
Decision Support Systems 14 (1995) 251-267

On integrating hypermedia into decision
support and other information systems 1,2

M i c h a e l B i e b e r *

Computer and Information Science Department, New Jersey
Institute of Technology, Newark, New Jersey, USA

The goal of this research is to provide hypermedia func-
tionality to all information systems that interact with people.
Hypermedia is a concept involving access to information,
embodying the notions of context-sensitive navigation, annota-
tion and tailored presentation. This paper presents the archi-
tecture of a system-level hypermedia engine, designed both to
manage full hypermedia functionality for an information sys-
tem and to bind interface-oriented front-end systems with
separate computation-oriented back-end systems. The engine
dynamically superimposes a hypermedia representation over a
back-end application's knowledge components and processes.
The hypermedia engine generates this representation using
bridge laws, which capture the internal structure of client
systems. Users access the application through its hypermedia
representation. The paper also describes a set of minimal
requirements for integrating the hypermedia engine with an
information system. These guidelines apply to all integration
efforts, not just that described here. Information systems will
require some supplementary routines for the engine to man-
age hypermedia functionality for them. The more sophisti-
cated and cooperative the information system, the higher the
level of hypermedia support the engine will provide.

Keywords: Bridge laws; Decision support systems; Filters; Hy-
pertext; Hypermedia; Hypermedia engine; Infor-
mation navigation; Information systems architec-
ture; Integration

1. A vision of hypermedia and information sys-
tems

We envision a world in which information in-
creasingly empowers people. Decision makers,
analysts, researchers, trainees, students and ca-
sual browsers all will have access to information
they need or desire, in a format tailored to their
individual tasks and personal preferences.

The concept of hypermedia embraces the spirit
of such access to information and eventually, we
believe, will be incorporated in the interfaces of
all decision support systems (DSS), and indeed,
all information systems that interact with people.
(Various authors, e.g., [43], support this predic-
tion.) Our research goals are to facilitate this
integration and to produce tangible results. Once
an information system includes hypermedia func-
tionality, the specific applications it supports (e.g.,
worksheets within a spreadsheet package, models
within a linear programming package and expert
systems within an expert system shell) automati-
cally become hypermedia applications. Users
communicate in hypermedia's direct, context-sen-
sitive fashion and hypermedia functions supple-
ment the system's original commands.

* Corresponding author. Email: bieber@cis.njit.edu
l I wish to thank Tomfis Isakowitz, Steve Kimbrough and

Robert Minch for their invaluable help with this paper and
its concepts. This research was motivated and supported in
part by the U.S, Coast Guard under contract DTCG39-86-
C-E92204 (formerly DTCG39-86-C-80348), Steven O. Kim-
brough principal investigator.

: This expands an earlier version: M. Bieber, Providing Infor-
mation Systems with Full Hypermedia Functionality, in:
Proceedings of the Twenty-sixth Hawaii International Con-
ference on System Sciences (Wailea, Jan. 1993).

Michael Bieber is Assistant Professor
~ in the Department of Computer and

Information Science at New Jersey
~ Institute of Technology. He currently
i! is Visiting Assistant Professor of In-

~, :~ formation Systems at New York Uni-
i , versity. His research interests include

~, : hypermedia, decision support and in-
..,,. formation presentation, and has ap-

....... plied this research on a team develop-
ing knowledge-based decision support

................................ systems (DSS) for the U.S. Coast
Guard. He earned his Ph. D. in Deci-

sion Sciences from the Wharton School, University of Penn-
sylvania. Before entering academia, he worked as a systems
analyst for IBM and the University of Pennsylvania.

0167-9236/95/$09.50 ©1995 - Elsevier Science B.V. All rights reserved
SSDI 0167-9236(93)E0026-A

252 M. Bieber / Decision Support Systems 14 (1995) 251-267

The goal of this paper is to encourage an
ongoing discussion about providing the users of
all information systems with dynamic hypermedia
functionality. We began this discussion in [7,8] by
proposing a solution - a hypermedia engine that
builders can integrate with their systems. From
this we derived a starting set of minimal require-
ments for hypermedia integration, which we be-
lieve apply to all integration efforts, not just our
own. This paper extends the architecture we orig-
inally introduced in [7,8]. Here we deepen our
description of the hypermedia engine's internal
structure, develop an alternate architecture for
information systems not abandoning their inter-
faces and expand our set of minimal require-
ments for hypermedia integration.

In section 2 we briefly review the concepts of
hypermedia and our enhancement, generalized
hypermedia. Generalized hypermedia is at the
heart of our hypermedia engine's architecture.
We also examine the potential role of hyperme-
dia in decision support. In section 3 we introduce
two versions of our engine's architecture and
describe its internal structure. We illustrate its
operation with a detailed example. In section 4
we discuss the minimal requirements for hyper-
media integration - the commitment information
system builders have to make to use our architec-
ture. We conclude in section 5 by briefly compar-
ing our work with other current approaches.

2. Hypermedia and generalized hypermedia

Hypertext [3,15,49,53,54,67] is the concept of
specifying relationships among pieces of informa-
tion and providing computer-mediated navigation
among them. For example, we can automatically
link a document with a stage in a decision analy-
sis, a keyword with its definition and a calculation
with its explanation. Hypermedia expands this
concept to include media other than text. We
refer to the information at either end of the link
as nodes, and to the entire node and link struc-
ture as a hypermedia network. We signal the
existence of a link from a node by highlighting a
portion of the node's display contents, which we
call a link marker. When a user selects a link
marker the system traverses this link and displays
an appropriate representation of the destination
node. Fig. 1 shows a hypermedia-oriented inter-

Order ing Recommendation

To: Semuel A d l l ! , PurcheaincJ Dep~rtment

From: Slmllnthe Stevens. Analyst
Subject: Product ~ Reorder Timil~J and Cost

Date: 6 / 5 / 9 2

Otlr calcullstiona i ndicete thet we should order 60 limits of #5._b_b every 6

arrangement, with a t o t l l c o l t of.S60.O0. month~ This is the lowest -cost

This would cha eour method of o e ~ o i l s re t

Info~mL£ion Avtil*ble :

I
(1) explain
(2) ~e-evmluate
43) show couent$
(4) stLrt new user li~
(5) cYe l te ~w co~ent

Fig. 1. Accessing application and hypermedia functionality in
a hypermedia-style interface.

active document similar to those our Max proto-
type produces [11,38]. This document node repre-
sents a report generated by a decision support
system (DSS) and passed on to our hypermedia
engine for display. The underlined and boldfaced
text strings are link markers, each associated with
one or more links. In Fig. 1 the user has selected
the marker "$60.00" representing the result of a
DSS calculation. The hypermedia engine inferred
three links associated with this marker's underly-
ing calculation: to a node representing an expert
system explanation, to a node representing its
dynamic recomputation and to a node containing
user comments about it. The two remaining links
represent hypermedia engine commands for an-
notating elements of the DSS. The user navigates
through the DSS thus, by selecting some item of
interest and traversing a link representing an
appropriate DSS (or hypermedia engine) com-
mand. The hypermedia engine would support
other types of information systems in a similar
fashion.

Hypermedia embodies a methodology of flexi-
ble access to information incorporating the no-
tions of navigation, annotation and tailored pre-
sentation. Tailoring is inherent in other hyperme-
dia functions, e.g., in customizing the network the
user navigates and its annotations. Together,
these features constitute what we call "full hyper-
media functionality," an ideal level of functional-
ity that few of today's hypermedia systems
achieve. (Many systems calling themselves "hy-
permedia systems," in fact, provide only forward

M. Bieber / Decision Support Systems 14 (1995) 251-267 253

navigation - i.e., direct manipulation - and per-
haps commenting [42,62].)

Users navigate "forward" by selecting an item
of interest (a link marker) about which to retrieve
comments, annotations, definitions, explanations
or any other inferable information. Link markers
act as embedded menus [39], giving "context-sen-
sitive" access to an underlying application's
knowledge and operations. We have dubbed this
the WYWWYWI ("what you want, when you want
it") principle [5]. Users normally traverse from
node to node at the detail level, i.e., with each
node occupying a window on the screen. Users
also should be able to navigate via (graphical)
overviews [21,40,49,54,69] of the hypermedia net-
work. Overviews (often - see [17]) help alleviate
the network disorientation [15,54] associated with
hypermedia's nonrestrictive, user-directed access.

Information retrieval-style queries provide an
alternative method of forward navigation [20,23,
72,71]. Queries return a relevant subset of an
application's components, which is mapped to a
hypermedia representation. Users then can navi-
gate within this tailored subenvironment.

