
A dynamically mapped open hypermedia system framework for
integrating information systems

C.-M. Chiua,*, M. Bieberb

aDepartment of Information Management, National Kaohsiung First University of Science and Technology, University Rd. Yenchao, Kaohsiung, Taiwan, ROC
bCollaborative Hypermedia Research Lab, Computer and Information Science Department, New Jersey Institute of Technology, Newark, NJ 07102, USA

Received 13 May 1999; revised 3 September 1999; accepted 20 June 2000

Abstract

The overall goal of this research is to design a distributed, extensible, cross-platform, collaorative, and integrated system that can

supplement information systems with hypertext support. In this paper, we propose a dynamically mapped open hypermedia system

(DMOHS) framework that can support information systems fully. Our framework has two axes: a logical component focus and an application

requirement focus. In Axis 1, we propose a conceptual DMOHS architecture with eight logical components. In Axis 2, we de®ne and discuss

major aspects of a DMOHS that should be supported in a distributed and integrated environment. Together the two axes provide a grid for

specifying the logical DHOMS functionality for supporting application requirements. Given this framework, we ®rst evaluate ®ve open

hypermedia systems and the www, and then design our own system implemented on top of the www. This paper also contributes guidelines

for building mapping routines that supplement on top of the www. Further, it contributes guidelines for building mapping routines that

supplement information systems with hypertext support. q 2001 Elsevier Science B.V. All rights reserved.

Keywords: Dynamic mapping; Hypermedia; Open hypermedia systems; Information systems; Mapping mechanism; World wide web

1. Introduction

Many information systems (IS), both on and off the

World Wide Web (www), do not take full advantage of

linking and navigation. This occurs for several reasons. In

part, it has not occurred to many designers and developers to

incorporate hypermedia functionality (i.e. an extremely rich

layer of links and other navigation, structuring and annota-

tion functionality) [5]. Most designers and developers do not

have a hypermedia mindset; they and their users have seen

few examples and do not demand this functionality as yet. In

part, people do not have the time to re-engineer existing

applications, especially when migrating them to the www,

incorporating hypermedia functionality, easily. Developers

will not do this until it is natural to conceive and easy to

implement. These reasons constitute much of the motivation

for our research.

A major goal of this paper is to present a framework for

integrating hypermedia functionality into the everyday IS

that people use.

We view hypertext as value-added support functionality

[4]. Hypertext structuring, annotation and navigational

functionality can enrich business, scienti®c, engineering

and personal applications, thereby making them more effec-

tive. People use these applications primarily for their under-

lying analytical functionality, i.e. not for their ability to

produce hypertext documents or displays. People will not

abandon the applications they use everyday in favor of those

that offer hypertext. Therefore, we need to bring hypertext

support to these applications. Augmenting applications with

direct access and hypertext structuring, annotation and navi-

gation functionality [3,5] should result in new ways to: view

an application's knowledge and processes conceptually;

navigate among items of interest and task stages; enhance

an application's knowledge with comments and relation-

ships; and target information displays to individual users

and their tasks.

So far there is no precise de®nition or requirements for an

open hypermedia system. Davis et al. [12] believe a reason-

able de®nition for an open hypermedia system should be as

follows: (1) the system should be able to contain hyper-

media objects to the size of the objects or to the maximum

number of such objects; (2) the system should allow the

import and use of any data format; (3) the system should

be con®gurable and extensible to incorporate new hyper-

media mode; (4) the system should be able to distribute

Information and Software Technology 43 (2001) 75±86

0950-5849/01/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0950-5849(00)00139-7

www.elsevier.nl/locate/infsof

* Corresponding author. Tel.: 1886-7-6011000; fax: 1886-7-6011042.

E-mail addresses: cmchiu@ccms.nkfu.edu.tw (C.-M. Chiu),

bieber@njit.edu (M. Bieber).



data and processes across a network and across hardware

platforms; and (5) the system should support multiple users.

While OHS provide a starting set of integration tools for

providing IS with hypermedia functionality, they primarily

serve static applications with manually invoked hypermedia

features. Integrating with an OHS generally requires

changes to the IS being integrated. Many IS applications,

however, are not static; they generate their documents and

display screens dynamically in response to user queries, or

as they ªpushº information to user screens. Developers

could enrich these dynamically generated displays if they

could pre-specify links and other hypermedia features to

generate dynamically along with the displays, instead of

only allowing users to add hypermedia features manually.

(While some database applications do this, the links they

specify are rather limited in comparison to what we envi-

sion.) Lastly, as it would be impractical to modify many

existing IS applications, we are striving to provide hyper-

media functionality with little or no change to the applica-

tions.

