Final Exam Review

Prof. Bin Chen
Department of Physics

Physics 111

Exam Information

- Time: Dec 18, 2018 (Tuesday), 11:30 AM - 2:00 PM
- Location: Mechanical Engineering Center Building (ME; next to the GITC) Room 221
- Same format as before, but more questions (27 in total)
- You have about 5.6 minutes, on average, to work on each question

Exam Information: Topics

All materials in Weeks 1-14

- Roughly half of the questions come from those after Common Exam \#3, i.e., topics in Weeks 11-14: Rotational Dynamics, Static Torque, Fluid Mechanics, Gravitation.
- Another half of the questions come from those already covered in Common Exams \#1-3, i.e., topics in Weeks 1-10.

Final Exam Information: Review Sessions

- Thursday (Dec 13, Reading Day)

11:30 am - 1:30 pm
Tiernan Lecture Hall 1
with Prof. Gordon Thomas

- Saturday (Dec 15)

11:00 am - 1:00 pm
Tiernan Lecture Hall 1
with Society of Physics Students

Conversion Factors: 1 inch $=2.54 \mathrm{~cm} ; 1 \mathrm{mi}=1609.3 \mathrm{~m} ; 1 \mathrm{~cm}=10^{-2} \mathrm{~m} ; 1 \mathrm{~mm}=10^{-3} \mathrm{~m} ; 1$ gram $=10^{-3} \mathrm{~kg}$;
Physical constants: $g=9.8 \mathrm{~m} / \mathrm{s}^{2} ; G=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} ; M_{\text {Earth }}=5.97 \times 10^{24} \mathrm{~kg} ; R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m}$
Math: $360^{\circ}=2 \pi$ radians $=1$ revolution. Arc length $s=r \theta ; V_{\text {sphere }}=4 \pi R^{3} / 3 ; A_{\text {sphere }}=4 \pi R^{2} ; A_{\text {circle }}=\pi R^{2}$
quadratic formula to solve $a x^{2}+b x+c=0: x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Vectors: $\quad \stackrel{1}{A}=A_{x} \hat{i}+A_{y} \hat{j} ; A_{x}=|\stackrel{\mathrm{r}}{A}| \cos (\theta) ; \quad A_{y}=|\stackrel{\mathrm{r}}{A}| \sin (\theta) ; \quad|\stackrel{\mathrm{r}}{A}|=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}} ; \tan \theta=\frac{A_{y}}{A_{x}}$
$\stackrel{\perp}{C}=\stackrel{1}{A}+\stackrel{1}{B}$ implies $C_{x}=A_{x}+B_{x} ; C_{y}=A_{y}+B_{y}$

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} ; \hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1 ; \hat{\imath} \cdot \hat{\jmath}=\hat{\imath} \cdot \hat{k}=\hat{\jmath} \cdot \hat{k}=0 \\
& |A \times B|=|\overrightarrow{\mathrm{I}}||\overrightarrow{\mathrm{r}}| \sin \theta ; A \times B=\hat{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\hat{j}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\hat{k}\left(A_{x} B_{y}-A_{y} B_{x}\right) \\
& \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 ; \hat{i} \times \hat{j}=\hat{k} ; \hat{j} \times \hat{k}=\hat{i} ; \hat{k} \times \hat{i}=\hat{j}
\end{aligned}
$$

1D and 2D motion:

$$
\begin{aligned}
& v_{\text {avg }}=\frac{\Delta x}{\Delta t} \quad ; \quad a_{\text {avg }}=\frac{\Delta v}{\Delta t} \quad ; \quad v=\frac{d x}{d t} \quad ; \quad a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} \\
& \stackrel{\mathrm{r}}{v}_{\text {avg }}=\frac{\Delta \stackrel{1}{r}}{\Delta t} \quad ; \quad \stackrel{\mathrm{r}}{a_{\text {avg }}}=\frac{\Delta \stackrel{1}{v}}{\Delta t} \quad ; \quad \stackrel{\mathrm{r}}{v}=\frac{d^{1} \mathrm{x}}{d t} \quad ; \quad \stackrel{\mathrm{r}}{a}=\frac{d^{\mathrm{r}}}{d t}=\frac{d^{2} \stackrel{\mathrm{r}}{r}}{d t^{2}} \\
& x=x_{i}+v_{i} t+\frac{1}{2} a t^{2} \quad ; \quad v=v_{i}+a t \quad ; \quad v^{2}=v_{i}^{2}+2 a\left(x-x_{i}\right) ; \stackrel{\mathrm{r}}{r}=\stackrel{\mathrm{r}}{r_{i}}+\stackrel{\mathrm{r}}{v_{i}} t+\frac{1}{2} \stackrel{\mathrm{r}_{2}^{2}}{2} \quad ; \stackrel{\mathrm{I}}{v}=\stackrel{\mathrm{I}}{v_{i}}+\stackrel{\mathrm{I}}{a} t
\end{aligned}
$$