Users can navigate "backwards" as well, re-
turning to prior stages or "screens" in their anal-
ysis, i.e., the previously visited computer screens,
but in their current state. Backtracking is an-
other important weapon against network disori-
entation. By providing an escape mechanism for
returning to familiar territory, backtracking gives
users the confidence to explore freely and take
"detours."

Annotation comprises features such as user-
declared links and comments. Analysts and in-
structors can use these, for example, to tie spe-
cific data, techniques and results together in trails
[68] or guided tours [24,46]. Trails and guided
tours both direct and constrain forward naviga-
tion. They can document analyses or serve as
tutorials, and can be tailored for specific users or
tasks. In a DSS, for example, annotations can
provide justification for courses of action [10].

Full hypermedia functionality can augment de-
cision support [32]. Consider Simon's Intelligence
(gathering information) - Design (developing al-
ternate solution scenarios) - Choice (choosing a
solution) framework of decision making [64]. An
analyst navigates or browses through the docu-
ments, models, and data in the problem domain
by making queries or by directly selecting items of

interest ("drilling down" [49]). If the domain had
been explored previously, the hypermedia repre-
sentation may be tailored to this analyst, or his or
her task. Prior users also may have specified
annotations or recommended paths. Our analyst's
own annotations document the solution scenarios
he develops, and connects these to their sources
and other supporting information. DSS com-
mands mapped to hypermedia links enable the
analyst to evaluate models and data directly
through context-sensitive hypermedia navigation.
As we see in Fig. 1, this provides a seamless
interface for all DSS and hypermedia functions.
The analyst can link his chosen solution scenario
to documents reporting the decision. He also
could package his analysis as a trail or guided
tour. Hypermedia thus serves as a documentation
and justification tool [43]. In fact, an entire class
of hypermedia systems - argumentation systems,
e.g., [16,45] - specializes in capturing the decision
rationale and deliberations so often unrecorded
and quickly forgotten. Through the hypermedia
representation, others can explore the analyst's
alternatives and conclusions, and can comment
upon them. (See [10] for a deeper exploration of
hypermedia and decision support and [31,49] for
discussions of hypermedia and decision support
research issues.)

In summary, hypermedia is a technique for
providing direct, context-sensitive access to appli-
cation data, the commands that manipulate this
data, and metainformation about the data and
commands. Such access should improve the qual-
ity and users' understanding of applications and
their inputs and outputs, and increase the confi-
dence people have in these. Performance issues
aside, we believe that most information systems
that interface with people would profit from hy-
permedia functionality. (The exceptions may be
data entry and other transaction processing sys-
tems, in which users do not query information.
Perhaps even here, validation and other feedback
may benefit from a hypermedia representation.)

There are two basic limitations with most of
today's "first generation" hypermedia systems.
First, they implement a static and explicit model
of hypermedia; the nodes, links and link markers
must be declared explicitly and be fully enumer-
ated (as opposed to being declared virtually and
generated upon demand). Most applications,
however, are dynamic and too large to mark up

254 M. Bieber / Decision Support Systems 14 (1995) 251-267

manually. Imagine a spreadsheet designer having
to calculate all what-if analyses in advance. Sec-
ond, most of today's hypermedia systems are
" . . . insular monolithic packages that demand the
user disown his or her present computing envi-
ronment to use the functions of hypertext and
hypermedia" [48]. Users who want hypermedia
functionality often must abandon the software
they currently use - an impractical restriction
[34,43]. The first limitation motivated us to de-
velop generalized hypertext or generalized hyper-
media [6,11,12]. The second motivated our hyper-
media engine, which will provide hypermedia
functionality to an information system's applica-
tions. The engine incorporates our dynamic model
of generalized hypermedia.

In generalized hypermedia we broaden the
underlying model of hypermedia components -
nodes, links, link markers, etc. - with three of
Halasz' proposed extensions to hypermedia [27]:
virtual specifications, dynamic computation, and
filtering or tailoring. We use these to generate a
hypermedia representation "on the fly" from ba-
sic declarations we call bridge laws that describe
the internal structure of an information system.
As we shall see in section 3.2, bridge laws enable
generalized hypermedia to superimpose a hyper-
media network on an information system's appli-
cation, generating all node, link and link marker
representations dynamically from the applica-
tion's original, non-hypermedia data or knowl-
edge base. We should emphasize at this point
that both generalized hypermedia and bridge laws
are to be applied to an entire information system
application package (such as a spreadsheet lan-

guage, a DSS shell or a programming language),
not individual applications (e.g., a specific work-
sheet, DSS or program module). Once declared
for an entire package, hypermedia functionality
will be provided automatically for each of its
individual applications. (This is analogous to Gar-
zotto et al.'s authoring in the large [25].)

Three aspects combined distinguish general-
ized hypermedia from other hypermedia ap-
proaches: (1) all mapping and computation in
generalized hypermedia is dynamic; (2) through
bridge laws, generalized hypermedia can provide
system-level support to any information system
with a well-defined internal structure; and (3)
bridge laws map a hypermedia representation
without altering an information system's data or
knowledge bases. No other approach supports all
three criteria [10]. This does not mean that infor-
mation system builders simply can plug in our
hypermedia engine without adjusting their sys-
tems. Each builder will have to declare a small
set of bridge laws, register the system's communi-
cation protocols and add a relatively small num-
ber of routines to his system to route information
formatted for these bridge laws to the hyperme-
dia engine. This will suffice to provide hyperme-
dia engine support for all specific applications
written in his information system. Builders, how-
ever, will not have to make their systems or
applications "hypermedia-aware" in any way. This
is because (1) as mapped representations, nodes,
links and link markers do not alter the original,
underlying application information and (2) the
hypermedia engine maintains all other hyperme-
dia constructs (e.g., comments and trails) in its

B,OK-E.O 1 t l t Sp.cific B.ck- .d ,ppiicntion I
- - ~ ~r-' I Speclril Back-End. ApplicaUon I (computatlo n-oriented)

I , , 1 Specific Back-End Application I Back-End Communications
I Language

I1,o,.,o.,oo0,,o, I!_L_! I~ Subsystem (CS)l~~J //~(Interface'°rlented)/I

Fig. 2. Hypermedia engine architecture (version 1): This architecture binds independent back-end and front-end information
systems.

M. Bieber / Decision Support Systems 14 (1995) 251- 267 255

own knowledge bases separate from its client
information systems. The engine adds no hyper-
media constructs to its client systems or their
applications.

3. The system-level hypermedia engine

Fig. 2 shows a version of our proposed hyper-
media engine's architecture that binds independ-
ent back-end and front-end information systems.
By back-end systems, we mean information sys-
tems that primarily provide computation func-
tionality, such as DSS, expert systems, intelligent
tutoring systems, database management systems,
project management systems, etc. By front-end
systems we mean those that primarily support
interface-level functionality such as word proces-
sors and graphics packages. Instead of being
tightly coupled, the hypermedia engine runs con-
currently with - and independent of - the infor-
mation systems it binds, communicating through
external message passing. The engine embeds
link markers in messages the back-end passes to
the front-end for display and handles requests for
back-end functionality or supplementary hyper-
media support when a user selects one of these
markers. As a result, the user can access a back-
end through the interface of his or her choice,
which now provides full hypermedia functionality.
(This assumes that the front-end and back-end
builders comply with the requirements we discuss
in section 4.)

This architecture also allows users to access
multiple back-end systems at once and incorpo-
rate information (linked objects) from different
back-ends in a single front-end document [58].
Eventually this architecture will support work-
groups of multiple simultaneous users on hetero-
geneous front-ends.

Many computation-oriented information sys-
tems, of course, have high-quality interfaces.
Among these are spreadsheets and CAD systems,
as well as specific cases of the aforementioned
front-end and back-end systems. A second ver-
sion of the hypermedia engine, shown in Fig. 3,
would run concurrently with such systems and
manage hypermedia functionality for them. In
this architecture, internal communications be-
tween the interface and computation modules
must be routed through the hypermedia engine.

Order lnQ A e c o m m e n d a t l o n

To: ~IIUH~I A4ellt$, Purcheoihg Department

From: S l i R t k SteVe l l , Anoint

5ubject: product 5b Reorder T1 mi ~ end Cost

Date: 6 /5 /92

Our colculet|ena lndlcete that we ~hould order 60 l i l t s of oS;b every 6

months Th|s la the Ioveot-c~t

Thi i ~ exp la l n ($6O.O0)

,$60.00 is the result of evaluating the veri lble t¢ under data sooner o ~Lq.(2)..

