
The Coast Guard's KSS Project

STEVEN O . KIMBROUGH Department of Decision Sciences/6366
University of Pennsylvania
Philadelphia, Pennsylvania 19104-6366

CLARK W . PRITCHETT united states Coast Guard Research and
Development Center

Avery Point, Groton, Connecticut 06340

M I C H A E L P. BIEBER computer science Department
Boston College
Chestnut Hill, Massachusetts 02167-3808

H E M A N T K. BHARGAVA Naval Postgraduate School
Code 54BH
Monterey, California 93943-5000

Since June 1986, the University of Pennsylvania has been un-
der contract with the Coast Guard to provide support for the
Coast Guard's KSS (knowledge-based decision support sys-
tems) project. A principal output of the KSS project has been
Max, a DSS shell or environment, originally designed to sup-
port modeling tasks during decision making for ship acquisi-
tion. Max is innovative in a number of ways: (1) it is a docu-
ment-oriented DSS, (2) Max documents are generalized hyper-
text documents for which the buttons and linkages to
associated information are set up dynamically at run time by
the system, and (3) Max contains a model management system,
called TEFA, which can represent and evaluate a broad range
of models. In addition, TEFA is able to represent a rich body of
information about its models and data, and this meta-informa-
tion is available through the generalized hypertext facilities of
system. Max has been delivered to the Coast Guard and is in
use. Several important Coast Guard and Navy models have
been implemented in Max at very low cost.

Since June 1986, the University of Groton, Connecticut to provide support for

Pennsylvania has been under contract the Coast Guard's KSS (knowledge-based
with the Coast Guard's R and D Center at decision support systems) project. This
Copyright © 1990, The lnsHtute of Management Sciences DECISION ANALYSIS—SYSTEMS
0091-2102/90/2006/0005$01.25 GOVERNMENT SERVICES—COAST GUARD

INTERFACES 20: 6 November-December 1990 (pp. 5-16)

KIMBROUGH ET AL.

support has included systems analysis,
management science modeling, concept
development, and software design and im-
plementation. Work on the KSS project has
proceeded through the close cooperation of
the University of Pennsylvania, the R and
D Center, and the Coast Guard's Office of
Acquisition in Washington, DC. The Uni-
versity of Pennsylvania and the R and D
Center have done the actual work on the
project. The Office of Acquisition, which is
charged with acquiring major systems in
the Coast Guard, has been a willing cus-
tomer and provided information and feed-
back on various aspects of the project. A
principal output of the KSS project has
been Max, a DSS shell or environment
[Kimbrough 1986], originally designed to
support modeling tasks during decision
making for ship acquisition [Bhargava,
Bieber, and Kimbrough 1988; Bhargava
and Kimbrough 1990; Bieber and
Kimbrough 1990; Kimbrough et al. 1986].

A DSS is an interactive software tool for
working with models and data. A KSS (the
Coast Guard's term) is a DSS plus intelli-
gence and a richer concept. In developing
new software, our practice has been to be-
gin by developing an application theory, or
hypothesis, regarding why the software is
needed and what it should be used for.
Following this, we develop a concept for
what the software should be about, how in
the abstract it should work. We then de-
sign representation schemes for the sys-
tem's objects (the various entities, for ex-
ample, models and data, that the system
must reason about and operate upon), the
operations supported in the system, and
the control mechanisms for the system.
Our debt to the Sprague and Carlson

ROMC (representations, operations, mem-
ory aids, and control) framework should
be clear [Sprague and Carlson 1982]. To
our way of thinking, memory aids, the M
of the Sprague and Carlson ROMC frame-
work, are elements of the system concept
whose specific implementation aspects are
covered under representations, operations,
and control.

A KSS is a DSS plus
intelligence and a richer
concept.