The overall goal of this research is to design a dynami-

cally mapped open hypermedia system (DMOHS) Ð a

distributed, extensible, cross-platform, collaborative, and

integrated architecture that can supplement other informa-

tion systems, with hypertext support. We divide the research

process into three steps. First, we propose a DMOHS frame-

work that can support information systems (IS) fully.

Second, we use the framework to evaluate ®ve open hyper-

media systems and the www, to decide which ones support

our prototype's research goals. Third, we discuss how to

build dynamic-mapping routines and then implement a

prototype that can bene®t www users.

This research makes three major contributions. First, no

OHS supports IS applications with dynamically generated

hypermedia functionality without altering the application.

Our framework makes the requirements for such integration

explicitly. Second, we model the mapping routines that

specify the hypermedia links to generate dynamically.

Third, we demonstrate the use of the framework with a

dynamically mapped open hypermedia system prototype

that meets many of the framework's requirements.

Our DMOHS framework has two axes: a logical compo-

nent focus and an application requirement focus (see Fig. 1).

The ®rst encompasses a conceptual DMOHS architecture.

The second highlights the important features that a DMOHS

should support. Given this framework (see Fig. 1), devel-

opers can ®ll in the functional speci®cation for each compo-

nent within our conceptual architecture. With a complete

functional speci®cation developers can start to build their

own systems from scratch or with the help of existing

systems.

We use this DMOHS framework to evaluate ®ve open

hypermedia systems and the www, to decide which can

best provide information systems with hypermedia support.

We use these systems for two main reasons: (1) the current

work in providing hypertext to applications has been

explored primarily in the context of open hypermedia

systems (OHSs) [10,21]; and (2) the www is the most

successful and widely used distributed hypermedia system.

We note that both OHSs and the www support distribution,

extensibility, integration, cross-platform functionality to

some extent. Our evaluation results (see Section 3) show

that the www is superior to open hypermedia systems in

features like distribution, extensibility, cross-platform, and

availability of resources (e.g. servers and browsers).

In order to provide hypertext functionality to hypertext-

unaware information systems (IS) with minimal changes to

them, we propose to use wrappers and mapping routines. ISs

dynamically generate information to display and thus

require some mapping mechanism to automatically map

the generated content to hypertext constructs (e.g. nodes,

links, and link markers). This mapping mechanism infers

useful links that give users direct access to the ISs' primary

functionality, give access to meta-information about IS

objects, guide users to browse information objects, and

enable annotation and ad hoc links. This paper contributes

a systematic dynamic-mapping mechanism for mapping

outputs from an information system to hypertext constructs.

This paper is organized as follows. In Section 2 we

present the DMOHS framework. In Section 3 we apply

the framework. In Section 3 we apply the framework to

each OHS system and the www. Section 4 discusses how

to build mapping routines and presents our prototype. In

Section 5 we discuss future research plans and there is a

general discussion of the issues. Section 6 concludes with a

larger view of our research.

2. The DMOHS framework

The ®rst axis of our framework provides a comprehensive

viewpoint for thinking about a DMOHS architecture that

integrates ISs. The second axis provides a set of major

application requirements that a DMOHS should support.

The DMOHS framework extends OHS components and

features. This framework emphasizes the integration with

ISs, providing hypertext functionality to them. We add

back-end applications (i.e. ISs) to OHS components and

integration with ISs to OHS features to form Axes 1 and 2

separately. In Sections 2.1 and 2.2 we will discuss Axes 1

and 2 in more detail.

Users will wish to use existing third party applications

that run under their host operating systems, to create docu-

ments and access documents on remote machines. So, we

believe that integration, distribution, and cross platform

support constitute the major requirements of OHSs

[10,16]. We have incorporated these three requirements

into Axis 2 of our DMOHS framework. Malcolm et al.

[15] assert that hypermedia systems must provide a distrib-

uted heterogeneous environment to allow users to create and

modify information collaboratively. Open hypermedia

systems should provide an extensible architecture to work

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±8676



with new viewers, ISs, data formats, and protocols [18,21].

Therefore, we included these requirements in Axis 2 of our

framework as well.

The two axes of our framework are orthogonal. For exam-

ple, Fig. 1, cell 1 shows that, to enable the integration of

hypertext with viewers (Axis 2) the hypertext engine (Axis

1) should provide certain functionality, such as sending

requests to and receiving requests from the viewer. Such

speci®cations would be included within cell 1. Cell 2

shows that to integrate hypertext with ISs (Axis 2), IS wrap-

pers (Axis 1) should provide certain functionality such as

mapping routines to map display outputs from ISs to hyper-

text constructs (e.g. nodes, links, and link markers).