It is computed using the model ~ q , which contains the followlrR equations(s):

t c - : ! * d l ~ l * h * ! l _ / 2

Here is the date used:

! = .Sl 5 .00 (setup cost)

I[= 120 l i l t s (demond period)

¢ = 60 .0 l i l t s (reorder quentitw)

[J l= . s l / l i l t (heldinqcost)

Fig. 3. Hypermedia engine architecture (version 2): This archi-
tecture serves information systems that have both adequate
interface and computation functionality.

For the rest of this paper we shall use the
terms "front-end" and "back-end" to indicate
in terface-or iented and computa t ion-or iented
functionality in both versions of the architecture.

3.1. An overview of the paper's example

We describe the hypermedia engine's architec-
ture through Fig. l 's simple text-based example
both here and in section 3.5. (Our model also
supports non-text content and link markers.) Fig.
l 's interactive document entitled "Order ing Re-
commendation" started as a message from the
DSS back-end. As an illustration, suppose the
second sentence of that message had the follow-
ing format:

' . . . This is the low-cost arrangement, with a
(variable(tc), "total cost") of
(calculation(variable(tc), model(eoq), scenario
(eoq(2))), 60, currency (US)) . . . '

Italicized text within angle brackets denotes a
back-end object. The back-end tagged each ob-
ject with its display value, any relevant formatting
information and an internal identifier. The hyper-
media engine superimposed a hypermedia struc-
ture over the entire message and converted its
contents to a document component set for display
by the front-end. (The document component set
contains the message contents after the hyperme-
dia engine has filtered them and embedded hy-

256 M. Bieber / Decision Support Systems 14 (1995) 251-267

permedia link markers.) As part of the conversion
the hypermedia engine added the identifier of
the owning back-end, "DSSI," to each object's
tag along with a unique hypermedia engine iden-
tifier for distinguishing among multiple instances
of a back-end object. Assume the corresponding
portion of document component set had the fol-
lowing internal format:

' . . . This is the low-cost arrangement, with a ([6,
DSS1, variable(tc)], value("total cost"),
form(text)) of ([7, DSS1, calculation(variable(tc),
model(eoq), scenario(eoq(2)))], value(60), form-
(currency(US)))...'

When the user selected the link marker
"$60.00," the hypermedia engine managed the
process of gathering all possible links to the un-
derlying object, "calculation(variable(tc), model
(eoq), scenario(eoq(2)))," which is owned by the
back-end system "DSSI." We see the resulting
link ensemble representing two back-end com-
mands and three hypermedia engine commands
in Fig. 1. Now the user chooses link #1. In
traversing this link the hypermedia engine in-
vokes DSSI's explanation generator, which re-
turns the explanation as a message. The engine
converts this to the document component set
displayed as "explain(S60.00)" in Fig. 4.

In the following sections we examine different
aspects of the hypermedia engine and then return
to this example in further detail.

3.2. Bridge laws and filters: techniques for automat-
ing hypermedia

In this section we discuss filters and bridge
laws. As part of compiling the document compo-
nent set, the hypermedia engine must determine

the locations (i.e., infer the existence) of link
markers in back-end messages. Bridge laws en-
able this inference. Filters tailor it.

The hypermedia engine uses filters to cus-
tomize the user's interaction in many ways. For
example, filters can direct:
• which report form or template the engine uses

to construct a document component set from
back-end messages,

• how detailed to make report contents,
• which objects to represent as link markers for

the user's current task, and
• which links to prune to avoid overwhelming a

novice user.
Through filtering, the hypermedia engine can

assume responsibility of managing mode or task
changes, altering the available commands and
documents as the user navigates through the
back-end. For example, in a project management
system the hypermedia engine would use filters to
tailor the user's view to his or her current project
subtask. For more details see [9], as well as the
discussion of "contexts" in [6].

The hypermedia engine uses logical rules called
bridge laws to map a hypermedia representation
over the components of a back-end system. We
adopted the term "bridge law" [29,37,50] because
these logical rules serve as a "bridge" or connec-
tion between objects defined in the language of
the back-end (e.g., models, variables, calcula-
tions) and those in that of the hypermedia engine
(e.g., nodes, links, link markers). Bridge laws em-
ploy logical quantification, i.e., they apply to every
instance that satisfies the set of conditions speci-
fied. Logical quantification (i.e., specifying "for
each" or the logical symbol "V") enables individ-
ual laws to map entire classes of back-end objects
to hypermedia components; the same bridge law
will map every object in the application knowl-

Specific Application [

Specific Application]

Computational I HYPERMEDIA ENG'NI: I
Functionality External Systems

Communications
Language

INFORMATION
SYSTEM / ~

Interlace
Functionality

Fig. 4. The document "explain(S60.00)": This hypermedia-style interactive document represents the back-end's explanation when
the user selects the "explain(S60.00)" link in Fig.1.

M. Bieber / Decision Support Systems 14 (1995) 251-267 257

edge base that satisfies the bridge law's condi-
tions.

In Pig. l's example, the hypermedia engine
used a bridge law similar to the following pseudo
version to identify the object "calculation(varia-
ble(tc), model(eoq), scenario(eoq(2)))" within the
"DSSI" back-end's original message and tag it as
a link marker in the document component set.

For each calculation with attribute values satisfying
the set of conditions Y and filter settings Z:

map a hypermedia link of type "explain" from
the object to the DSS1 explain function, and

map a hypermedia link of type "re-evaluate"
from the object to the DSS1 re-evaluate function.

As we shall discuss later, because it is specific
to a particular back-end, the back-end's builder
would have declared this bridge law. The hyper-
media engine maintains its own set of general
bridge laws that pertain to all back-ends. For
example, the following general bridge law finds
objects with comments registered in the hyperme-
dia engine's knowledge bases.

For each object with a user-specified comment that
satisfies filter settings Y and access security specifi-
cations Z:

map a hypermedia link of type "comment" be-
tween the object and its user-declared comment.

The engine uses the following general bridge
laws to infer keywords. The first finds keywords
that a message's back-end has declared. The sec-
ond searches for keywords that a user has regis-
tered.

For each phrase in the message matching a key-
word registered by its back-end that satisfies filter
settings Z:

map a hypermedia link of type "keyword" from
the phrase to the back-end object it represents.

For each phrase in the message matching a key-
word registered by a user that satisfies filter settings
Y and access security specifications Z:

map a hypermedia link of type "keyword" from
the phrase to the object it represents.

Together, generalized hypermedia and its
bridge laws provide a logic-based knowledge rep-
resentation that enables the hypermedia engine to
reason about the components (models, data, com-
mands, etc.) of the underlying information sys-
tems they map. For example, full hypermedia
functionality includes both producing an overview
of an application's components, and searching or
querying over these components. As part of our
research, we shall determine whether a complete
set of bridge laws suffices for the engine to per-
form both structure search and content search
[25,27], and generate a network overview. (Pro-
ducing an overview for a static hypermedia net-
work is not a trivial task (see, e.g., [69]). No one,
as yet, has tackled overviews for virtual environ-
ments involving computation, which a hyperme-
dia mapping for dynamic information systems
would involve.)

Ours is not the only hypermedia knowledge
representation. In addition to the argumentation-
based hypermedia models mentioned earlier, sev-
eral other knowledge representation approaches
have appeared in the hypertext literature, e.g.,
Petri nets [65,66], structured object representa-
tion [35], schemata [25,32,45], object-oriented hy-
permodelling [41], HyperSets [57], De Braet al.'s
extensible data model [19] and high-level specifi-
cation languages [61]. Other systems that make
use of a knowledge representation include Hy-
permedia-based Argumentation DSS [30], Elec-
tronic Working Papers [17], MacWeb [51], IDE
[33] and RelType [2]. In future papers we hope to
compare implementations using bridge laws and a
generalized hypermedia engine with systems us-
ing other knowledge representations.

The browsing semantics of the different sys-
tems also will influence this evaluation. The
browsing semantics define the dynamic behaviour
of a system and are constrained by its underlying
knowledge representation [65]. In our model, the
hypermedia engine incorporates the browsing se-
mantics and, as we shall see, attempts to inte-
grate them into the front-end's functionality (con-
strained by the front-end's level of compliance, as
we discuss in section 4.1).

The hypermedia engine stores bridge laws and
filter settings in knowledge bases belonging to its
Internal Control Subsystem. For an in-depth dis-
cussion of bridge laws see [6,10,11].