We subscribe to the argumentation the-
ory of DSS, according to which a main
purpose of a decision support system is to
support the construction, evaluation, and
comparison of arguments for courses of ac-
tion [Kimbrough 1987]. (DSSs are also use-
ful for reasons of convenience—a DSS can
make working with data and models much
easier—and for reasons of insight—a DSS
can deliver information that is critical for
gaining insight into the decision problem
at hand. Reasons of argumentation, how-
ever, were a main motivating impetus for
our work.) We use the term argument in its
logical sense, to indicate a collection of
statements, including a conclusion and
zero or more premises. Put differently,
DSSs are for constructing and examining
reasons for doing things. The Coast
Guard's Office of Acquisition is interested
in acquiring ships and aircraft. This costs
money and must be justified with reasons
[Kimbrough 1982]. Their underlying pur-
pose for a DSS is to support the develop-
ment of the best possible reasons for the
best possible course of action in acquiring
ships and aircraft.

INTERFACES 20:6

KSS

To date with Max we have aimed at a
modest approximation of this goal largely
because DSSs in general and DSS features
in particular have traditionally been cate-
gorized as either data-oriented or model-
oriented [Alter 1977]. This may be correct
as a description of actual practice, but we
believe that a third orientation is needed in
DSS. Assuming the argumentation theory
for decision support, our application the-
ory (for DSS in the Coast Guard's Office of
Acquisition) has been that the KSS soft-
ware should be a tool that is useful in con-
structing decision reports, reports that rec-
ommend courses of action and document
the reasons for them. While they incorpo-
rate data and the results of model runs,
these reports essentially make recommen-
dations and provide support or reasons for
them. Our fundamental hypothesis in de-
signing Max has been that what is needed
is a document-oriented DSS that could also
be an effective tool for working with mod-
els and data. We think that a document-
oriented DSS is a reasonable step towards
a more thoroughgoing argumentation DSS.
(We credit David Ness with persuading
one of us [Kimbrough] to appreciate the
importance of document handling in DSS.)
Major Systems Acquisitions at the Coast
Guard

The Coast Guard uses ships (cutters) and
aircraft (airplanes, helicopters, and lighter-
than-air vehicles) in conducting its mis-
sions. Eventually, a particular class of asset
(cutter or aircraft) wears out through use or
becomes technologically obsolete and eco-
nomically unsupportable or is no longer
matched to the missions it is called upon to
perform. Some of these problems can be
delayed or overcome by upgrading systems

or overhauling or modernizing, but even-
tually an entire class of resources must be
replaced. The Coast Guard, for example, is
currently examining fleets of high-endur-
ance cutters and medium-range helicop-
ters.

The federal government has established
and defined a process that must be fol-
lowed in acquiring new systems, including
classes of cutters and aircraft. The process
was delineated by the Office of Manage-
ment and Budget in its now famous A-109
circular (1977). The acquisition process for
major systems, such as a fleet of ships, can
take 10 or more years from inception to
the point where a contract is actually let to
build the first vessel. The responsible office
must establish mission needs and opera-
tional requirements for the new system. All
reasonable alternatives must be considered.
Each alternative might be played through a
scenario or series of models to forecast its
performance on items of interest, such as
mission performance or logistics. Analyses
are periodically required for various as-
pects of the problem throughout the life of
a major system acquisition project. For
large contracts, prototypes may be built
and tested before the final contract is let.
Ultimately, a trade-off between cost and
performance must be made and the alter-
natives must be ranked. At various stages
in the process, these evaluations and anal-
yses must be documented to satisfy the ex-
ecutive department that wants the re-
sources (in the case of the Coast Guard,
the Department of Transportation) and the
Congress, which is being asked to appro-
priate the money.

During the next 10 years, the US Coast
Guard will invest more than a billion dol-

November-December 1990

KIMBROUGH ET AL.

lars in acquiring replacements for its pres-
ent, aging fleet. The cost of staffing, oper-
ating, and maintaining these assets will be
several times the acquisition cost. Because
of the importance and complexity of the
problem of acquiring such major systems,
the Coast Guard initiated the KSS project.
It was aimed, in part, at systematically de-
veloping software to support decisions on
acquiring major systems. The goal is to
produce a series of specific KSSs to support
particular acquisition projects that would
be based on generic, reusable software.

During the next 10 years, the
US Coast Guard will invest
more than a billion dollars in
acquiring replacements for its
present, aging fleet.

Important elements of the context for
the KSS project follow:

(1) The Coast Guard needs to replace its
aging fleet of ships and aircraft.

(2) Replacement of the Coast Guard
fleet will occur in a policy and political en-
vironment in which funds are limited.

