data values, results of model
executions) or application reports containing such objects. The user-
declared link or comment may not be valid the next time that object
appears in a generated report. The same goes for application objects
‘pasted’ into user-created documents when these documents are re-
opened. This calls for some type of version management, allowing the
user to specify whether he wants to see up-to-date information or an

99

HYPERMEDIA Vol. 4, no. 2, 1992

older version. This is especially important for the ‘authorization’ decision
making stage, in which one may need to recreate the application
environment at the time a decision or recommendation was made in
order to justify it. In addition, being able to explain changes would be an
especially helpful feature in a DSS where the change, say, to a model
execution result may be caused indirectly by a change to an underlying
data value or model parameter. We are just beginning to tackle
versioning, which other hypermedia developers do address (e.g., DIF in
the software engineering domain® and HAM?, which is a static hypertext
model).

‘Links to real-world objects are subject to a kind of entropic
degradation, because the linked-to information is subject to' change.”’
We should determine (somehow) when user-declared links and
comments are no longer accurate or relevant. This is a problem with both
static and dynamic environments. We may be able to take advantage of
the known structure of the application knowledge base to determine
automatically when, at least a subset of these links and comments is no
longer valid. If the user could declare some validity conditions based on
parameter or data values in the underlying application knowledge base,
then the hypermedia engine should be able to check these before making
the link or comment available. For example, the user may declare a
comment or link to an action plan, which becomes accessible only when
the price of a stock moves outside a specific, computed range. When this
condition does exist, selecting the appropriate virtual marker will find
this link or comment. When the condition does not exist, the link will not
be available. Another approach could be to embed a formal logic-based
truth maintenance system within the shell that would analyze validity
conditions®,

Part of processing application-generated document contents is
locating the endpoint markers of user-declared links or comments.
Recall that these are interface-level hypermedia entities provided by
users; applications are not notified of their existence. If markers are
associated with, say, arbitrary portions of text instead of embedded
application objects such as application-provided keywords, the
hypermedia engine must handle the case where the text string has shifted
to a new location within the generated text. For example, assume a user
comments on the last sentence of the '$38,995.95" document in Fig. 1b
conceming certainty factors. The text of this sentence is not stored intact,
rather it is recompiled each time this explanation is requested.
Depending on what comes before it (e.g., the length of the name of
whoever last modified this data value), the character position of this

100

DECISION SUPPORT

sentence could shift between displays. Thus, solely registering the
character position of text associated with comments or user-declared link
endpoints is not adequate. The hypermedia engine must capture
additional information when the user creates the link or comment. We
have developed a preliminary algorithm for doing this based on a
knowledge of the structure of the document containing the arbitrary link

- endpoint*,

Tailoring causes another kind of change. Our implementation of
filtering will allow conditional virtual entities and computation, as well
as multiple report formats for different users and tasks. Thus the same
report ‘object’ may have different contents generated for different users
(e.g., a different level of detail). User-declared comments and links to
one version may map entirely differently to another (or perhaps not at
all). Virtual markers in two versions may yield different sets of link
options. We have yet to determine how difficult such features will be to
implement effectively.

Our model of generalized hypermedia addresses several of these
issues to the extent noted in this section. We intend to refine generalized
hypermedia further regarding all of these issues.

CONCLUDING REMARKS

Hypermedia is recognized as a method for reducing the perceived
complexity of information systems. Generalized hypermedia is a method
for reducing the cost and effort of creating and using hypermedia-
oriented interfaces. Generalized hypermedia adds value by providing a
hypermedia-style interface to a DSS application without an author
having to create any nodes or links. (Of course, users can add their own
comments and other annotations, just as in regular hypermedia systems.)
The direct access to information provided by a generalized hypermedia
DSS makes it easy to use for someone who is new to a decision domain.
He can explore the domain at his own pace, read the comments and
definitions, and experiment with application models and data. Another
benefit of hypermedia is the degree of user control. More advanced users
easily can bypass information with which they are familiar.