258 M. Bieber / Decision Support Systems 14 (1995) 251-267

3.3. Internal Control Subsystem (CS)

The hypermedia engine has two major compo-
nents: the Internal Control Subsystem (CS) and
the Internal Display Subsystem (DS). We de-
scribe the structure of each next and illustrate
their interaction in section 3.5's example.

The CS performs all configuration-independ-
ent processing. It handles the communication link
between the hypermedia engine and the back-end
systems. Back-ends pass messages containing re-
ports, queries and menus. From each message the
CS compiles the configuration-independent con-
tents of a document component set or query
component set, which the CS passes to the Inter-
nal Display Subsystem.

In the future we intend to upgrade our hyper-
media engine for a networked, multi-user envi-
ronment. At that time we shall split the CS into
two logical modules, a single global module and
multiple local modules. The global module will
keep track of information that users on all sys-
tems should be able to access. Security permit-
ting, everyone should have access, for example, to
public comments, informational links, keyword
definitions and documents registered by any user.

Logically, the CS maintains the following
knowledge bases, each containing facts and rules
for a different domain of inferencing.
• Hypermedia Knowledge Base The "Hypermedia

KB" contains all types of hypermedia informa-
tion registered by users including keywords
and the nodes they represent; comments, links
and other annotations (e.g., bookmarks [56]),
and guided tours and other trails. The hyper-
media engine maintains these independent of
any back-end elements upon which they are
based. Back-end systems need no record of the
user's hypermedia activities.

• Back-End Knowledge Base There is one "Back-
End KB" for each back-end system that users
can access. The Back-End KB contains net-
work access information for each back-end, as
well as its bridge laws, keywords, and any other
information necessary to build messages for it
and parse its responses. An early version of
our TEFA model management system back-end
prototype [5] provides an example of supple-
mentary parsing information. TEFA prefixed
the display text of its objects with an amper-
sand. Registering this format would enable the

CS to strip the ampersand to make the display
less confusing and to reinsert the ampersand in
user requests it passes to TEFA.
We note that [1] presents an alternative system
architecture that insulates bridge laws as much
as possible from changes to the engine or
back-end. This architecture includes a separate
bridge law manager between the hypermedia
engine and the back-end.

• Control System Knowledge Base The "CSKB"
contains general parameters and routines for
communicating, and for processing messages
and responses. Its contents include:
- default and current settings for the hyper-
media engine, including filter settings
- t h e functionality behind the hypermedia
commands (e.g., querying link markers, creat-
ing user-specified links and comments)
- hypermedia engine bridge laws for mapping
user-specified hypermedia elements such as
comments to back-end objects
- standard document templates - forms dic-
tating the general content and layout of docu-
ments [6] that the engine uses to create docu-
ment component sets (similar to abstract con-
tainers in the Trellis Hypermedia Reference
Model [22])
- standard query templates - forms dictating
the general content and layout of queries that
the engine uses to create query component sets

• Active Knowledge Base The hypermedia engine
records all back-end and user-declared objects
currently displayed on the front-end screen in
the "Active KB." The CS uses this for dynami-
cally updating the front-end's display when ele-
ments of the back-end, such as a stock price,
change. (In a multi-user environment, this
would be a global knowledge base representing
the displays of all active front-end systems.
One function this would facilitate is screen
sharing among users on heterogeneous sys-
tems.)

3.4. Internal Display Subsystem (DS)

The DS has two major responsibilities. First, it
translates the configuration-independent docu-
ment component set for the specific front-end
that will display it. Second, it provides whatever
"behind the scenes" support its front-end needs

M. Bieber / Decision Support Systems 14 (1995) 251-267 259

to provide hypermedia functionality. Logically,
the DS maintains the following knowledge bases:
• Session Knowledge Base The DS stores all user

actions and hypermedia engine responses in
the "Session KB." From these the DS can
tailor a session log for hypermedia-style back-
tracking and guided tours. The Session KB
serves a role similar to that of the history
component in the Dexter Hypertext Reference
Model [28]. Saving the Session KB should en-
able users to halt a computer session and con-
tinue it at a later time. Depending on the
detail of user interaction the front-end passes
to the DS, the Session KB could support multi-
ple-level undo and redo functionality [70] for
both hypermedia commands and the front-
end's own commands. A highly cooperative
front-end would pass user actions down to the
exact keystroke. This also would enable the DS
to serve as a monitoring and experimentation
tool for particular front-end and back-end sys-
tems and settings. Several researchers have
called for such functionality in hypermedia sys-
tems (e.g., [13]).

I
(~ Front

r End

I
I

(Location of)
Selected Object;
Desired Actior~,

Hypermedia Engine

Back-End
Knowledge Base

Back-End Protocols',
Back-End Bridge La
and Keywords

Internal Display Subsystem (DS)

• Display Knowledge Base The "Display KB" -
analogous to the session component in the
Dexter model - records all hypermedia objects
displayed on the front-end. Depending on the
level of hypermedia support the DS must pro-
vide, this can include an object's internal iden-
tifier, the actual content of the front-end rep-
resentation and, as we shall explain later, even
the object's location within the front-end's win-
dows. The DS uses this to determine what the
user has selected and whether the user has
permission to alter or delete it. Altering a
back-end object's content (e.g., a current stock
price or the result of a calculation) can destroy
its validity. The DS also uses this knowledge
base to map menus and link ensembles to the
commands they represent.

• Front-End Knowledge Base The "F EK B" con-
tains the information the DS needs to commu-
nicate with a specific front-end. In it, the DS
maintains protocol formats, current parameter
settings and the internal routines for coordinat-
ing hypermedia support with the particular
front-end. With this knowledge, the DS can

Hypermedia Control System
Knowledge Base

_ (CSKB) Knowledge Base

User-Specified Links, Comments and Keywords; [FDi~tc: ;:~t ;nagnd Query Templates;

~ e Hypermedi i Commands

Determine Which Object
the User Selected and ~ Process Request; Information Request

r ~,,~Object Selected Compile Response
, tnd Type of Information

/ Location and
Identifier Information about
Currently Displayed Objects

Convert Query or
Document Component
Set for the Front-End

Back-
End

Configuration-Independent
Query Component Set or

Record Current Display I

Display iI:ormatting and User Request,
pdate y~etttngS..ront.EndlnformatiOn;Protocofs ' ~ k - E n d Response Display Update

Knowledge Base Knowledge Base Knowledge Base Knowledge Base
(FEKB)

Fig. 5. Informal data flow diagram of the hypermedia engine: This diagrams the processing of a standard request for information
about an application object when the user selects the link marker representing it.

260 M. Bieber / Decision Support Systems 14 (1995) 251-267

translate the configuration-independent docu-
ment and query component sets the CS passes
for display, as well as the user requests the
front-end passes.
Having introduced the hypermedia engine's

modules and knowledge bases, we now can ex-
pand section 3.1's example illustrating a user
request.

3.5. Example

Fig. 5 presents an informal data flow diagram
depicting how the hypermedia engine compiled
both the link ensemble in Fig. 1 for the link
marker "$60.00" that the user selected and the
interactive document "explain ($60.00)" in Fig. 4
resulting from traversing the "explain" link.

The hypermedia engine expects back-ends and
front-ends to support two standard commands for
all objects: generating a short description ("What
is this?") and generating a list of possible actions
("What can I do with this?"). The user also
should be able to select any command within a
menu or represented by a link, and request assis-
tance ("What happens if I do this?"). The front-
end should provide some mechanism for the user
to request each, e.g., a special keystroke combi-
nation or menu command. The back-end should
provide the respective descriptions, command lists
for its objects and assistance for its commands.

Another common action is an implicit request
to edit. Because front-ends must ensure the in-
tegrity of link marker representations belonging
to external systems, when users try to edit a
marker 's display value the CS must grant permis-
sion.

We now expand section 3.1's hypothetical ex-
ample, following the flow of information illus-
trated in Fig. 5. Note that Fig. 5's diagram does
not cover editing or requests for assistance. This
discussion complements, but greatly deepens the
illustration in [11].

1. The front-end passes a message to the D S in
response to a user action

When the user selects a highlighted text string,
such as the "$60.00" in Fig. 1, the front-end
sends a message to the DS. The message from a
"hypermedia engine-friendly" front-end - one
that maintains external objects - will contain
both the user's requested action ("What can I do
with this?") and the object's internal identifier

("[7, DSS1, calculation(variable(tc), model(eoq),
scenario(eoq(2)))]").

The less sophisticated the front-end, the more
inferencing the DS must do to manage hyperme-
dia functionality. For example, if the front-end
does not maintain external objects then it may be
able to pass only the selection's location in coor-
dinates relative to the start of the document. In
this case, the Display KB must maintain an up-
to-date map of the front-end's documents that
records the current location of all hypermedia
objects. From this the DS must infer which object
the user selected.