(3) Vessel acquisitions are complex and
difficult and require years of effort and
planning. \

(4) The complexity and difficulty are in-
creased by new technology, changing mis-
sion requirements, and the fact that finding
the best possible mix of ships and aircraft
becomes more critical with limited re-
sources [Bhargava, Kimbrough, and
Pritchett 1990].

(5) The Coast Guard must conform to
the A-109 process.

(6) Coast Guard analysis personnel and

decision makers are often not trained in
management science and information sys-
tems and often serve as acquisition ana-
lysts for only one or two years.

(7) Historically, the analysis of alterna-
tives has been weak and has relied very
little on management science techniques
and decision support systems.

(8) Although the existing Coast Guard
personnel are overextended, they must re-
spond to difficult questions from the De-
partment of Transportation and the Con-
gress quickly and accurately.

(9) The costs of mistakes are high: a loss
of credibility with the Department of
Transportation and Congress and a loss of
dollars paid to contractors for Coast Guard
mistakes and to attorneys for litigation
support.
Design Goals

The R and D Center (through a group
led by Pritchett) and the project team at
the University of Pennsylvania (Bhargava,
Bieber, and Kimbrough) identified the fol-
lowing design goals for the KSS software
early in the project:

(1) To design and build reusable KSS
shells [Kimbrough 1986];

(2) To integrate models and data from a
variety of sources;

(3) To produce KSS software that is use-
ful and easy for novices to work with;

(4) To employ commercially available
software tools whenever possible;

(5) To use highly modular, flexible, and
maintainable code that can be located on a
variety of machines;

(6) To represent large amounts of infor-
mation about models and data, and to pro-
vide easy access to this meta-information
[Bhargava and Kimbrough 1990]; and

INTERFACES 20:6 8

KSS

(7) To identify the main classes of users
and design the system for their needs.

Why have these high-level design goals?
The answer is pretty much self-evident,
but we paid special attention to several
points (5, 6, and 7). The key idea behind
how we built intelligence into the KSS,
that is, into Max was to declare informa-
tion about models, data, and other system
entities (6) as well as to represent these en-
tities directly. Also we identified three ma-
jor classes of users (7): analysts, browsers,
and builders. Analysts are in the business
of developing (major systems acquisition)
options and comparing them. Analysts
make recommendations to decision mak-
ers, and in doing so they create reports af-
ter exercising models and examining data.
Browsers are more casual users of the KSS.
They need an easy way to explore docu-
ments and information, including data and
models. Builders need to put together spe-
cific models, data, and other information
directly and rapidly. The builders (whom
we envisioned to be R and D center man-
agement scientists) configure the KSS shell
environment to create specific DSSs for use
by analysts and browsers.

We will discuss building highly modular,
flexible code (5) later. We assumed a build-
and-revise (iterative) strategy—rather than
a specify-and-implement strategy—for the
project. (The present version of Max is a
much-revised version of the second re-
write.) This universally recognized strategy
produces workable, usable early releases of
fhe software, which can then be modified
in response to informed customers' direc-
tions. Happily, we are in fhat position. We
delivered an early, workable version of the
system which is in use and is undergoing

frequent revisions.
To justify the need for a DSS to Coast

Guard management, and specifically for
the DSSs to be produced under the KSS
project, we made the following points:

(1) A DSS delivers detailed information
to decision makers effectively.

(2) A DSS produces reliable answers to
queries quickly. (This is particularly impor-
tant for maintaining credibility with execu-
tive agencies and with Congress.)

(3) A DSS can reduce the costs of pro-
ducing information, analyses, and reports
for decision makers.

(4) A DSS facilitates more effective use
of existing models and data. (This was a
particularly telling point with the Coast
Guard managers, because they had in-
vested heavily in modeling.)

(5) A DSS can lead to better decisions
and recommendations (valuable for their
own sake and for maintaining credibility
with executive agencies and Congress).

(6) A DSS can facilitate more effective
presentation and justification of decisions
and recommendations.