Generalized hypermedia can be applied to any domain that is well
enough understood and expressible for the systems programmer building
an application manager subsystem to map the components of its
application knowledge bases to generalized hypermedia components
with bridge laws.

What about domains that are not well-structured? Raymond and
Tompa present an interesting example — the natural language found

101

HYPERMEDIA Vol. 4, no. 2, 1992

within a dictionary®. Given the current state of natural language
processing research, it would be impractical to write bridge laws for such
a domain.

In a way, we view generalized hypermedia bridge laws as a method
for identifying what is ‘important’ in the applications that the application
manager subsystem supports, by specifying which objects the DSS
analysts and users can access. There is, of course, an inherent danger in
the builder of the application manager anticipating what future users will
want to access. This is an important issue, which we intend to study as
we gain more experience with users. Even so, we believe that the
preliminary bridge laws that our prototype Max currently incorporates
yield a substantial — and satisfactory — degree of access to DSS
information and operations.

Our research continues on several fronts. One is to improve our model
of generalized hypermedia. Another is to explore the potential of task
environments — local environments organized around the procedure the
analyst should follow when he is performing an individual task*.
Imagine, for example, a hypermedia-oriented project management
system, in which each subtask has its own filter settings identifying
information relevant to it (data, documents, reports, models). The task
environment would tailor the user’s view to his specific goal (and
perhaps to his experience, skills or preferences), giving access only to
information and commands pertaining to the current subtask. Task
environments also could serve as an enhanced form of documentation,
building upon the notion of, e.g., guided tours in NoteCards* or
Zellweger’s scripted documents®. An advanced implementation of task
environments could incorporate ‘active’ agents that guide the user
through the process, reminding him of steps left out and making
suggestions. As with the other decision models supplied by applications,
a task environment could be declared using bridge laws and filters, and
then managed by the generalized hypermedia interface on behalf of an
application.

Puttress and Guimaraes state that hypermedia integration ‘must be
accomplished without requiring major changes to the existing
environment™ Application manager builders should have to write as few
bridge laws as possible and not have to modify their system otherwise.
We intend to help builders by constructing a bridge law editor that
accepts formats other than first order logic.

The overwhelming majority of information systems today are
dynamic systems that do not utilize hypermedia. We view this as an
opportunity! To meet this opportunity we currently are generalizing our

102

DECISION SUPPORT

model of the hypermedia engine to serve applications other than DSS¥.
We hope that our work encourages more developers to tackle dynamic
models of hypermedia. Hypermedia should be a widely-implemented
paradigm for information presentation. We challenge other hypermedia
developers to help us make this possible.

ACKNOWLEDGEMENT

Steve Kimbrough of the University of Pennsylvania has played an
integral role in the development of these ideas. It is he who originally
applied the concept of bridge laws to hypermedia. Charles Hardwick of
the University of Houston - Clear Lake invited me to write this article’s
original version, for which I am grateful. Patricia Carlson of the U. S. Air
Force’s Human Resources Training Laboratory at Brooks Air Force
Base, Mark Frisse of Washington University, Chuck Kacmar of Florida
State University, Tomas Isakowitz of New York University, Dick Maffei
of Boston College and Merrill Warkentin of George Mason University
each made voluminous, invaluable suggestions for previous drafts. I also
found the comments of the anonymous referees most helpful. This work
was motivated and supported in part by the U. S. Coast Guard, under
contract DTCG39-86-C-E92204 (formerly DTCG39-86-C-80348),
Steven O. Kimbrough principal investigator.

AUTHORS NOTE

This article expands an earlier version entitled ‘Automating hypertext for
decision support’ presented at the Hypermedia and Information
Reconstruction Conference sponsored by the University of Houston -
Clear Lake in December 1990. An older draft was entitled ‘Hypertext in
real time: generating hypertext dynamically within a decision support
system.’