2. The CS processes the user request
The DS passes the action requested and the

identifier of the selected object to the CS. From
the identifier the CS can determine the system to
which the object belongs. When a back-end owns
the object, the CS compiles the appropriate re-
quest for the back-end. The CSKB supplies the
back-end's protocols and access path. If the hy-
permedia engine owns the object, such as with
user-specified keywords, the CS has all necessary
information for the user request in its own knowl-
edge bases. This also applies to hypermedia
metainformation about back-end objects. Users
may select user-specified comments and links as-
sociated with a back-end object and inquire about
their creators, modification dates and even com-
ments about these links and comments. The Hy-
permedia KB contains such metainformation.

We now detail three possible user requests:
requests for (a) editing, (b) a short description
and (c) a list of relevant commands.

2a. The CS processes the user request: edit link
marker

For requests to edit a link marker's display
value, the CS does not have to check with the
back-end. The CSKB contains hypermedia en-
gine-owned bridge laws controlling editing per-
mission for each type of link marker. For exam-
ple, users may delete, but not modify, back-end
object markers. Users may alter a keyword, but
the CS will cancel its marker status as a keyword
and direct the front-end to dehighlight it. Users
may alter the content of user-specified links with-
out cancelling the marker or deleting its link. The
CS approves or rejects the edit request in a
message it returns to the DS.

M. Bieber / Decision Support Systems 14 (1995) 251-267 261

2b. The CS processes the user request: short de-
scription (i.e., "What is this?")

The back-end responds to this standard re-
quest with a message containing the short de-
scription in a format analogous to that of section
3.2. The CS converts this description to a configu-
ration-independent document component set.
First the CS infers the appropriate document
template for short descriptions from the CSKB.
Next it instantiates the template form with the
message contents. Then it determines what to
represent as link markers as follows.
• To each object in the back-end message the CS

applies both back-end bridge laws and hyper-
media engine bridge laws for inferring links,
one by one until one bridge law succeeds or all
fail. If any bridge law succeeds given the cur-
rent filter settings, then the CS represents that
back-end object as a link marker, similar to
that in section 3.1. Otherwise the CS passes
formatting parameters with the object, but not
its identifier. For example, if filtering pre-
vented the CS from inferring Fig. l 's "(calcula-
tion(variable(tc), model(eoq), scenario(eoq(2))),
60, currency(US))" as a link marker, the CS
would have passed it as "(value(60), form(cur-
rency(US)))" in the document component set.

• The CS searches the document's content for
keywords registered by users or by the back-end
that sent the message. The CS marks each
keyword found as a link marker, incorporating
the identifier of the node that the keyword
represents as part of the marker's identifier.

2c. The CS processes the user request: list of com-
mands (i.e., "What can I do with this?")

The CS often can generate the list of relevant
back-end commands directly from the back-end's
bridge laws and therefore does not have to com-
municate with the back-end. For example, the
first bridge law in section 3.2 maps the two back-
end commands we see in Fig. l 's link ensemble.
Resolving complex bridge laws, however, may re-
quire internal back-end calculations or informa-
tion stored in the back-end's own knowledge
bases. In this case the CS will have to send a
request to the back-end as part of resolving the
back-end's bridge laws. (As this may slow process-
ing, we hope that most bridge laws will be speci-
fied fully enough to not require back-end process-
ing at run-time.) The CS also processes the se-

lected object using its own general bridge laws.
One of the bridge laws in section 3.2 identified a
user-specified comment about the selected DSS
calculation (i.e., back-end object). The CS repre-
sents access to this comment with the third link in
Fig. 1. Two other CS bridge laws mapped links
corresponding to the hypermedia engine com-
mands "start new user link" and "create new
comment."

The CS now formats the link ensemble as a
configuration-independent query component set.
The CS retrieves the appropriate query template
for link ensembles from the CSKB and inserts the
five links along with a directive to the DS to
include the selected marker's display value as the
title. The CS represents each of the five links as a
link marker in the query so the user can select
any and request assistance (i.e., "What happens
if I do this?") for its underlying DSS or hyperme-
dia engine command. Simplistic assistance re-
turns the equivalent of a short description. So-
phisticated back-ends provide more sophisticated
help.

3. The DS converts the document or query compo-
nent set for the front end

The DS prepares the document or query for its
front-end. It retrieves the protocol the front-end
will recognize for documents and queries from
the FEKB. The front-end may or may not accept
objects embedded in messages and may restrict
identifier length. If the front-end does not pro-
cess dimensional attributes, the DS must pre-for-
mat object display representations (e.g., sending
"$60.00" instead of (value(60), form(currency
(US)))). Ideally the front-end will accept a stand-
ard document protocol such as ODA or SGML
[14], or even a HyTime representation (an
SGML-based hypermedia communications stand-
ard [52]). Based on the level of front-end support,
the DS has to determine whether to represent
the query link ensemble (1) as a dialogue such as
in Fig. 1, into which the user types information,
(2) as a document in which users must select a
link marker representing one of the commands,
or (3) as a menu. The DS may have to sacrifice
functionality. For example, Fig. l's front-end sup-
ports query dialogues, but cannot highlight each
link as a link marker. Users, therefore, cannot
request "What happens if I do this?" assistance
for commands directly.

262 M. Bieber / Decision Support Systems 14 (1995) 251-267

Once converted, the DS passes the document
or query component set to the front-end and
updates its knowledge bases as shown in Fig. 5.
The DS records the user's request and the en-
gine's response in the Session KB to support
backtracking, trail construction and undo/redo,
etc. The DS records each component set object in
the Display KB for interpreting subsequent user
requests and for reformatting displays. (The DS
includes physical object locations if it must main-
tain these.) The DS also passes this set of dis-
played objects to the CS's Active KB to support
dynamic updating.

3.6. Our prototype: Max

We have implemented a preliminary text-based
prototype of the hypermedia engine inside the
Max system, which we developed for the U.S.
Coast Guard. Max is a knowledge-based DSS
shell [11, 38]. The engine uses a preliminary ver-
sion of bridge laws to map (1) objects in the DSS
knowledge base and reports to hypertext nodes,
(2) DSS commands to links, and (3) keywords and
objects embedded in DSS messages to link mark-
ers. Max's interactive documents and link ensem-
ble queries resemble those in Fig. 1 and Fig. 4.

Max, admittedly, is an "insular, monolithic
package," providing its own mandatory front-end.
The front-end does not support external objects,
so the engine keeps track of its objects' locations
within the front-end's windows. The current pro-
totype's front-end and hypertext engine are not
entirely independent, neither are the DS and CS
entirely separate subsystems. The back-end, how-
ever, is completely independent of the engine. It
communicates solely through Fig. 2's back-end
communications language. Indeed we have devel-
oped two separate computation-oriented back-
ends for Max, a project management system and
TEFA [4,5], a model management system.

4. Hypermedia engine/client cooperation and co-
ordination

The two proposed architectures pose many
interesting and unresolved questions concerning
cooperation and coordination among a hyperme-

dia engine and independent external information
systems. This section discusses several issues our
research will address.

The hypermedia engine requires the coopera-
tion of its client front-ends and back-ends. The
more sophisticated and coordinated each is, the
higher the degree of hypermedia functionality the
engine can provide. To provide ubiquitous hyper-
media support, however, the engine must accom-
modate front-ends and back-ends that do not
meet the compliance standards we desire. As part
of our research we are investigating the minimal
level of cooperation among front-ends, back-ends
and the hypermedia engine. ([18,34,60,62] also
investigate compliance requirements. [32,31] re-
port on an integration architecture using state-
change messages that claims to require less coor-
dination among the hypermedia engine and its
external systems. Marshall also has an enlighten-
ing discussion of how compliance affects hyper-
media support during document interchange [44].
[8] complements this discussion.)

In [7] we introduced a preliminary set of mini-
mal requirements for client/engine cooperation.
Now we augment this set, addressing the interac-
tion between the engine and interface-oriented
front-end systems in section 4.1, and between the
engine and computation-oriented back-ends in
section 4.2. These apply to information systems
from either version of our architecture. In section
4.3 we discuss how these requirements impact the
integration of existing information systems.

These requirements stem from our own re-
search. We believe, however, that they are uni-
versal enough to provide a starting set of general
guidelines for all system-level approaches to hy-
permedia integration, including those not em-
ploying an external hypermedia engine. (Ap-
proaches that integrate hypermedia directly into
individual applications, e.g. [41], do not require
our degree of generality.)