(7) A DSS can, by collecting models and
data in a single system, help with the insti-
tutional memory problem.
Results

We developed two KSS concepts: level 1
and level 2. Level 2 builds upon level 1.
We developed both concepts in response to
a Coast Guard captain's request for a sys-
tem that could "tell me where the numbers
come from" (B. C. Miller, then of the Of-
fice of Acquisition). The captain under-
stood that acquisition recommendations
are based on assumptions, some of which
are solid, some of which are not. He was
asking for a system that could tell him eas-

November-December 1990

KIMBROUGH ET AL.

ily and quickly the source and quality of a
given assumption, as well as the assump-
tions underlying a given figure. His request
is certainly consistent with the argumenta-
tion theory of DSS: he wanted DSS sup-
port to help him examine the premises of
arguments or the assumptions behind the
reasons and reasoning presented in DSS
reports.

We set out to provide such a system and
to have the KSS shell software—rather
than the system builder—determine and
manage the links between the numbers
and the information about them. More-
over, we sought to do so in a very general-
ized fashion, applicable very broadly.
Level 1 KSS Concept: Document-
Oriented DSS

The delivered and working version of
Max (which is still undergoing modifica-
tions) is an instance of the level 1 KSS con-
cept; it is a document-oriented DSS. The
KSS shell software provides two main
classes of features: interactive (hypertext-
style) documents and model management.
(Its data management capabilities are cur-
rently quite basic, but we are enhancing
them.) Our DSS argumentation theory, as
applied to Max, has it that a DSS should
support an analyst in developing a report
recommending a course of action and giv-
ing the reasons for it. The KSS shell is ori-
ented towards constructing such reports.
This is reflected in the high-level design of
the shell, which contains two main mod-
ules, Maxi and TEFA.

The TEFA module manages a broad
class of mathematical models. (In the de-
livered version of Max, TEFA handles hier-
archical, conditional equational models. It
supports models that consist of many

equations, but not systems of simultaneous
equations. Basically, TEFA's present model
representation and execution capabilities
substantially exceed those of spreadsheet
programs. We have developed a successful
prototype for representing mathematical
programming models, TEFA can translate
such models from its internal format to
that required by a commercial solver.) Fur-
ther, TEFA can express essentially any in-
formation about a model or a variable for a
model—for example, its source, its reliabil-
ity, and its dimensional characteristics.
Moreover, TEFA can automatically use
such information to provide such features
for the KSS as validity checking and re-
porting on models. The documentation for
models in TEFA can be made remarkably
clear, as is the actual declaration of the
models in the system. Model documenta-
tion includes a typeset mathematical for-
mulation of the model as well as the actual
declarations for the model in Max,

We designed TEFA with the entire mod-
eling life cycle in mind and continue to im-
prove it. The modeling life-cycle frame-
work that we worked with includes the
following elements:

(1) Identification of the sort of model
likely to suit the problem at hand,

(2) Formulation and specification of a
particular model,

(3) Implementation and validation of
the model from step 2,

(4) Determination of parameter values
(this typically requires data collection and
analysis, and can benefit from data man-
agement tools),

(5) Solution of the model,
(6) Fielding and use of the model, and
(7) Modification of the model in re-

INTERFACES 20:6 10

KSS

sponse to field-based experience.
The Maxi (Max interface) module pro-

vides the interactive documents, or hyper-
text features. (See Bhargava, Bieber, and
Kimbrough [1988]; Conklin [1987]; Halasz
[1988]; Marchionini and Shneiderman
[1988]; and Minch [1990] for discussion of
hypertext and hypermedia.) The idea is to
build reports in which items—including
numbers—are linked automatically to per-
tinent information about them. What we
have is a broader, deeper, more general
form of hypertext, which we call general-
ized hypertext [Bieber and Kimbrough
1989; 1990]. Standard hypertext systems
provide system-level support for the user
to navigate among the nodes in a hyper-
document, using links that have been set
up by a builder using the editing facilities
of the system. In generalized hypertext, as
implemented in Max, the system can create
links and nodes (reports) dynamically at
run time, thereby eliminating a great deal
of work by the document builder. (See
Bieber and Kimbrough [1989, 1990] for a
detailed discussion of these points.)