TECHNICAL APPENDIX 1: INSIDE A STATIC HYPERTEXT KNOWLEDGE BASE

This appendix — referenced during our discussion of bridge laws —
presents a systems programmer’s view of the nodes, link markers and
links in the static hypertext knowledge base underlying Figure la’s and
Fig. 1b’s reports. Each report, link marker and connection is represented
by a ‘'node’, ‘marker’ or ‘link’ predicate. Every time a user manually
creates a document or link through the DSS interface, the system
generates corresponding instances of these predicates in the system’s
knowledge base. We precede each set of predicates with the meaning of
the predicates’ arguments.

103

HYPERMEDIA Vol. 4, no. 2, 1992

Format: node(identifier, report title, list of the text and link markers
comprising its contents)
node(1, title(“Final Committee Report”),
content(["To:<t>John Doe, Vice President of Finance<cr>From:<t>", marker(1),
"<cr>Subject:<t>", marker(2),
“<cr>Date:<t>October 7, 1990<cr><cr><t>This Committee was to evaluate...”,
)
node(2, title(“explain($13,287,432)”), content([marker(18), “is the”, marker(19),
“under”, marker(20), ...I))
node(3, title(*explain($410,527.53)"), content([marker(46), “is the”, marker(47),
“under”, marker(48), ...]))
node(4, title(“origin($38,995.95)™),
content([marker(66), “is the cost of each vehicle (%, marker(67),) in the
scenario”, ...])) ... etc.

Format: marker(marker identifier, the link associated with the marker,
marker’s display value)

marker(l, link(1), content(“Procurement Committee™))

marker(2, link(2), content(“Final Report Regarding New Flect Configuration™))

marker(3, link(3), content(“bases™))

marker(4, link(4), content(“grcater region”))

marker(5, link(5), content(*(1)™))

marker(6, link(6), content(“10”))

marker(7, link(7), content(*$13,287,432™)) ... etc.

Format: link(link identifier, the report where the link originates, the link’s
destination report))

link(1, node(1), node(5))
link(6, node(1), node(10))
link(7, node(1), node(2)) ... etc.

TECHNICAL APPENDIX 2: GENERALIZED HYPERMEDIA BRIDGE LAWS

This appendix presents simplified examples of bridge laws, which the
builder of the application manager subsystem specifies using logical
predicates and logical quantification. The hypermedia engine uses these
to generate the hypermedia links emanating from all calculations in
interactive documents that result from executing DSS application
models, such as the execution result $13,287,482 that the user selects in
Fig. 2. The bridge laws themselves invoke both standard application
manager routines and other bridge laws. For clarity, we precede bridge

104

DECISION SUPPORT

law names with the code ‘ght.” We precede the standard application
manager routines with the code ‘appl.’ We describe additional bridge laws
for models, scenarios, keywords, user links, etc. in other papers2. We
also have applied bridge laws to the structure of a relational database®.

Format of the generalized hypermedia link predicate

The hypermedia engine uses generalized hypermedia links of the
following format. All bridge laws for links must have this format as well.
(Note that we have simplified the link format for this discussion. The
true format‘ allows an arbitrary set of link attributes as well as a
destination link marker to highlight upon “arrival” at the link
destination®.)

ght_link(id, originating node, originating link marker, destination node, link
computation operation, valid filter set)

Bridge law declaring links to destination nodes from markers rep-
resenting DSS model execution results
This bridge law establishes links from model execution results (i.e.,
calculations). The hypermedia engine calls it whenever the user selects a
link marker in an interactive document. The bridge law determines
whether the link marker represents a calculation resulting from executing
a DSS application model. If so, it maps a link from the execution result
to three kinds of destination nodes — an explanation report, a
reevaluation report and a listing of user comments about the calculation,
if any exist — in the following manner. Calling this bridge law causes
the hypermedia engine, in turn, to invoke its component predicates: the
application routine appl_type/2, which identifies the type of link marker
selected; the bridge law ght_operation/4, which determines the link
operation type op; and bridge law ght_identifier/4, which generates the
name of the destination node desr. Often the link operation is a
computation that generates the contents of the destination node during
traversal. Arguments with underscores accept any values passed. An
underscore for the originating node enables this bridge law to map links
in all originating nodes, i.e., from any calculation in any interactive
document!
(¥ dest, f1, £2, id, op) (ght_link(id, _, marker(id), dest, op, filter([f1, £2))) <—

(app!_type(id, type(execution_result)) &

ght_operation(type(execution_result), id, op, filter(f1)) &

ght_identifier(id, op, dest, filter(f2))))

Identifying the type of application element selected as an execution result
We assume that an application (or, in our case, the application manager
subsystem) can identify its own objects from the objects’ identifiers®.