We note that one can analyze systems using each axis

independently or using both together. Together the two

axes provide a grid for specifying the logical DMOHS func-

tionality for supporting application requirements. Our

framework provides a way to analyze both existing and

proposed OHSs.

So far, only two frameworks exist for classifying and

evaluating hypermedia systems: the Flag taxonomy and

our DMOHS framework. The Flag taxonomy allows one

to: (1) classify existing hypermedia systems, (2) char-

acterize what an open hypermedia system is, and (3)

examine (describe and compare) OHSs independent of

the particularities of speci®c systems [17]. A major

difference between our DMOHS framework and Flag

taxonomy is that our framework explicitly distinguishes

storage-level components (i.e. information systems)

from presentation-level applications (i.e. viewers). Our

DMOHS framework also makes many of the integration

requirements more explicit, both in terms of Axis 1's

architectural components and Axis 2's functionalities.

While DMOHS is a general framework, it does advo-

cate a particular approach to integration, i.e. through a

hypermedia engine that uses application schemata to

map hypermedia functionality dynamically. We believe

our dynamically-mapped OHS framework is more

extensible than the Flag taxonomy, because we can

remove items from or add items to the two axes to

form appropriate sub-frameworks to evaluate new

hypermedia systems or new features of existing hyper-

media systems. We hope that our framework gives

people a view of an open hypermedia system in a

simpler and clearer way than the ¯ag taxonomy.

2.1. Axis 1: DMOHS logical component focus

In this axis, we propose a conceptual DMOHS architec-

ture with eight logical components. This architecture

emphasizes integration with both viewers and ISs, providing

hypertext functionality to each. Fig. 2 sketches examples of

this architecture. Components communicate with each other

through message passing. A major research issue concerns

what functionality each component logically should

provide. Note that while actual DMOHSs will include

some or all of this functionality, their architectures may

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±86 77

Fig. 1. Dynamically mapped open hypermedia system framework.

Fig. 2. A conceptual DMOHS architecture integrating example viewers and

information systems.



physically implement the functionality in different modules

than those shown here.

1. An IS is an application system with which users interact

to perform some task, which often dynamically produces

output content for display.

2. An IS wrapper translates and routes messages between its

IS and the hypertext engine. It also provides its IS's

mapping schema. A comprehensive IS wrapper will

allow us to integrate an existing IS with few or no

changes. An IS wrapper is responsible also for perform-

ing any task required by the engine for compliance, but

which the IS itself actually cannot do.

3. The master wrapper coordinates schema mapping among

different IS domains, thus aiding IS-to-IS integration.

4. The hyperbase management system (HBMS) maintains

the structure and document contents stored in the hyper-

text database. As we will state later, link server-based

systems use viewers to store document contents and

open hyperbase-based systems use either the HBMS or

viewers to store document contents. In a multiuser/colla-

borative environment, the HBMS should provide func-

tionality such as concurrency control, access control,

noti®cation or versioning control.

5. The hypertext engine provides and controls hypertext

functionality for both IS and viewer applications and

maps hypertext components to displays of the IS infor-

mation. The responsibilities of the hypertext engine

include: keeping records of users' activities, invoking

the viewer through its wrapper, resolving link activation,

supporting navigation aids, information ®ltering, coordi-

nating with the HBMS to access hypertext components

through the communication protocol, and coordinating

message passing in a distributed and collaborative

environment.

6. A viewer wrapper translates and routes messages

between its viewer and the hypertext engine [20]. A

viewer wrapper should provide a communication proto-

col for a viewer and the hypertext engine to exchange

messages. Existing protocols include DDE, OLE, TCP/IP

sockets, inter-process communication, or Apple Events.

A viewer wrapper is responsible also for performing any

task required by the engine for compliance but which the

viewer itself actually cannot do.

7. Viewers represent applications that can both display and

edit hypertext components, in addition to their original

functionality. This architecture also requires an appropri-

ate viewer to display the IS output. In other words, the

hypertext engine will invoke an appropriate viewer that

can handle the output from an IS. The responsibilities of

viewers include displaying and editing documents,

displaying link markers, handling anchor values, provid-

ing menus that support hypertext functionality, allowing

users to highlight the content of documents, storing

contents (for link server-based systems), and communi-

cating with the hypertext engine.

8. The database stores links and documents contents.

2.2. Axis 2: application requirement focus

In this axis, we de®ne and discuss aspects of DMOHS that

must be supported in a distributed and integrated environment.

We believe that integration, distribution, cross-platform

support, and extensibility constitute the most important

requirements of a DMOHS. Axis 2 helps us analyze these,

as well as other requirements for our conceptual architecture.

Within the full double-axis grid (Fig. 1), we can specify then

the functionality each logical component of our architecture

could provide to support application requirements.