The architecture for the level 1 imple-
mentation is highly modular and robust.
There is an internal communications path
between the Maxi and TEFA modules,
which communicate by sending messages
in a recursively defined formal language.
This structure allowed Maxi and TEFA to
be developed quite independently. Also,
the architecture for TEFA is itself highly
modular and robust, and has proven suc-
cessful for iterative development. The
module consists of a number of knowledge
bases, inference engines, and utility pro-
cesses, all potentially in a many-to-many
relationship, with everything ultimately

controlled by a meta-level inference engine
that tasks out work to the appropriate in-
ference engines and utility processes. Us-
ing this architecture (TEFA has more than
a score of inference engines), we have
been able to add features to the system
mainly by adding new inference engines
and (occasionally) new knowledge bases
and utilities, and by making very minor
changes to the meta-level controlling infer-
ence engine. We call this architectural
technique generalized meta-level inference.

In sum, the level 1 concept may be sum-
marized as consisting of the following
ideas:

(1) Model management (which includes
declarative representation of models, dec-
laration and utilization of information
about models and data, model evaluation,
and features to support activities through-
out the modeling life cycle);

(2) Interactive documents (which in-
clude generalized hypertext, an interface to
the model management system, and auto-
mated linking of information items with
one another);

(3) Generalized meta-level infer-
ence; and

(4) Internal communication via a formal
language.

Max, level 1, has been delivered and is
being used. Improvements in Max are con-
tinuing to be made. A number of Coast
Guard and Navy models have been incor-
porated into the system (including ASSET,
CAPS, Maintenance, and PATROL) and
others are being developed for implemen-
tation in Max. With the KSS software, we
were able to re-implement ASSET and PA-
TROL, two large models, in less than four
person-weeks. ASSET was originally de-

November-December 1990 11

KIMBROUGH ET AL.

veloped by the Navy, and PATROL was
developed by Pdtchett [1986] of the Coast
Guard's R and D Center. Both of the origi-
nal implementations cost more than
$100,000, The Max KSS greatly reduces
the costs of implementing and maintaining
models. Further, these models are much
more valuable in the KSS on a desk-top
Macintosh, than they were implemented in
FORTRAN on a distant minicomputer, us-
ing different user interface conventions.
The models are more accessible in the KSS,
and the user has much more information
about them and can create reports directly
from the outputs of the model runs.
Level 2 KSS Concept: DSS Executive

Our level 2 concept for the KSS origi-
nated with a simple thought: it is illumi-
nating to distinguish between the subject
matter of a decision problem and the pro-
cess or procedure undertaken to make the
decision. For example, the OfBce of Acqui-
sition may be deciding what to do about
replacing an aging fleet of buoy tenders.
So, the subject of the decision is replace-
ment of buoy tenders. In making the deci-
sion, however, the Office of Acquisition
must perform certain tasks: it must assess
mission needs, consider alternative means
of keeping buoys in working condition, ap-
prove interim recommendations, and so
on. These tasks make up the process of
coming to the decision.

The level 2 KSS concept started with the
idea that it would be possible to distin-
guish in the KSS software between pro-
cess-level features and subject-level fea-
tures. At the subject level, we would have
a set of features very much like that of the
level 1 KSS concept. Models could be run,
data examined, reports issued, and docu-

ments produced. At the process level, we
would have a model of the procedure by
which the decision is to be made. This
model, and information declared about it,
would be used to provide process-level
features.

Specifically, we proposed to model a de-
cision process by representing it in an ex-
tended work breakdown structure. This is
in accord with the Office of Acquisition's
management of acquisition projects and
ship building [Levine 1986; Meredith and
Mantel 1985; Morris and Hough 1987].
The basic KSS level 2 concept is this. A
user of the system could "go" to a particu-
lar project represented in the KSS and find
certain data, documents, and reports about
the project and its status. Further, the user
could go to a particular node in the proj-
ect's work breakdown structure. That
would put the user in a local environment,
in which he or she could work on the proj-
ect by collecting information, creafing or
modifying documents, or by causing infor-
mation to be added to that node of the
project. At each node, certain data, docu-
ments, reports, and models are available.
Since each node constitutes a local envi-
ronment, what is available varies from
node to node.