Circular motion: $T=2 \pi R / v ; \quad T=2 \pi / \omega ; a_{c}=v^{2} / R$
Newtons Laws: $\sum \stackrel{\perp}{F}=m \stackrel{\mathrm{r}}{a} \quad ; \stackrel{1}{F}_{12}=-\stackrel{1}{F}_{21}$
Friction: $\quad f_{s} \leq \mu_{s} N ; \quad f_{k}=\mu_{k} N$

Energies: $\quad K=\frac{1}{2} m v^{2} ; \quad U_{g}=m g y ; \quad U_{s}=\frac{1}{2} k x^{2} ; W=\int \vec{F} \cdot d \vec{r}=\vec{F} \cdot \Delta \vec{r}$ $E_{\text {total }}=K+U_{g}+U_{S} ; \Delta E_{\text {mech }}=\Delta K+\Delta U_{g}+\Delta U_{s}=f_{s} d ; P=d W / d t=\stackrel{\stackrel{1}{F} \underset{\mathrm{~g}}{\mathrm{r}} ; ~}{\mathrm{r}} ; \quad \Delta K=W$
Momentum and Impulse: $\stackrel{1}{p}=m \stackrel{1}{v} ; \stackrel{1}{I}=\int_{\mathrm{r}}^{\stackrel{1}{F}} d t=\Delta_{p}^{\mathrm{r}}$
Center of mass: $\quad \stackrel{\mathrm{r}}{r_{c m}}=\sum_{i} m_{i} \stackrel{r}{r}_{i} / \sum_{i} m_{i} ; \stackrel{\mathrm{r}}{\mathrm{v}_{c m}}=\sum_{i} m_{i} \stackrel{\mathrm{r}}{v}^{\mathrm{r}} / \sum_{i} m_{i}$
Collisions: $\stackrel{1}{p}=$ const and $\mathrm{E} \neq \mathrm{const}$ (inelastic) or $\stackrel{1}{p}=$ const and $\mathrm{E}=$ const (elastic)
Rotational motion: $\omega=2 \pi / T$; $\omega=d \theta / d t ; \alpha=d \omega / d t ; v_{t}=r \omega$; $a_{t}=r \alpha \quad a_{c}=a_{r}=v_{t}^{2} / r=\omega^{2} r$ $a_{t o t}^{2}=a_{r}^{2}+a_{t}^{2} ; v_{c m}=r \omega$ (rolling, no slipping) ; $a_{c m}=r \alpha$
$\omega=\omega_{o}+\alpha t ; \theta_{f}=\theta_{i}+\omega_{o} t+\alpha t^{2} / 2 ; \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha\left(\theta_{f}-\theta_{i}\right)$

$$
I_{\text {point }}=M R^{2} ; I_{\text {hoop }}=M R^{2} ; I_{\text {disk }}=M R^{2} / 2 ; I_{\text {sphere }}=2 M R^{2} / 5 ; I_{\text {shell }}=2 M R^{2} / 3 ; I_{\text {rod(center })}=M L^{2} / 12
$$

$$
I_{\text {rod (end) }}=M L^{2} / 3 ; I=\sum_{i} m_{i} r_{i}^{2} ; I=I_{c m}+M h^{2} ; \stackrel{\mathrm{r}}{\tau}=\stackrel{\mathrm{r}}{r} \times \stackrel{\perp}{F} ; \sum \tau=I \alpha ; \stackrel{\stackrel{1}{L}}{L} \stackrel{\mathrm{r}}{r} \times \stackrel{\mathrm{r}}{p} ; \stackrel{1}{L}=I \stackrel{\mathrm{r}}{\omega}
$$

Energy: $K_{\text {rot }}=I \omega^{2} / 2 ; K=K_{\text {rot }}+K_{c m} ; \Delta K+\Delta U=0 ; W=\tau \Delta \theta ; P_{\text {inst }}=\tau \omega$
Fluid: $\rho=\frac{M}{V} ; P=P_{o}+\rho g h ; A_{1} v_{1}=A_{2} v_{2} ; P_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1^{2}}=P_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2^{2}}$;

$$
B=\rho_{\text {fluid }} V^{\text {object }} g
$$

Gravitation: $\stackrel{\mathrm{r}}{F_{g}}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{r}_{12} ; g(r)=G M / r^{2} ; U=-G m_{1} m_{2} / r ; T^{2}=\frac{4 \pi^{2}}{G M} a^{3}$

Fluid

Cubic water balloon

26. A liquid has a density of $150 \mathrm{~kg} / \mathrm{m} 3$. It fills a cubic tank that measures 0.1 m in each side. How much does it weigh, in N ?
a. 0.15
b. 1.5
c. 15
d. 150
e. 1500
```
Density=m/V
W=mg
W=density*V*g
=1.5
```


Drowning a Balloon

27. A scientist has a balloon that weighs 0.001 kg . She immerses it in water by pushing down with 15 N . The density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$. How big is the balloon, in $(1 / 1000) \mathrm{m}^{3}$?
a. 1.5
b. 0.65
c. 6.5
d. 0.15
e. Can't tell.