1. Integration with viewers: integrating viewers and their

functionality into a DMOHS and providing manual

hypertext support.

2. Integration with ISs: integrating ISs and their function-

ality into a DMOHS and providing hypertext support for

dynamically-generated content.

3. Distribution: distributing all eight logical components

across a network. In a distributed environment, commu-

nication among system components is a main issue.

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±8678

Fig. 3. Evaluation of HyperDisco.



4. Multiuser: allowing multiple users to access documents

under concurrency and access control.

5. Collaboration: support for collaborative environments.

Multiuser hypermedia systems are different from colla-

borative hypermedia systems. Multiuser systems provide

access and concurrency control. Collaborative systems

provide those two functions and more noti®cation

controls than multiuser systems, so that multiple users

can work together.

6. Cross-platform support: support for distribution across

heterogeneous operating systems. A DMOHS should

allow a user to access information across the network

and heterogeneous operating systems (e.g. MS-

Windows, UNIX, Macintosh).

7. Extensibility: whether new components (e.g. ISs) and

data formats can be added to the conceptual architecture

and whether new functionality can be added to compo-

nents.

3. Evaluation

We have evaluated ®ve open hypermedia systems and the

www with the DMOHS framework, to decide which one, if

any, can help us build a prototype covering the full breadth

of the framework. In this paper we present the detailed

evaluation results of three systems.

3.1. Evaluation of HyperDisco

Fig. 3 shows our evaluation of HyperDisco. The shaded

areas in the ®gure indicate that HyperDisco has logical

components equivalent to those in Axis 1 for supporting

the application requirements of Axis 2.

² HyperDisco was developed by Uffe Kock wiil at Aarhus

University, Denmark. HyperDisco integrates with tools

(viewers), which both comply fully with its protocol and

which are non-compliant (see Fig. 3, cell V1). HyperDis-

co's tool integrator serves a similar role to the viewer

wrapper and the hypertext engine in our architecture

combined (see cells V2 and V3). The tool integrator's

integration model layer provides a basic hypermedia

linking service (anchors and links). The HBMS can

handle the storage of hypertext contents or let the viewers

handle content storage (see cell V4).

² The survey result show that HyperDisco can integrate

with ISs either through an extensible and tailorable

communication protocol (e.g. based on sockets) or the

Scheme language. HyperDisco uses the programming

language Scheme extended with standard object-oriented

features as its scripting language. HyperDisco has an

operating system interface and can perform the same

operations as www CGI scripts. We do not put any

shaded area on the second column because HyperDisco

does not integrate with any wrapper to infer useful links

that give users more direct access to the IS;s primary

functionality, give access to meta-information about IS

objects, or enable annotation and ad hock links (see cells

I1 to 17). ISs dynamically generate their contents and

thus require some mapping mechanism to automatically

map the generated content to hypertext constructs (nodes,

links, ad link markers).

² HyperDisco works in the WAN environment by using a

two-level name service mapping schema [22] (see cell

D1 to D4).

² HyperDisco provides short database transactions

combined with user-controlled locking to allow multiple

users to work simultaneously without damaging data

integrity (see cells M1 to M4).

² HyperDisco can support both asynchronous and synchro-

nous collaboration. A participating tool (viewer) needs a

user interface to initiate an explicit lock request. Event

noti®cations from HyperDisco enable viewers to indicate

changes in the shared document network [21] (see cells

C1 to C4).

² HyperDisco does not support multiple platforms. It only

runs on Sun SparcStations (see cells P1 to P7).

² HyperDisco provides two layers of hypermedia function-

ality: An integration model layer and data model layer. In

the integration model layer, the built-in classes provide

basic hypermedia linking services (anchors and links)

including a ¯exible communication protocol (see cell

E3). In the data model layer, the built-in classes provide

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±86 79

Fig. 4. Evaluation of Microcosm.



basic hypermedia storage services for hypermedia

objects (nodes, composites, links, and anchors) [21]

(see cell E4). Both layers can be extended and tailored

using (multiple) inheritance to provide specialized inte-

gration models for individual tools or tool groups.

3.2. Evaluation of Microcosm (Fig. 4)

² Microcosm was developed at the Image and Multimedia

Research Group at the University of Southampton,

England. Microcosm can integrate with DOAs at the

fully-compliant, partially-compliant, and non-compliant

levels [10,11]. Microcosm's architecture contains a

central document control system, functional modules

(called ª®ltersº), and a link dispatcher [10]. We could

treat these three components together as the hypertext

engine. Microcosm uses a linkbase to store link informa-

tion and DOAs to store node contents. Actually the link-

base is one of its ®lters.