Information at a node may be keyed in
by the user or may come—as MIS reports
or as data—from another computer. In ei-
ther case, the KSS may have information
about the added information. For example,
the KSS may have knowledge about the
meaning of the row and column headings
in an MIS report from an external system.
Similarly, the KSS may record and use in-
formation about the entries in an external
report and may automatically incorporate

INTERFACES 20:6 12

KSS

data from the exterrial report into other re-
ports internal to the KSS. Operationally,
the user can call up an MIS report (asso-
ciated with a particular node) in which ev-
ery item in the report is also a generalized
hypertext button (or link icon). Using a
mouse, the user can direct the KSS to pro-
duce a report about any item. For example,
a report might supply the source, date, and
original location of the data item. Thus, in
some sense the KSS may know more about
a report imported from an external system
than the system that originally produced it,
since the new report is linked to informa-
tion in the KSS.

In sum, the level 2 concept (DSS execu-
tive) may be described as the level 1 con-
cept (document-oriented DSS) plus

(1) Intelligence-based integration of dis-
tributed MISs,

(2) Interactive MIS reports, and
(3) Knowledge-based project manage-

ment, organized around a work break-
down structure.

Our concept of project management is
very different from that of existing com-
mercial project management systems,
which deal only with certain informa-
tion—primarily timing information—per-
taining to the lowest level nodes in the
work structure, which are called work
packets. Given this data, existing systems
are designed to compute schedule-related
information and to help the project man-
ager to manage the schedule. We wanted
to make the system the central repository
for all information relevant to management
of the project. Specifically, for the Office of
Acquisition we want the KSS to become a
computerized and interactive implementa-
tion of the Office's Project Manager's Hand-

book, the policy statement by which acqui-
sition projects are managed.

Currently, we have developed the level
2 KSS to the point where it demonstrates
our concept. All the essential elements and
features we have described have been
demonstrated with an implementation. We
are developing the needed infrastructure in
the KSS software, refining concepts, and
initiating a complete redesign. In addition,
we have working prototypes in HyperCard
and in HyperLisp (HyperCard front-ending
a Lisp machine), which we are using to
display concepts to users and to elicit
feedback from them.
Working with Max

To give a sense of how Max works, we
shall discuss some of the features a user
would employ in a Max application—
called Max Financial—to work with
ASSET, a model used by the Navy and the
Coast Guard to estimate ship acquisition
and life-cycle costs. Originally imple-
mented in FORTRAN, we reimplemented
it in the model representation language of
TEFA by making a series of declarations.
The various reports and features we will
describe are produced inferentially at run
time by Max, that is, by our generalized
hypertext system. They are automatically
available for any model declared in TEFA.
This strategy significantly hastens the
building of particular DSSs.

We designed Max to support both ana-
lysts and executive browsers. Analysts exe-
cute models under various data scenarios.
Information is returned in standard TEFA
reports. The analysts can then "copy and
paste" from these standard reports to cre-
ate their own ad hoc final reports. The
standard reports are themselves interactive

November-December 1990 13

KIMBROUGH ET AL.

documents, dynamically generated with
buttons (naming generalized hypertext
links) automatically embedded in them.
Copying and pasting preserves these links
in both the original and duplicate copies.
(The computational cost of this is not ex-
cessive, since buttons refer to links, and
the buttons are copied, not the links.) The
executive browsers have access to these fi-
nal reports, as well as automatic access to
the standard reports via generalized hyper-
text linking.

We want the KSS to become a
computerized and interactive
implementation of the Project
Manager's Handbook.

Imagine that an analyst wants to create a
report comparing the total life-cycle costs
for two different ships, a hydrofoil and a
SWATH (a small waterplane area twin-
hull) vessel. After starting the Max session,
the analyst asks for a description of the
ASSET model. To do this the analyst se-
lects the describe command from a menu
in Max's menu bar and then chooses the
ASSET model as the subject of the com-
mand. The system produces a report that
describes the ASSET model. The report re-
sembles a word processing document. It
contains text and mathematical formulae.
Buttons, however, are highlighted in bold-
face, indicating that further information is
available about the objects they represent.

During Max's initialization, the Max ap-
plication (under TEFA) passes a list of
command options in the communications
protocol language to Maxi, the user inter-
face subsystem, which then makes them
available from the menu bar, under Max

Financial. When the analyst chooses one of
Max's menu items, this initiates a dialog
with the Max Financial application. TEFA,
the model management subsystem, deter-
mines (infers) that the text string "ASSET"
is the name of a model node and executes
the describe query as a Max command to
generate (an instance of) a generic report
model containing a description, an equa-
tional listing, and related top-level models.