105

HYPERMEDIA Vol. 4, no. 2, 1992

The appl_type/2 predicate determines that an object with the identifier id
is a model execution result if it satisfies the appl_execution/4 predicate.
For simplicity we shall not describe the arguments with underscores. We
provide a full description elsewhere®.

(Vid) (app!_type(id, type(execution_result)) <—
(appl_execution(id, _, _, .)))

Bridge laws inferring link operation types for model execution results
and all elements with comments

The first two bridge laws find ‘explain’ and ‘re-evaluate’ links for model
execution results, respectively. Each bridge law retrieves the filter set under
which this link is valid using the predicate appl_operation_available/3.
This enables the application manager’s builder to specify filters to restrict
the availability of particular DSS operations.

(Vf) (ght_operation(type(execution_resylt), _, operation_type(explain), filter(f)) <—
(appl_operation_available(type(execution_result), operation_type(explain),
filter(f)))

(V1) (ght_operation(type(execution_result), _, operation_type(“re-evaluate™), filter(f)) <—
(appl_operation_available(type(execution_result), operation_type(“re-evaluate™),
filter(f))))

The next bridge law determines whether any comments exist for the
specific calculation the user has selected. The system may restrict access
to specific comments through the filter associated with each.

(Vf, id) (ght_operation(_, id, operation_type(“show comment™), filter(f)) <—
(user_comment(id, _, filter(f))))

Bridge laws inferring destination node identifiers

Given the link operation type, these bridge laws infer the identifier of the
destination node. (The application manager subsystem will generate the
contents of this node when the hypermedia engine actually traverses the
link.) The destination identifiers — explain(id), reevaluate(id, m, s) and
user_comment(id) — are passed in the third argument. In the first two
laws, the application manager’s builder uses the predicate
appl_destination_available/3 to specify filters restricting access to
particular DSS reports. If users should be able to access these operations
and reports under all analysis conditions, then this predicate should
return the filter code ‘all.” We see an example of this in the third bridge
law, which identifies the comment report.

(Vf, id) (ght_identifier(id, operation_type(explain), explain(id), filter(f)) <—
(appl_type(id, type(execution_result)) &
appl_destination_available(id, operation_type(explain), filter(f))))

106

12.

DECISION SUPPORT

(¥f, id, m, s) (ght_identifier(id, operation_type(“re-evaluate™), reevaluate(id, m, s),
filter(f)) <—
(appl_type(id, type(execution_result)) &
appl_execution_result_model(id, m)) &
appl_execution_result_scenario(id, s)) &
appl_destination_available(id, operation_type(“re-evaluate™), filter(f))))

(Vid) (ght_identifier(id, operation_type(“show comment”), user_comment(id),
filter(all)))

REFERENCES

SPRAGUE, R. and CARLSON, E. Building effective decision support systems. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1982.

TURBAN, E. Decision support and expert systems: management support systems, 2nd Ed. New
York: Macmillan Publishing Company, 1990.

BALASUBRAMANIAN, P.R., ISAKOWITZ, T., JOHAR, H. and STOHR, E. Hyper Model
Management Systems. In: Proceedings of the Twenty-Fifth Hawaii International Conference on
System Sciences, Volume II1, Kauai, HI, January 1992, 462-472.

BIEBER, M. Generalized hypertext in a knowledge-based DSS shell environment. Philadelphia,
PA: University of Pennsylvania, Decision Sciences Department Ph. D. Dissertation, 1990.
BIEBER, M. and KIMBROUGH, S.0. On the logic of generalized hypertext. Decision Support
Systems (forthcoming).

BIEBER, M. and KIMBROUGH, S.0. On generalizing the concept of hypertext. Management
Information Systems Quarterly (forthcoming).