² Microcosm itself does not support integration with

DMISs. It can be coerced to do so by adding a new ®lter

that serves as a DMIS wrapper.

² Microcosm's released version runs with data distributed

across the LAN or WAN (but all processes run on the

client machine). A number of lab versions run a true

WAN distribution. Microcosm works in the WAN envir-

onment by integrating with the www. It adopts the so-

called distributed link service (DLS) [8]. The DLS allows

users to add links to the www document without writing

link tags. The link information will be stored in linkbases

available on the Web. There are two components of DLS:

the client interface and the link server. The server is

implemented using CGI scripts and is accessed through

a Web server. The client side works by integrating with

Netscape's Navigator.

² Microcosm does not provide concurrency control. Users

may share resources without the right to update them.

Users can maintain their own copies of document and

links that will need updating.

² The DLS is available for MS-Windows and UNIX, so

users can access information across these two platforms.

² Functional ®lters of Microcosm provide major hypertext

functionality. System developers can extend Microcosm

by dynamically installing, removing or reordering the

®lters.

3.3. Evaluation of the www (Fig. 5)

² The Web browsers (e.g. Netscape's Navigator and

Microsoft's Internet Explorer) resemble the role of view-

ers and integrate with Web servers at the fully compliant

level. Some browsers (e.g. Netscape's Navigator) allow a

user to edit current document at run time. The www

requires formats such as HTML, GIF and JPEG, which

prevent the documents being accessible to some third-

party applications. This feature limits the possibility of

integrating other third-party applications as viewers

unless they can display HTML documents, although

this is becoming increasingly prevalent. As a Web brow-

ser can communicate with a www server, we do not need

a viewer wrapper. The www uses the ®le system instead

of a HBMS.

² Web database development is a hot new ®eld. Most data-

base applications handle queries and generate HTML

from query results without inferring links. These data-

base applications do not meet our de®nition of integra-

tion with ISs since they do not infer useful inks that give

users direct access to various information about database

objects (e.g. meta-information of database tables). The

www has the opportunity to integrate hypertext support

into ISs. There are many potential approaches for inte-

grating Web servers with information systems: tradi-

tional Common Gateway Interface (CGI), server APIs

(e.g. Netscape's NSAPI and Microsoft's ISAPI), server-

side Java, Active Server Pages (ASP), etc. No systematic

approach exists, however, for integrating an IS (or analy-

tical information system) with the www and giving users

direct access to its interrelationships. To dynamically

generate HTML documents with valuable inferred links

we need a more generic mapping mechanism.

² To support internal objects, IS wrappers have to map

display output from ISs to HTML documents with

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±8680

Fig. 5. Evaluation of the www.



parameters (e.g. object ID, object type, owning systems,

etc.) in the link anchor tags (,A . ). When a user clicks

on a link the IS wrapper will extract parameters within

the link and execute the command.

² The www is a successfully distributed hypermedia

system. Web servers and browsers can be distributed

on multiple platforms (e.g. UNIX, MS-Windows, Macin-

tosh). Users access information across the network and

platforms through Web servers and browsers.

² The www allows multiple users to access information.

However, it does not support distributed authoring yet.

² Web collaborative systems (e.g. Netscape's Communica-

tor and Microsoft's NetMeeting) allow users to exchange

information, develop ideas, see or talk to people, share

applications, or simply transfer ®les to one or more parti-

cipants. However, current Web collaborative tools do not

provide concurrency and access control to maintain data

integrity for distributed authoring and they use special-

purpose collaborative serves instead of Web servers.

² A user can use a CGI script or ASP program to extend the

server's features to some extent. HTML only supports a

®xed and limited tasgset. XML addresses the limitations

of HTML. XML [7] is a subset of standard Generalized

Markup Language (SGML). XML aims to develop

machine-readable, human-readable, structured, and

semantic documents that can be delivered over the Inter-

net [9,14]. An important feature of XML is that it is

extensible [6]. XML allows the development of custom

and domain-speci®c elements and attributes.

Table 1 summarizes our evaluation of all ®ve open hyper-

media systems and the www. From the evaluation results,

we ®nd that integration with IS, distribution, collaboration,

cross-platform support are still not well supported in current

OHSs. Right now, Chimera [1], DHM [13], Microcosm [8],

HyperDisco [22], ad HOSS [16] can work in the WAN

environment. However, the ®rst three systems support this

feature through integrating with the www. Most OHSs

themselves do not actually provide robust infrastructures

that allow system components (e.g. viewers, HBMS, link-

bases, and hypertext engines) to work together in a wide

area and distributed environment. HyperDisco, Chimera

and HOSS only work on one platform (Sun Sparcstation).