The knowledge base is searched for
these components, many of which them-
selves are nodes containing subcompo-
nents. The text string "ASSET" is treated
as referring to a bundle of virtual (deter-
mined inferentially, at run time) links,
namely the run, describe, and suggest-
scenario links. When the user chooses de-
scribe, a virtual report node is generated
after traversal of a link of type describe,
producing the report. Traversing the de-
scribe link does not cause an automatic
display of canned information. Instead, it
causes a Max procedure (in TEFA) to exe-
cute and process data in the knowledge
base to create a composite report node
which, as it turns out, is to be displayed.
The model management subsystem for-
mats this report in the communications
protocol language and passes it to the in-
terface, which in turn processes it and
passes it on to the screen management
subsystem. Here it is mapped to the com-
puter screen, and its buttons—which have
been marked by the model management
subsystem—are highlighted. Buttons are
tagged with an internal ID and display in-
formation (for example, their basic display
text and whether it is textual, numeric,
monetary, and so forth). The interface uses
this information to determine the actual

INTERFACES 20:6 14

KSS

text representation of the button on the
screen. Buttons denote links, actual or vir-
tual. Although they indicate a relation to
information in the knowledge base, they
are usually not explicitly linked to any-
thing. Only when they are queried directly
will a link be determined and traversed.
When the user clicks on an "ASSET" but-
ton, Maxi sends a message to TEFA, which
then determines the three things (run, de-
scribe, suggest a scenario) it can do with
the ASSET model. Nearly every element
presented to the user is created dynami-
cally at run time by the KSS.

Next, suppose the analyst wants to exe-
cute the ASSET model. In order to execute
the ASSET model for the user, the system
traverses a virtual "execution" link (as op-
posed to traversing a "describe" link, a
"suggest scenario" link, and so forth). As a
result, the system executes the model and
generates a standard report node compris-
ing the major resulting values. Each of
these values is represented by a hypertext
button and each button is generated and
maintained by the KSS software.

The final report constructed for the exec-
utive browser is typically short. The ana-
lyst need do no explicit linking but may
copy portions of system-produced reports
into the final report, which the analyst
may also edit. The KSS software automati-
cally preserves the buttons and linked in-
formation for text copied from one docu-
ment to another. Max Financial supports
many other features and contains several
substantial mathematical models.
Conclusion

While we have accomplished a great
deal, much remains to be done on the KSS
project. We continually identify level 1

features that appear useful. In fact, the
world of generalized hypertext and model
management in DSS has only begun to be
explored. In addition, nearly all of the level
2 world remains to be explored and inves-
tigated, as well as levels not yet envi-
sioned. In addition, we must determine
how best to use and deliver these technol-
ogies.

Far from being daunted by these pros-
pects, we are excited and deeply engaged.
We hope others will work on similar prob-
lems and ideas and that technical dialog in
the DSS community will expand and
become yet more lively.
Acknowledgments

This work was funded in part by the US
Coast Guard under contract DTCG39-86-
C-80348 with the University of Pennsylva-
nia, Steven O. Kimbrough principal inves-
tigator. Special thanks to Rosie Milan for
patience in implementing required editorial
changes.
References
Alter, S. 1977, "A taxonomy of decision support

systems," Sloan Management Review, Vol. 19,
No. 1 (Fall), pp. 39-56.

Bhargava, Hemant; Bieber, Michael; and Kim-
brougb, Steven O. 1988, "Oona, Max, and
tbe WYWWYWI principle: Generalized hy-
pertext and model management in a symbolic
programming environment," Proceedings of
the Ninth International Conference on Informa-
tion Systems, eds., Janice I. DeGross and
Margrethe H. Olson (November 30-December
3), pp. 179-191.

Bhargava, Hemant, K. and Kimbrough, Steven
O. 1990, "On embedded languages for model
management," Proceedings of the Twenty-
Third Annual Hawaii International Conference •
on System Sciences, ed. Jay F. Nunamaker,
IEEE Computer Society Press, Los Alamitos,
California, pp. 443-452.