CONKLIN, J. Hypertext: A survey and introduction. /[EEE Computer, 20(9), 1987, 17-41.
NIELSEN, J. Hypertext and hypermedia. San Diego CA: Academic Press Inc., 1990.

MINCH, R. Application and research areas for hypertext in decision support systems. Journal of
Management Information Systems, 6(3), 1989, 119-138.

. HALASZ, F. Reflections on NoteCards: seven issues for the next generation of hypermedia

systems. Cornmunications of the ACM, 31(7). 1988, 836-855.

. SCHUTT, H. and STREITZ, N. HyperBase: A hypermedia engine based on a relational

database management system. /n: A.RIZK, N. STREITZ, and J. ANDRE, eds. Hypertext:
concepts, systems and applications, proceedings of ECHT'90, Versailles, November 1990.
Cambridge: Cambridge University Press, 95-108.

BIEBER, M. Template-driven hypertext: a methodology for integrating a hypertext interface
into information systems. Chestnut Hill, MA: Boston College, Computer Science Department
Technical Report, 1991. (Technical Report #BCCS-91-3.)

. COLLIER, G. Thoth II: hypertext with explicit semantics. /n: Hypertext ‘87 Proceedings,

Chapel Hill, NC, November 1987, 269-290.

. HALASZ, F. and SCHWARTZ, M. The Dexter hypertext reference model. In: J. MOLINE,

D. BENIGNI, and J. BARONAS, eds. Proceedings of the hypertext standardization workshop,
Gaithersburg, MD, January 1990. National Institute of Standards, Special Publication SP500-
178, 95-134.

. BIEBER, M. Fundamentals of flexible hypermedia. Chestnut Hill, MA: Boston College,

Computer Science Department Technical Report, 1992. (Technical Report #BCCS-92-5.)

. SIMON, H. The new science of management decision. New York: Harper and Row, 1960, 1977

(revised ed.).

. MINTZBERG, H., RAISINGHANI, D. and THEORET, A. The structure of unstructured

decision processes. Administrative Science Quarterly, 21, 1976, 246-275.

107

HYPERMEDIA Vol. 4, no. 2, 1992

18. KIMBROUGH, S.0. Notes on the argumentation theory for decision support Systems. In:
Proceedings of the 1990 International Society on DSS Conference, Austin, TX, September
1990, 17-39.

19. KIMBROUGH, S.0., PRITCHETT, C., BIEBER, M. and BHARGAVA, H. The Coast Guard’s
KSS Project. Interfaces, 20(6), 1990, 5-16.

20. SCHULER, W. and SMITH, J. Author’s Argumentation Assistant (AAA): A Hypertext-based
Authoring Tool for Argumentative Texts. In: A. RIZK, N. STREITZ, and J. ANDRE, eds.
Hypertext: concepts, systems and applications, proceedings of ECHT’90, Versailles, November
1990. Cambridge: Cambridge University Press, 137-151.

21. MARSHALL, C., HALASZ, F,, ROGERS, R. and JANSSEN, W. Aquanet: a hypertext tool to
hold your knowledge in place. /n: Hypertext ‘91 Proceedings, San Antonio, TX, December
1991, 261-275.

22. BERNSTEIN, B., SMOLENSKY, P. and BELL, B. Constraint-based hypertext system to
augment human reasoning. In: Proceedings of Rocky Mountain Conference on Artificial
Intelligence ‘89, Denver, CO, June 1989, 21-30.

23. SMOLENSKY, P., BELL, B., FOX, B., KING, R. and LEWIS, C. Constraint-based hypertext
for argumentation. In: Hypertext ‘87 Proceedings, Chapel Hill, NC, November 1987, 215-246.

24. CONKLIN, J. and BEGEMAN, M. gIBIS: A Tool for All Reasons. Journal of the American
Society for Information Science, 40(5), 1989, 200-213.

25. FISCHER, G., MCCALL, R. and Morch, A. JANUS: Integrating hypertext with a knowledge-
based design environment. In: Hypertext ‘89 Proceedings, Pittsburgh, PA, November 1989,
105-117.