While we primarily address compliance and
coordination issues in this paper, we must investi-
gate many other issues ranging from the validity
of links and node contents (especially when fus-
ing information from multiple, dynamic back-ends
[7]), to handling different versions [26,27,55], to
supporting cooperative work such as with group
DSS and distributed group support systems, etc.
We discuss other "non-compliance" issues in
[6,7,11].

M. Bieber / Decision Support Systems 14 (1995) 251-267 263

4.1. The hypermedia engine and front-end compli-
ance

The hypermedia engine provides the front-end
and its users with simultaneous access to multiple
back-ends. The engine manages hypermedia con-
structs (e.g., link markers representing user-de-
fined and back-end objects, comments, trails, and
overviews) and hypermedia control (e.g., filtering,
context-sensitive forward navigation and back-
tracking). In return the front-end should provide
the following functionality.

• Identifying objects in front-end workspaces
Front-ends either must track the location and

identifiers of external objects (i.e., hypermedia
link markers) or make their up-to-date positions
available. In the latter case the DS will have to
interpret positions in every type of media the
front-end supports (text, graphics, sound, etc.), as
well as monitor every editing action that can alter
the location of hypermedia markers.

• Front-ends must gain editing permission
from the hypermedia engine

Users may alter the display contents of some
types of link markers but not others. Users may
alter certain types of markers on the condition
that the hypermedia engine cancels their marker
status. A sophisticated front-end could manage
this on behalf of the hypermedia engine, thus
speeding interface operations. For most front-
ends, however, the hypermedia engine will have
to manage editing permission (as in our Max
prototype) and the front-end must request this
every time the user inserts or deletes.

Copying and pasting provides an additional
editing challenge. Whenever it pastes a link
marker, the front-end should register the new
instance with the DS and obtain a new unique
identifier for it.

• Front-ends must provide hypermedia
prompts

We expect front-ends to support three stand-
ard hypermedia-style requests: a short description
of a marker's object, a list of hypermedia and
back-end commands applicable to that object,
and command assistance. Front-ends should pro-
vide some mechanism for users to invoke each of
these (e.g., a keystroke combination or a special
mouse button).

• Manipulating documents with embedded hy-
permedia objects

When the front-end saves a document with
embedded objects, it could save the objects as
well. Otherwise the DS will have to regenerate
the link markers when the front-end reopens the
document. In any case the front-end must inform
the DS when it opens an existing (or new [61])
hypermedia-oriented document so the DS can
provide hypermedia support and dynamic updat-
ing.

In most information systems users create docu-
ments manually. With a hypermedia engine,
front-ends must accept the externally-generated
documents with embedded objects that the DS
passes. The front-end should handle dynamic
changes as well. The DS may add additional
objects to open documents (e.g., when users cre-
ate their own comments and links on the front-end
workspace [59]). Dynamic updating (which re-
quires the front-end to accept external interrupts)
may change the display value of hypermedia link
markers [32]. Sophisticated front-ends will accom-
modate these demands. If not, the hypermedia
engine may not be able to provide full hyperme-
dia functionality.

4.2. The hypermed& engine and back-end compli-
ance

The hypermedia engine provides the back-end
and its users with access to a variety of front-ends.
It manages hypermedia functionality (linking, an-
no ta t ion , backt racking, f i l tering, ne twork
overviews of applications) on behalf of the back-
end. In return the back-end should supply the
hypermedia engine with specific information
about its structure, and its applications' docu-
ments and data elements. However, even if a
back-end declares no bridge laws or keywords,
and passes messages without objects, the hyper-
media engine still will provide standard hyperme-
dia functionality (user annotation, backtracking,
etc.) In this case the user will not be able to
access back-end objects or operations in a hyper-
media fashion.

• Builders must write bridge laws
The person who knows the back-end the best

- the systems programmer who builds or main-
tains it - should develop its bridge laws. The
information system builder must be both willing
to and capable of developing a set of bridge laws
that accurately captures the structure of his sys-

264 M. Bieber / Decision Support Systems 14 (1995) 251-267

tem. Once in place the bridge laws should map a
hypermedia network to any of the system's spe-
cific applications. (Application builders and users
need have no knowledge of bridge laws. To them,
hypermedia functionality occurs automatically!)

Currently builders must represent bridge laws
in predicate logic. We hope to remove this re-
striction by accepting other formats, perhaps
through a bridge law editor.

Each builder must develop his own set of
bridge laws. We hope to develop bridge law li-
braries that map classes of information systems-
complete "standard" bridge law sets that handle
the models, attributes, data and operations found,
e.g., in linear program (LP) packages, relational
databases, spreadsheet packages, or rule-based
expert system shells. The builder of, say, a new
LP package would only have to match the ele-
ments in his system to those in the standard LP
set. The standard set would provide most of the
bridge laws for his system. This would reduce the
builder's effort both in determining which kinds
of bridge laws would represent his system ade-
quately and in developing these laws.

• Back-ends should embed objects in their
messages

The CS cannot infer magically which portions
of back-end messages to highlight as link mark-
ers. The back-end must mark objects within the
messages or provide some content analysis rou-
tines for interpreting their messages. The only
content analysis the CS automatically performs is
keyword search. (An advanced CS could employ,
for example, sophisticated content analysis tech-
niques such as lexical affinity [36] to infer unde-
clared keywords.)

As we demonstrated in section 3.1, back-end
messages should include dimensional information
for objects or any other content, for which the
engine or user might want to alter the display
format. For example, a user may wish to change a
number's precision.

• Back-ends should support the standard hy-
permedia engine commands

Just as the front-end should allow users to
request short descriptions, command lists and
context-sensitive help, back-ends should generate
this information on demand.

• Multi-level undo and redo
For the hypermedia engine to support full

multiple level undo and redo functionality, the

back-end must provide some mechanism for un-
doing and redoing its operations (e.g., performing
a what-if analysis). Otherwise the hypermedia
engine can only undo back to the last back-end
operation. Back-ends, for example, could return a
command with each operation result that would
have the effect of restoring the previous back-end
state.

Additional guidelines
In [7] we also discussed the following require-

ments.
• When the back-end message contains a previ-

ously-generated report, the hypermedia engine
sometimes has trouble locating the positions of
the user annotations that were in the previous
version. Including the internal structure of each
message's content provides additional orienta-
tion for the engine.

• To assist in validating user responses to back-
end queries, the back-end could provide con-
trol information for validity checking.

4.3. The hypermedia engine and existing systems

Builders developing an information system
from scratch will find interfacing with the hyper-
media engine easier than builders who must
retrofit the coordination that the hypermedia en-
gine demands. Builders of existing information
systems (assuming they can be located [31]) must
reengineer the communications path between the
system's interface components and computational
components, allowing the hypermedia engine to
intercept messages and embed objects. The more
loosely coupled and modular an information sys-
tem is, the simpler hypermedia integration will
be.

5. C o n c l u s i o n

We have yet to see hypermedia availability as a
common interface feature. Information system
builders wishing to incorporate full hypermedia
functionality today must do it themselves. Few
new system builders would be willing or able to
do this. Fewer builders would put forth the effort
to convert existing systems. "A more modest (and
practical) goal is to create rules and tools that
could be used to allow slightly modified existing

M. Bieber / Decision Support Systems 14 (1995) 251-267 265

applications to produce data accessible in hyper-
media style." [67, p. 81] Certain operat ing sys-
tems, for example, provide system-level hyperme-
dia toolkits for adding hypermedia constructs -
nodes, links, markers, etc. - to application data
(e.g., the Andrew Toolkit [63], and a recently
proposed "core system" [47]). Apple Computer ' s
new operat ing system, System 7, provides publish
and subscribe capabilities, but these, in them-
selves, fall far short of full hypermedia functional-
ity.

Several research efforts have succeeded in cre-
ating links among primarily non-hypermedia in-
formation systems and in facilitating their traver-
sal. The commercially-available Sun Link Service
[59], P R O X H Y [34], Microcosm [18] and Multi-
card [62] each has a hypermedia engine that
executes concurrently with external systems and
provides linking support. Each of these four hy-
permedia systems (ideally) expects client informa-
tion systems to support link creation and selec-
tion by embedding hypermedia calls and handling
minimal hypermedia functionality in a manner
similar to the toolkit approach. The latter three
systems also provide multiple levels of hyperme-
dia support, based on the degree of hypermedia
compliance the client non-hypermedia informa-
tion system provides. Each also provides a limited
set of support for client systems that are not
hypermedia compatible at all. All four systems,
however, concentrate primarily on supporting
front-end interface-oriented systems, as opposed
to back-end computat ion-oriented systems. ([18]
and [62] seem to imply that support for back-end
systems could be implemented in Microcosm and
Multicard, but this neither is stated explicitly nor
is their primary focus.)