Bhargava, Hemant, K.; Kimbrough, Steven O.;
and Pritchett, Clark W. 1990, "A balance

November-December 1990 15

KIMBROUGH ET AL.

sheet approach to fleet mix planning," work-
ing paper. University of Pennsylvania, De-
partment of Decision Sciences,

Bieber, Michael P, and Kimbrough, Steven O,
1989, "On generalizing the concept of hyper-
text," working paper. University of Pennsyl-
vania, Department of Decision Sciences,

Bieber, Michael P, and Kimbrough, Steven O,
1990, "Towards a logic model for generalized
hypertext," Proceedings of the Twenty-Third
Annual Hawaii International Conference on Sys-
tem Sciences, ed. Jay F, Nunamaker, IEEE
Computer Society Press, Los Alamitos, Cali-
fornia, pp, 506-515,

Conklin, J, 1987, "Hypertext: An introduction
and survey," /£££ Computer, Vol, 20, No, 9
(September), pp, 17-41,

Halasz, F, 1988, "Reflections on NoteCards:
Seven issues for the next generation of hy-
permedia systems," Communications of the
ACM, Vol, 31, No, 7 (July), pp, 836-852,

Kimbrough, Steven O, 1982, "Pragmatic aspects
of justifying decision support systems,"
Transactions of DSS-82, Second International
Conference in Decision Support Systems, ed,
Gary W, Dickson, San Francisco, California
(June 14-16), pp, 138-145,

Kimbrough, Steven O, 1986, "On shells for
decision support systems," working paper.
University of Pennsylvania, Department of
Decision Sciences,

Kimbrough, Steven O,, Coe, Thomas; Pritchett,
Clark; Roehrig, Stephen; Smith, Joseph A;
and Sprague, Michael 1986, "A decision sup-
port system for evaluation of advanced ma-
rine vehicles," Transactions of DSS-86, Sixth
International Conference on Decision Support
Systems, ed, Jane Fedorowicz, Washington,
DC (April 21-24), pp, 218-227,

Kimbrough, Steven O, 1987, "The argumenta-
tion theory for decision support systems,"
working paper. University of Pennsylvania,
Department of Decision Sciences,

Levine, Harvey A, 1986, Project Management
Using Microcomputers, Osborne McGraw-Hill,
Berkeley, California,

Marchionini, G, and Schneiderman, B, 1988,
"Finding facts vs, browsing knowledge in hy-
pertext systems," /EE£ Computer (January),
pp, 70-80,

Meredith, Jack R, and Mantel, Samuel J,, Jr,
1985, Project Management: A Managerial Ap-

proach, John Wiley and Sons, New York,
Minch, Robert P. 1989/90, "Hypertext in DSS,"

Journal of Management Information Systems,
Vol, 6, No, 3 (Winter), pp, 119-138,

Morris, Peter W, G, and Hough, George H,
1987, The Anatomy of Major Projects: A Study
of the Reality of Project Management, John
Wiley and Sons, New York,

Pritchett, Clark W, 1986, "PATROL: Volume L
Model description and analyst's guide,"
USCG Report Number CG-D-05-87, Govern-
ment Accession Number ADA-178 168,

Sprague, Ralph H,, Jr, and Carlson, Eric D,
1982, Building Effective Decision Support Sys-
tems, Prentice-Hall, Inc, Englewood Cliffs,
New Jersey,

W. R. Johanek, Captain, US Coast
Guard, Chief, Project Support Division by
direction of the commandant, Washington,
DC 20593-0001 writes "Although the final
version of the knowledge-based decision
support system (KSS) has not been com-
pleted, the prototype shows potential for
the Coast Guard. Plans are underway to
expand this effort to support large seg-
ments of information systems and office
management. The advanced features such
as automatic linking of data offer great po-
tential for improving management effec-
tiveness and efficiency. The model building
capability of the KSS has already proved
useful. In one working day, a proficient
user of KSS took six pages of equations
and turned them into a working model.
The benefits to the Coast Guard of this
software lie in its ability to help us do our
job better. As we continue to use it and ex-
ploit its capabilities, we anticipate signifi-
cant improvements in the areas of analysis,
information systems, and project
management,"

INTERFACES 20:6 16