26. MCCALL, R., BENNETT, P.,, D'ORONZIO, P., OSTWALD, J., SHIPMAN, F. and
WALLACE, N. PHIDIAS: integrating CAD graphics into dynamic hypertext. In: A. RIZK,
N. STREITZ, and J. ANDRE, eds. Hypertext: concepts, systems and applications, proceedings
of ECHT'90, Versailles, November 1990. Cambridge: Cambridge University Press, 152-165.

27. BARMAN, D. RelType: relaxed typing for object-orientated hypermedia representations. In:
Object-oriented programming in AI: Workshop Notes from the Ninth Annual National
Conference on Artificial Intelligence (AAAI-91), Anaheim, CA, July 1991,

28. RITTEL, W. and KUNZ, W. Issues as elements of information systems. Berkeley, CA: Center
for Planning and Development Research, University of California, 1970. (Working Paper #131.)

29. GLUSHKO, R. Design issues for multi-document hypertexts. Jn: Hypertext ‘89 Proceedings,
Pittsburgh PA, November 1989, 51-60.

30. BLANNING, R., WHINSTON, A, DHAR, V., HOLSAPPLE, C., JARKE, M., KIMBROUGH,
S., LERCH, J. and PRIETULA, M. Model management systems. Forthcoming in: B.
KONSYNSKI, and E. STOHR, eds. Information systems in decision processes: charting new
directions for DSS research: A multidisciplinary approach. (Chapter 7).

31. HERRSTROM, D. and MASSEY, D. Hypertext in Context. In: E. BARRETT, ed., The society
of text: hypertext, hypermedia, and the social construction of information. Cambridge, MA:
MIT Press, 1989, 45-58.

32. KOVED, L. and SHNEIDERMAN, B. Embedded menus: selecting items in context.
Communications of the ACM, 29(4), 1986, 312-318.

33. BHARGAVA, H,, BIEBER, M. and KIMBROUGH, S.0. Oona, Max, and the WYWWYWI
principle: generalized hypertext and model management in a symbolic programming
environment. In: Proceedings of the Ninth International Conference on Information Systems,
Minneapolis, MN, November 1988, 179-92.

34. MARSHALL, C. and IRISH, P. Guided tours and on-line presentations: how authors make
existing hypertext intelligible for readers. In: Hypertext ‘89 Proceedings, Pittsburgh, PA,
November 1989, 15-42.

35. ZELLWEGER, P. Scripted documents: A hypermedia path mechanism. In: Hypertext ‘89
Proceedings, Pittsburgh, PA, November 1989, 1-14.

108

DECISION SUPPORT

36. KIMBROUGH, S$.0. On shells for decision support systems. Philadelphia, PA: University of
Pennsylvania, Department of Decision Sciences, 1986. (Working paper #86-07-04.)

37. BIEBER, M. Issues in modeling a ‘dynamic’ hypertext interface for non-hypertext information

systems. In: Hypertext ‘91 Proceedings, San Antonio TX, December 1991, 203-218. An

expanded version of this paper available as: BIEBER, M. On merging hypertext into dynamic,
non-hypertext systems. -Chestnut Hill, MA: Boston College, Computer Science Department,

1961. (Technical Report #BCCS-91-14.)

NAGEL, E. The structure of science: problems in the logic of scientific explanation. New York:

Harcourt, Brace and World, Inc., 1961,

AUGELAND, J. The nature and plausibility of cognitivism. The Behavioral and Brain

" Sciences, 1 1978, 215-26; reprinted with minor revisions in Haugeland J., ed. Mind design:

; philosophy, psychology, artificial intelligence. Cambridge, MA: The MIT Press, 1981.

KRMBROUGH, S.0. On the reduction of genetics to molecular biology. Philosophy of Science,

46(3), 1979, 389-406.

BIEBER, M. and ISAKOWITZ, T. Bridge laws in hypertext: A logic modeling approach.

Chestnut Hill, MA: Boston College, Computer Science Department, 1991. (Technical Report

#BCCS-91-4.)