However, other systems work at least on two platforms. The

www is superior to open hypermedia systems regarding

features like distribution, extensibility, and cross-platform;

so we decided to implement our prototype by incorporating

the www.

Availability of resources and the approaches for integrat-

ing information systems are also two important factors to

consider, for us to decide whether to implement the proto-

type on top of the www. Many Web servers and browsers

for various platforms are available on the Internet. Many

approaches exist for integrating information systems into

the www, such as Common Gateway Interface (CGI), Active

Server Pages (ASP), server-side java, and server APIs. We

can choose approaches and languages with which we are

familiar to implement the prototype. However, open hyper-

media systems only support a limited set of approaches and

languages for integrating with external resources.

4. Implementation

The basic concept underlying our proposal is the use of

mapping routines to automatically provide hypertext func-

tionality to ISs when integrating them with the www.The

www server will serve any IS application that has an appro-

priate wrapper. To integrate a new IS with the www, one has

to build a wrapper and store information (e.g. commands) in

the knowledge base. Thus, to provide an IS application with

hypertext support, the developer has to declare mapping

routines in the master wrapper and its IS wrapper. Note

that one set of mapping routines can serve all instances of

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±86 81

Table 1

The summarized evaluation results of six systems

Systems requirements www HyperDisco DHM Microcosm HOSS Chimera

Integration with viewers Yes Yes Yes Yes Yes Yes

Integration with ISs No No No No No No

Distribution Yes: WAN/LAN Yes: WAN/LAN Yes: LAN; WAN

(through www)

Yes: LAN; WAN

(through www)

Yes: LAN/WAN Yes:

LAN;

WAN

(through

www)

Multiuser Yes Yes Yes Yes Yes Yes

Collaboration Yes Yes Yes No No Yes

Cross-platform Yes: at least three platforms No Yes: Unix;

Macintosh; MS-

Windows

Yes: Unix; MS-Windows No No

Extensibility Yes through: traditional

CGI; server APIs; ASP; etc.

Yes through:

scripting

language-

Scheme

Yes through: APIs Yes Yes through: APIs Yes



an IS. Mapping routines infer useful links that give users a

more direct access to the IS's primary functionality, give

access to meta-information about IS objects, and enable

annotation and ad hoc links. In this section, we discuss

how to build mapping routines that supplement ISs with

hypertext support, and then present our prototype.

4.1. Building mapping routines

The main purpose of mapping routines is to infer useful

links from the output dynamically generated by an IS, as

well as commands for operating on IS objects. These

routines reside in and become invoked by the master wrap-

per or IS wrapper. Note that one set of mapping routines can

serve all instances of an IS. We identify two types of

mapping routines: Command_Routine and Object_Routine.

Bieber [2] and Wan [19] implemented mapping rules (or

bridge laws) using Prolog. However, for clarity we discuss

mapping routines in terms of functional procedural calls.

We explain each by using our Microsoft-Excel-based proto-

type ®nancial information system as the target IS.

4.1.1. Command_Routine (System, Type):

This routine infers commands for operating upon the

selected object. The ªSystemº parameter is used to discri-

minate among different ISs. This routine should provide the

following functions.

² Search the knowledge database for commands accessing

various relationships on the selected IS object.

² Map commands to links

² Form a HTML document that includes mapped links and

send the document to the Web server.

For example, Command_Routine (ªFISº, ªSHEETº) will

execute the forementioned functions and create the follow-

ing HTML document. We list some commands in the

following table. In reality, the system would present all

commands (or a ®ltered subset).

, HTML . ,BODY .
¼

, A href� ªhttp://163.18.21.246/®s/MasterWrapper.asp?

SYSTEM� FIS&ID� FL,EBIT,Y1999&

TYPE� SHEET&COMMAND� ªdrawChartº .
drawChart , /A .
¼

, A href� ªhttp://163.18.21.246/®s/MasterWrapper.asp?

SYSTEM� FIS&ID� FL,EBIT,Y1999&

TYPE� SHEET&COMMAND� showDataº .
showData , /A .
¼

, /BODY . ,/HTML .

In this example HTML document:

1. The ID ªFL,EBIT,Y1999º, means the ªY1999º worksheet

of the ªEBITº workbook within the ®nancial leverage

subsystem (FL).

2. The IS wrapper is an ASP application called ªMaster-

Wrapperº. Note that the link anchor has a ªCommandº

attribute with the value ªshowDataº. We call this type of

link anchor a ªcommand link anchorº.

4.1.2. Object_Routine (Command, System, ID, Type):

This routine infers links from the output generated by the

IS. The Object_Routine has four parameters. The object

identi®er (ID) is the key to determine which object of the

given system the command should operate on. This routine

should provide the following functions:

² Map commands to actual IS commands.