Our research, in contrast, emphasizes the
mapping of hypermedia representat ions to the
back-end computat ional aspects of information
systems. We find few methods that externally
superimpose hypermedia constructs over an ap-
plication without adding to its data or knowledge
base (e.g., the proposed Relationship Manage-
ment System [32]). When completely developed,
our hypermedia engine will provide full hyperme-
dia functionality to dynamically changing applica-
tions while running concurrently with them and
mapping a hypermedia representat ion that does
not alter them.

Through our preliminary architecture we have

identified many challenges for hypermedia sup-
port of dynamic information systems. We have
started developing techniques to address these,
which we soon shall implement in an improved
prototype.

Hypermedia should be a widely implemented
paradigm for information management and pre-
sentation, We invite information system develop-
ers, and challenge both information system and
hypermedia researchers, to join us and make this
goal a reality.

References

[1] P. Balasubramanian, T. Isakowitz, H. Johar and E. Stohr,
Hyper Model Management Systems, in: Proceedings of
the Twenty-fifth Hawaii International Conference on
System Sciences, Volume III (Kauai, Jan. 1992) 462-472.

[2] D. Barman, RelType: Relaxed Typing for Object-Ori-
ented Hypermedia Representations, in: Object-Oriented
Programming in AI: Workshop Notes from the Ninth
Annual National Conference on Artificial Intelligence
(Anaheim, 1991).

[3] E. Berk and J. Devlin, Eds., Hypertext/Hypermedia
Handbook (Intertext Publications/McGraw-Hill Publish-
ing Co., Inc., New York, 1991).

[4] H.K. Bhargava, A Logic Model for Model Management,
Ph.D. dissertation (University of Pennsylvania, Philadel-
phia, PA 19104, 1990).

[5] H. Bhargava, M. Bieber and S.O. Kimbrough, Oona,
Max, and the WYWWYWI Principle: Generalized Hy-
pertext and Model Management in a Symbolic Program-
ming Environment, in: Proceedings of the Ninth Interna-
tional Conference on Information Systems (Minneapolis,
1988) 179-192.

[6l M. Bieber, Generalized Hypertext in a Knowledge-based
DSS Shell Environment, Ph.D. dissertation (University of
Pennsylvania, Philadelphia, PA 19104, 1990).

[7] M. Bieber, Issues in Modelling a "Dynamic" Hypertext
Interface for Non-Hypertext Information Systems, in:
Hypertext '91 Proceedings (San Antonio, Dec. 1991)
203-218.

[8] M. Bieber, On Merging Hypertext into Dynamic, Non-
Hypertext Systems, Boston College Computer Science
Department Technical Report BCCS-91-14 (Chestnut
Hill, MA 02167, Nov. 1991).

[9l M. Bieber, Template-Driven Hypertext: A Methodology
for Integrating a Hypertext Interface into Information
Systems, Boston College Computer Science Department
Technical Report (Chestnut Hill, MA 02167, 1991).

[10] M. Bieber, Automating Hypermedia for Decision Sup-
port, Hypermedia 4, No. 2 (1992) 83-110.

[lll M. Bieber and S.O. Kimbrough, On Generalizing the
Concept of Hypertext, Management Information Systems
Quarterly 16, No. 1 (1992) 77-93.

[12] M. Bieber and S.O. Kimbrough, On the Logic of Gener-
alized Hypertext, Decision Support Systems 11, No. 2
(1994) 241-257.

266 M. Bieber / Decision Support Systems 14 (1995) 251-267

[13] P, Brown, Assessing the Quality of Hypertext Docu-
ments, in: A. Rizk, N. Streitz and J. Andr6, Eds., Hyper-
text: Concepts, Systems and Applications, Proceedings of
European Conference on Hypertext '90 (Cambridge Uni-
versity Press, Versailles, Nov. 1990) 1-12.

[14] F. Cole and H. Brown, Standards: What Can Hypertext
Learn From Paper Documents?, in: Proceedings of the
Hypertext Standardization Workshop, SP500-178 (NIST,
Gaithersburg, Jan. 1990) 59-70~

[15] E.J. Conklin, Hypertext: a Survey and Introduction, IEEE
Computer 20, No. 9 (1987) 17-41.

[16] E.J. Conklin, and M.L. Begeman, glBIS: A Tool for All
Reasons, Journal of the American Society for Informa-
tion Science 40, No. 3 (1989) 200-213.

[17] L. De Young, Linking Considered Harmful, in: Proceed-
ings of European Conference on Hypertext (ECHT) '90
(Cambridge University Press, Versailles, Nov. 1990) 238-
249.

[18] H. Davis, W. Hall, I. Heath, G. Hill and R. Wilkins,
Towards an Integrated Information Environment with
Open Hypermedia Systems, in: Proceedings of the ACM
Conference on Hypertext (Milan, Nov. 1992) 181-190.

[19] P. De Bra, G. Houben and Y. Kornatzky, An Extensible
Data Model for Hyperdocuments, in: Proceedings of the
ACM Conference on Hypertext (Milan, Nov. 1992) 222-
231.

[20] E.A. Fox, Q.F. Chen and R.K. France, Integrating Search
and Retrieval with Hypertext, in: E. Berk and J. Devlin,
Eds., Hypertext/Hyperrnedia Handbook (Intertext Publi-
cations/McGraw-Hill Publishing Co., Inc., New York,
1991) 329-355.

[21] M.E. Frisse, S.B. Cousins and S. Hassan, WALT: A
Research Environment for Medical Hypertext, in: Hyper-
text '91 Proceedings (San Antonio, Dec. 1991) 389-394.

[22] R. Furuta and P.D. Stotts, The Trellis Hypertext Refer-
ence Model, in: Proceedings of the Hypertext Standard-
ization Workshop, SP500-178 (NIST, Gaithersburg, Jan.
1990) 83-94.

[23] L. Gallagher, R. Futura and P.D. Stotts, Increasing the
Power of Hypertext Search with Relational Queries, Hy-
permedia 2, No. 1 (1990) 1-14.

[24] F. Garzotto, L. Mainetti and P. Paolini, Navigation Pat-
terns in Hypermedia Data Bases, in: Proceedings of
Twenty-Sixth Annual Hawaii International Conference
on System Science (Wailea, Jan. 1993).

[25] F. Garzotto, P. Paolini and D. Schwabe, HDM - A
Model-Based Approach to Hypertext Application De-
sign, ACM Transactions on Information Systems 11, No.
1 (1993) 1-26.

[26] A. Haake, CoVer: A Contextual Version Server for Hy-
pertext Applications, in: Proceedings of the ACM Con-
ference on Hypertext (Milan, Nov. 1992) 43-52.

[27] F.G. Halasz, Reflections on NoteCards: Seven Issues for
the Next Generation of Hypermedia Systems, Communi-
cations of the ACM 31, No. 7 (1988) 836-855.

[28] F. Halasz and M. Schwartz, The Dexter Hypertext Refer-
ence Model, in: Proceedings of the Hypertext Standard-
ization Workshop, SP500-178 (NIST, Gaithersburg, Jan.
1990) 95-134.

[29] J. Haugeland, The Nature and Plausibility of Cogni-
tivism, in: John Haugeland, Ed., Mind Design: Philoso-

play, Psychology, Artificial Intelligence (MIT Press, Cam-
bridge, 1981).

[30] H. Hua and S.O. Kimbrough, On Hypermedia-Based
Argumentation Decision Support Systems, in: Proceed-
ings of Twenty-Sixth Annual Hawaii International Con-
ference on System Science (Wailea, Jan. 1993).

[31] T. lsakowitz, Hypermedia, Information Systems and Or-
ganizations: A Research Agenda, in: Proceedings of the
Twenty-sixth Hawaii International Conference on System
Sciences (Wailea, Jan. 1993).

[32] T. Isakowitz and E.A. Stohr, Hypertext-based Relation-
ship Management for DSS, New York University Infor-
mation Systems Department Working Paper IS-92-22
(New York, NY 10012, Jul. 1992).

[33] D.S. Jordan, D.M. Russell, A.S. Jensen and R.A. Rogers,
Facilitating the Development of Representations in Hy-
pertext with IDE, in: Hypertext '89 Proceedings (Pitts-
burgh, Nov. 1989) 93-104.