BARLOW, J,, BEER, M., BENCH-CAPON, T., DIAPER, D., DUNNE, P. and RADA, R.

Expertext: hypertext-expert system theory, synergy, and potential applications. In:

N.SHADBOLT, ed., Research and Development in Expert Systems VI: Proceedings of Expert

Systems 89, the Ninth Annual Technical Conference of the British Computer Society Specialist

Group on Expert Systems, London, September 1989. Cambridge: Cambridge University Press,

116-127.

3. AKSCYN, R., MCCRACKEN, D. and YODER, E. KMS: A distributed hypermedia system for

managing knowledge in organizations. Communications of the ACM, 31(7), 1988, 820-835.

BROWN, P.J. A hypertext system for UNIX. Computing Systems, 2(1), 1989, 37-53.

. APPLE COMPUTER, INC. HyperCard User’s Guide. Cupertino, CA, 1989.

. SCHNASE, J. and LEGGETT, J. Computational hypertext in biological modeling. In: Hypertext

‘89 Proceedings, Pittsburgh, PA, November 1989, 181-198.

. MAYES, J.T., KIBBY M.R. and WATSON, H. StrathTutor: the development and evaluation of

a learning-by-browsing system on the Macintosh. Computers and Education, 12, 1988, 221-229.

. FURUTA, R. and STOTTS, P.D. The Trellis hypertext reference model. In: J. MOLINE,

BENIGNI, D. and J. BARONAS, eds., Proceedings of the Hypertext Standardization Workshop,

Gaithersburg, MD, January 1990. National Institute of Standards, Special Publication SP500-

178, 83-94.

49. SHERMAN, M., HANSEN, W., MCINERNY, M. and NEUENDORFFER, T. Building
hypertext on a Multimedia Toolkit: an overview of Andrew Toolkit Hypermedia Facilities. In:
A. RIZK, N. STREITZ, and J. ANDRE, eds., Hypertext: concepts, systems and applications,
proceedings of ECHT 90, Versailles, November 1990. Cambridge: Cambridge University Press,
13-24,

50. MAURER, H. and TOMEK, I. Broadening the scope of hypermedia principles. Hypermedia
2(3), 1990, 201-220.

51. KACMAR, C. and LEGGETT, J. PROXHY: A process-oriented extensible Hypertext
Architecture. ACM Transactions on Information Sysiems, 9(4), 1991, 399-419,

52. PEARL, A. Sun’s link service: a protocol for open linking. In: Hypertext ‘89 Proceedings,
Pittsburgh PA, November 1989, 137-146.

53. PUTTRESS, J. and GUIMARAES, N.M. The toolkit approach to hypermedia. In: A, RIZK, N,
STREITZ, and J. ANDRE, eds., Hypertext: concepls, systems and applications, proceedings of
ECHT 90, Versailles, November 1990. Cambridge: Cambridge University Press, 25-37.

54. UTTING, K. and YANKELOVICH, N, Context and orientation in hypermedia networks. ACM
Transactions on Information Systems, 7(1), 1989, 58-84.

109

HYPERMEDIA Vol. 4, no. 2, 1992

55.

56.

57.

58.

59.

GARG, P. and SCACCH]I, W. Ishys: designing an Intelligent Software Hypertext System. JEEE
Expert, 4(3), 1989, 52-64.

CAMPBELL, B. and GOODMAN, J. HAM: A general purpose Hypertext Abstract Machine.
Communications of the ACM, 31(7), 1988, 856-861.

NEWCOMB, S.R., KIPP, N.A. and NEWCOMB, V.T. The ‘HyTime' hypermedia/time-based
document structuring language. Communications of the ACM, 34(11), 1991, 67-83.
RAYMOND, D. and TOMPA, F. Hypertext and the Oxford English Dictionary.
Communications of the ACM, 31(7), 1988, 871-879.

LANDOW, G. Hypertext in literary education, criticism, and scholarship. Computers and the
Humanities, 23, July 1988, 173-198.

(Accepted for publication March 1992)

110

%