² Send actual commands and other parameters to the IS.

² Receive the display output from the IS.

² Infer links from the output generated by the IS.

² Create the HTML document with inferred links and send

the document to the Web server.

Here is an example in which the command accesses a

structural relationship. Object_Routine (ªshowDataº,

ªFISº, ªFL,EBIT,Y1999º, ªSHEETº) will execute the ®ve

forementioned functions and send the following HTML

document to the Web server. We list some cells in the

following table.

, HTML . ,BODY .
¼

, A href� ªhttp://163.18.21.246/®s/MasterWrapper.asp?

SYSTEM� FIS&ID� FL,EBIT,Y1999,A3&

TYPE� CELL&COMMAND�NOª . EBIT , /A .
¼

, A href� ªhttp://163.18.21.246/®s/MasterWrapper.asp?

SYSTEM� FIS&ID� FL,EBIT,Y1999,C3&

TYPE� CELL&COMMAND�NOª . EPS , /A .
¼

, /BODY . ,/HTML .

Note that the link anchor has a ªCommandº attribute the

value of which is ªNOº. This indicates that it does not

provide a command. We call this type of link anchor ªobject

link anchorº.

4.2. Prototype

We have created a proof-of-concept prototype (see Fig. 8)

using a ®nancial information system as the target IS. The

®nancial information system was built using Microsoft

Excel. The master wrapper is an ASP program (i.e. Master

Wrapper.asp). The IS wrapper has two parts: an ASP

program (i.e. FISWrapper.asp) and a DLL (i.e. FISWrap-

per.DLL) built using Visual Basic. In this subsection, we

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±8682



explain how to program Command_Routine and Objec-

t_Routine by using ¯owcharts (see Figs. 6 and 7).

Fig. 8 shows the interface of our prototype. Suppose that a

user wants to retrieve the explanation of the terminology,

ªEPSº. First, he clicks on the link labeled as ªEPSº.

Mapping rules of the master wrapper will be invoked to

infer available commands for the ªEPSº object. These will

replace those shown in Fig. 8. The command area of Fig. 8

shows the available command for the ªEPSº object. Second,

he clicks on the command link labeled as ªexplainº.

Mapping rules of the IS wrapper will be invoked to retrieve

the explanation from the ®nancial information system, form

a HTML document, and then send the HTML document to

the browser for display (see Fig. 9). Figs. 10±13 show

outputs of executing other commands.

5. Future research

There are four directions for our future research. First, we

are considering adding a third axis to ensure that a DMOHS

design best serves applications in organizations. The third

axis would include ®ve traditional classes to the information

system: transaction processing system (TPS), management

information system (MIS), decision support system (DSS),

group decision support systems (GDSS), and executive

information systems (EIS). This axis would help us deter-

mine what requirements each of the logical components in

Axis 1 has to ful®ll to satisfy each class of information

system. This axis also helps highlight which application

requirements from Axis 2 are necessary for which class of

IS.

Second, we will continue to improve the prototype in

terms of the framework features not yet implemented,

which include designing a mechanism for integrating with

partially compliant and non-compliant viewers, integrating

with multiple-information systems, and providing true Web

collaborative functionality.

Third, we plan to develop guidelines, methodologies and

components to help other OHS systems, especially those

complying with the open hypermedia protocol, and provide

more complete mapping with other OHS systems. Finally,

we plan an implementation that covers the full framework.

6. Conclusion

The www and open hypermedia system provide opportu-

nities to integrate hypermedia into the formation system.

We believe that integrating information systems in the busi-

ness world with the www and OHSs should constitute a

major thrust for the www and OHS research. It will go a

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±86 83

Fig. 6. The program ¯ow of Master Wrapper.asp.



C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±8684

Fig. 8. This ®gure show the interface of our prototype. This system has three areas: the system structure area, command area, and content area.

Fig. 7. The program ¯ow of FISWrapper (i.e. FISWrapper.asp and FISWrapper.dll)



C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±86 85

Fig. 9. Output of executing the ªexplainº command.

Fig. 10. Output of executing the ªexplainº command.

Fig. 11. Output of executing the ªview formulaº command.

Fig. 12. A form for users to add comments.

Fig. 13. Output of executing the ªview commentº command.



long way towards making applications more understand-

able. When re-engineering applications for the www and

OHSs, dynamic mapping could be an effective way to add

additional hypermedia links. This will facilitate adding

useful hypertext functionality to new www and OHS appli-

cations (especially Iss). We hope this paper will call

people's attention to this opportunity.