[34] C. Kacmar and J. Leggett, PROXHY: A Process-Ori-
ented Extensible Hypertext Architecture, ACM Transac-
tions on Information Systems 9, No. 4 (1991) 399-419.

[35] H. Kaindl and M. Snaprud, Hypertext and Structured
Object Representation: A Unifying View, in: Hypertext
'91 Proceedings (San Antonio, Dec. 1991) 313-328.

[36] S.M. Kaplan and Y.S. Maarek, Incremental Maintenance
of Semantic Links in Dynamically Changing Hypertext
Systems, Interacting with Computers 2, No. 3 (1990)
337-366.

[37] S.O. Kimbrough, On the Reduction of Genetics to
Molecular Biology, in: Philosophy of Science 46 No. 3
(1979) 389-406.

[38] S.O. Kimbrough, C. Pritchett, M. Bieber and H. Bhar-
gava, The Coast Guard's KSS Project, Interfaces 20, No.
6 (1990) 5-16.

[39] L. Koved and B. Shneiderman, Embedded Menus: Se-
lecting Items in Context, Communications of the ACM
29, No. 4 (1986) 312-318.

[40] G.P. Landow, Popular Fallacies About Hypertext, in:
D.H. Jonassen and H. Mandl, Eds., Designing Hyperme-
dia for Learning (Springer-Verlag, 1990) 39-59.

[41] D. Lange, Object-Oriented Hypermodelling of Hypertext
Supported Information Systems, in: Proceedings of
Twenty-Sixth Annual Hawaii International Conference
on System Science (HICSS) (Wailea, Jan. 1993).

[42] A. Littleford, Artificial Intelligence and Hypermedia, in:
E. Berk and J. Devlin, Eds., Hypertext/Hypermedia
Handbook (Intertext Publications/McGraw-Hill Publish-
ing Co., Inc., New York, 1991) 357-378.

[43] K.C. Malcolm, S.E. Poltrock and D. Schuler, Industrial
Strength Hypermedia: Requirements for a Large Engi-
neering Enterprise, in: Hypertext '91 Proceedings (San
Antonio, Dec. 1991) 13-24.

[44] C. Marshall, Standards: A Multi-Tiered Approach to
Hypertext Integration: Negotiating Standards for a Het-
erogeneous Application Environment, in: Proceedings of
the Hypertext Standardization Workshop, SP500-178
(NIST, Gaithersburg, Jan. 1990) 167-178.

[45] C.C. Marshall, F.G. Halasz, R.A. Rogers and W.C.
Janssen Jr., Aquanet: A Hypertext Tool to Hold Your
Knowledge in Place, in: Hypertext '91 Proceedings (San
Antonio, Dec. 1991) 261-275.

M. Bieber / Decision Support Systems 14 (1995) 251-267 267

[46] C.C. Marshall and P.M. Irish, Guided Tours and On-Line
Presentations: How Authors Make Existing Hypertext
Intelligible for Readers, in: Hypertext '89 Proceedings
(Pittsburgh, Nov, 1989) 15-42.

[47] H. Maurer and I. Tomek, Broadening the Scope of
Hypermedia Principles, Hypermedia 2, No. 3 (1990) 201-
220.

[48] N. Meyrowitz, The Missing Link: Why We're All Doing
Hypertext Wrong, in: E. Barrett, Ed., The Society of
Text: Hypertext, Hypermedia, and the Social Construc-
tion of Information (MIT Press, Cambridge, 1989) 107-
114.

[49] R. Minch, Application and Research Areas for Hypertext
in Decision Support Systems, Journal of Management
Information Systems 6, No. 3 (1990) 119-138.

[50] E. Nagel, The Structure of Science: Problems in the
Logic of Scientific Explanation (Harcourt, Brace and
World, Inc., New York, 1961).

[51] J. Nanard and M. Nanard, Using Structured Types to
Incorporate Knowledge into Hypertext, in: Hypertext '91
Proceedings (San Antonio, Dec. 19911 329-343.

[52] S. Newcomb, N. Kipp and V. Newcomb, The "HyTime"
Hypermedia/Time-based Document Structuring Lan-
guage, Communications of the ACM 34, No. 11 (1991)
67-83.

[53] J. Nielsen, Hypertext Bibliography, Hypermedia 1, No. 1
(1989) 74-91.

[54] J. Nielsen, Hypertext and Hypermedia (Academic Press,
1990).

[55] K. Osterbye, Structural and Cognitive Problems in Pro-
viding Version Control for Hypertext, in: Proceedings of
the ACM Conference on Hypertext (Milan, Nov. 1992)
33-42.

[56] H.V.D. Parunak, Hypermedia Topologies and User Navi-
gation, in: Hypertext '89 Proceedings (Pittsburgh, Nov.
1989) 43-50.

[57] H.V.D. Parunak, Don't Link Me In: Set Based Hyperme-
dia for Taxonomic Reasoning, in: Hypertext '91 Proceed-
ings (San Antonio, Dec. 1991) 233-242.

[58] H.V.D. Parunak, Toward Industrial Strength Hyperme-
dia. in: E. Berk and J. Devlin, Eds., Hypertext/
Hypermedia Handbook (Intertext Publications/McGraw-
Hill Publishing Co., Inc., New York, 1991) 381-395.

[59] A. Pearl, Sun's Link Service: A Protocol for Open Link-
ing, in: Hypertext '89 Proceedings (Pittsburgh, Nov. 1989)
137-146.

[60] J.J. Puttress and N.M. Guimaraes, The Toolkit Approach
to Hypermedia, in: A. Rizk, N. Streitz and J. Andre,
Eds., Hypertext: Concepts, Systems and Applications,

Proceedings of European Conference on Hypertext '90
(Cambridge University Press, Versailles, Nov. 1990) 25-
37.

[61] R.N. Robson, Using Hypertext to Locate Reusable Ob-
jects, in: Proceedings of Twenty-fifth Annual Hawaii
International Conference on System Science (HICSS)
(Kauai, Jan. 1992) 549-557.

[62] A. Rizk and L. Sauter, Multicard: An Open Hypermedia
System, in: Proceedings of the ACM Conference on
Hypertext (Milan, Nov. 1992) 4-10.

[63] M. Sherman, W. Hansen, M. Mclnerny and T. Neuen-
doffer, Building Hypertext on a Multimedia Toolkit: An
Overview of the Andrew Toolkit Hypermedia Facilities,
in: A. Rizk, N. Streitz and J. Andr6, Eds., Hypertext:
Concepts, Systems and Applications, Proceedings of Eu-
ropean Conference on Hypertext '90 (Cambridge Univer-
sity Press, Versailles, Nov. 1990) 13-24.

[64] H. Simon, The New Science of Management Decision
(Harper and Row, New York 1977).

[65] P.D. Stotts and R. Furuta, Petri-net-based Hypertext:
Document Structure with Browsing Semantics, ACM
Transactions on Information Systems 7, No. 1 (1989)
3-29.

[66] P.D. Stotts and R. Furuta, Hierarchy, Composition,
Scripting Languages, and Translators for Structured Hy-
pertext, in: A. Rizk, N. Streitz and J. Andre, Eds.,
Hypertext: Concepts, Systems and Applications, Proceed-
ings of European Conference on Hypertext '90, (Cam-
bridge University Press, Versailles, Nov. 1990) 180-193.

[67] I. Tomek, S. Khan, T. Miildner, M. Nassar, G. Novak
and P. Proszynski, Hypermedia-lntroduction and Survey,
Journal of Microcomputer Applications 14, No. 2 (1991)
63-103.

[68] R.H. Trigg and M. Weiser, Textnet: A Network-Based
Approach to Text Handling, ACM Transactions on Of-
fice Information Systems 4, No. 1 (19861 1-23.

[69] K. Utting, and N. Yankelovich, Context and Orientation
in Hypermedia Networks, ACM Transactions on Infor-
mation Systems 7, No. 1 (1989) 58-84.

[70] A. Van Dam, Hypertext '87: Keynote Address, Commu-
nications of the ACM 31, No. 7 (1988) 887-895.

[71] J.A. Waterworth and M.H. Chignell, A Model for Infor-
mation Exploration, Hypermedia 3, No. 1 (1991) 35-58.

[72] E. Wilson, Links and Structures in Hypertext Databases
for Law, in: A. Rizk, N. Streitz and J. Andr6, Eds.,
Hypertext: Concepts, Systems and Applications, Proceed-
ings of European Conference on Hypertext '911 (Cam-
bridge University Press, Versailles, N~w. 1990) 194-211.