Water Pressure in the Home

Water enters a house through a pipe with an inside diameter of 2.0 cm at an pressure of $4 \times 10^{5} \mathrm{~Pa}$. A $2.0-\mathrm{cm}$. diameter pipe leads to the $2^{\text {nd }}$ floor bathroom 5 m above. When the flow speed at the inlet pipe is $1.5 \mathrm{~m} / \mathrm{s}$, Find the pressure on the second floor in 10^{5} pa.
A) 3
B) 1
C) 4.5
D) 4

$$
p_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

E) 3.5

$$
\begin{gathered}
v_{2}=\frac{A_{1}}{A_{2}} v_{1}=1.5 \mathrm{~m} / \mathrm{s} \\
p_{2}=p_{1}-\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)-\rho g\left(y_{2}-y_{1}\right)=3.5 \times 10^{5} \mathrm{~Pa}
\end{gathered}
$$

Gravity

Gravitation field

A planet has a gravitational field of $15.7 \mathrm{~N} / \mathrm{kg}$ on its surface. While descending on to the planet, an astronaut measures a gravitational field of $0.63 \mathrm{~N} / \mathrm{kg}$. What is the distance of the astronaut above the planet's surface, in terms of the planet's radius?
a. 2
b. 25
c. 16
d. 4
e. 5

Elevator on another planet

25. An empty elevator, $\mathrm{M}=100 \mathrm{~kg}$, has a counter weight $\mathrm{m}=90 \mathrm{~kg}$ connected by a cable over a pulley with coefficient of friction 0.05 . The elevator falls 20 m and lands with a velocity of $1 \mathrm{~m} / \mathrm{s}$. The accident happens not on earth but on a different planet. What is g in N / kg ?

- a. 48
- b. 24
c. 9.5
- d. 4.3

```
F.d=(M+m)vv/2= 95
F=(M-m)g-mu (M+m)g
g=F/[M-m-mu(M+m)]=F/[0.5]
g=(95/20)/.5=9.5
```

- e. 2.1

Astronaut in Orbit

- I weigh 600 N on the surface of the earth. If I travel on a space shuttle orbiting at a distance of 3 times the Earth's radius above ground. What is my mass in kg at the space shuttle?

a. 3.83 b. 6.80 c. 15.3 d. 3.83 e. 61.2

Mass is an intrinsic measure of the object, and does not change with distance!

More Practice Problems

Testing a weapon

14. A 0.007 kg bullet is fired into a stationary block with mass 3.5 kg , on a frictionless, horizontal surface. After the collision, the bullet gets stuck in the block and they move together at $1 \mathrm{~m} / \mathrm{s}$. Find the initial speed of the bullet in m / s.
a. 500
b. 200
c. 150
d. 125
e. 10

Rock climber hangs on

18. A rock climber on a ledge pushes a block of mass $m=2.1 \mathrm{~kg}$ up against a vertical wall at an angle of 40 degrees. The coefficient of static friction between the block and the wall is 0.5 . What is the minimum force, in N , needed to keep the block from sliding down?
a. $\quad 15$
b. 41
c. 25
d. 19
e. 0
```
Fup =F down
F up=F\operatorname{cos}40+m*F sin 40
F down =mg
F=mg/(cos40+m*}\operatorname{sin}40)=1
```


Walking in a Wind storm

22. A strong wind is blowing South with a force of 15 N . A woman moves 4 m east and then 3 m North. How much work is done by the wind during her walk?

a.	+45 J
b.	-45 J
c.	+60 J
d.	-75 J
e.	+15 J

```
W=F.d
F=-15
d=3 opposite
W=-45
```


Rotating disk

- A student drops a ring on a rotating disk with an angular speed of 10 radians $/ \mathrm{s}$. The disk has moment of inertia of $4.0 \mathrm{~kg} \mathrm{~m}^{2}$. After the drop, the disk and ring are rotating together with an angular speed of $5 \mathrm{~kg} \mathrm{~m}^{2}$ radians $/ \mathrm{s}$. What is the momentum of inertia of the ring?
- A. 4
-B. 2
-C. 1
-D. 5
- E. 16

In the figure, point P is at rest when it is on the x-axis. The linear speed of point P when it reaches the y-axis is closest to

- A) $0.18 \mathrm{~m} / \mathrm{s}$.
-B) $0.24 \mathrm{~m} / \mathrm{s}$.
- (C) $0.35 \mathrm{~m} / \mathrm{s}$.
- D) $0.49 \mathrm{~m} / \mathrm{s}$.
- E) $0.71 \mathrm{~m} / \mathrm{s}$.