Acknowledgements

We wish to thank the following developers for providing

information about their systems: Kenneth M. Anderson,

Hugh Davis, Kaj Grùnbñk, Chuck Kacmar, Antoine Rizk,

and Uffe Kock wiil. We gratefully acknowledge the support

of this research by the NASA JOVE faculty fellowship

program, by the New Jersey Center for Multimedia

Research, by the National Center for Transportation and

Industrial Productivity at the New Jersery Institute of Tech-

nology (NJIT), by the New Jersey Department of Transpor-

tation, and by the New Jersey Commission of Science and

Technology, and by Rutgers University.

References

[1] K.M. Anderson, Integrating Open Hypermedia Systems with the

World Wide Web, Proceedings of Hypertext'97, 1997, pp. 157±166

[2] M. Bieber, Automating hypermedia for decision support, Hypermedia

4 2 (1992) 83±110.

[3] M. Bieber, C. Kacmar, Designing hypertext support for computation

applications, Communications of the ACM 38 8 (1995) 99±107.

[4] M. Bieber, H. Oinas-Kukkonen, V. Balasubramanian, Hypertext

functionality, ACM Computing Surveys (forthcoming).

[5] M. Vitali, F. Ashman, H. Balasubramanian, V. Oinas-Kukkonen,

Fourth generation hypermedia: some missing links for the world

wide web, International Journal of Human Computer Studies 47

(1997) 31±65 (Available at: http://www.hbuk.co.uk/ap/ijhcs/websa-

bility/).

[6] J. XML Bosak, Java, and the future of the Web, Available at: http://

sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm, 1997.

[7] T. Bray, J. Paoli, C.M. Sperberg-McQueen, Extensible Markup

Language (XML). 1.0, Available at: http://www/w3.org/TR/1998/

REC-xml-19980210, 1998.

[8] L. Carr, D. De Roure, W. Hall, G. Hill, The Distributed Link Service:

A Tool for Publishers, Authors and Readers, In Proceedings of the

Fourth International www Conference, 1995, pp. 647±656.

[9] D. Connolly, R. Khare, A. Rifkin, The evolution of the web docu-

ments: the ascent of XML, XML, Special Issue of the World Wide

Web Journal 2 (1997) 119±128.

[10] H. Davis, W. Hall, I. Heath, G. Hill, R. Wilkins, Towards An Inte-

grated Information Environment With Open Hypermedia Systems,

ECHT'92 Proceedings, 1992, pp. 181±190

[11] H. Davis, S. Knight, W. Hall, Light Hypermedia Link Services: A

Study of Third Party Application Integrating, Proceedings of

ECHT'94, 1994, pp. 158±166.

[12] H. Davis, A. Lewis, OHP: A Draft Proposal for a Standard Open

Hypermedia Protocol, Proceedings of the Second Workshop on

Open Hypermedia Systems, 1996.

[13] K. Grùnbñk, N.O. Bouvin, L. Sloth, Designing Dexter-based hyper-

media services for the World Wide Web, Hypertext'97 Proceedings,

1997, pp. 146±156.

[14] R. Khare, A. Rifkin, X marks the spot: using XML to automate the

web, IEEE Internet Computing 1 (1997) 78±87.

[15] K.C. Malcolm, S.E. Poltrock, D. Schuler, Industrial Strength Hyper-

media: Requirements for a Large Engineering Enterprise, Hyper-

text'91 Proceedings, 1991, pp. 13±24.

[16] P.J. NuÈrnberg, J.J. Leggett, E.R. Schneider, J.L. Schnase, Hypermedia

Operating Systems: A New Paradigm for Computing, Hypertext'96,

1996, pp. 194±202.

[17] K. ésterbye, U.K. Will, The Flag Taxonomy of Open Hypermedia

System, Hypertext'96, 1996, pp. 129±139.

[18] J.L. Schnase, J.J. Leggett, D.L. Hicks, NuÈP.J. rnberg, J.A. Schez,

Open Architectures for Integrated Hypermedia-based Information

System, Proceedings of the 27th Hawaii International Conference

on System Sciences, 1994, pp. 386±395.

[19] J. Wan, Integrating Hypertext into Information Systems through

Dynamic linking, PhD dissertation, New Jersey Institution of Tech-

nology, Newark, NJ 07102, 1996.

[20] E.J. Whitehead, An Architectural Model for Application Integration

in Open Hypermedia Environments, Hypertext'97, 1997, pp. 1±12.

[21] U.K. Wiil, J.J. Leggett, The HyperDisco Approach to Open Hyper-

media Systems, Hypertext'96, 1996, pp. 140±148.

[22] U.K. Wiil, J.J. Leggett, Workspace: The HyperDisco Approach to

Internet Distribution, Hypertext'97, 1997, pp. 13±23.

C.-M. Chiu, M. Bieber / Information and Software Technology 43 (2001) 75±8686


