Physics 111: Mechanics Lecture 6

Bin Chen

NJIT Physics Department

Chapter 6 Work and Kinetic Energy

- 1.10 Scalar Product of Vectors
- 6.1 Work
\square 6.2 Kinetic Energy and the Work-Energy Theorem
- 6.3 Work and Energy with Varying Forces
- 6.4 Power

Physics at

Scalar Product of Two Vectors

\square The scalar product of two vectors is written as $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$

- It is also called the dot product
- $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} \equiv A B \cos \theta$
- q is the angle between
A and B

Scalar Product: A Graphic Representation

\square The scalar, or "dot" product says something about how parallel two vectors are.

- The scalar product of two vectors can be thought of as the projection of one onto the direction of the other.
- ? is the angle between the vectors
- Scalar product of any perpendicular vectors = zero

- Scalar product is maximum for parallel vectors

Scalar Product is a Scalar

\square Not a vector
\square May be positive, negative, or zero
(a)

because $B \cos \phi>0$.
(b)

(c)

Scalar Product in Components

- The scalar product of two vectors can be thought of as the projection of one onto the direction of the other.
- What is the scalar products of unit vectors?
\square Components of a vector can be regarded as the scalar product of the vector and the unit vectors

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=A B \cos \theta \\
& \vec{A} \cdot \hat{i}=A \cos \theta=A_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{i} \cdot \hat{j}=0 ; \hat{i} \cdot \hat{k}=0 ; \hat{j} \cdot \hat{k}=0 \\
& \hat{i} \cdot \hat{i}=1 ; \hat{j} \cdot \hat{j}=1 ; \hat{k} \cdot \hat{k}=1
\end{aligned}
$$

Calculating Scalar Product Using Components

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

- Start with

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}
\end{aligned}
$$

- Then

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) \cdot\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right) \\
& =A_{x} \hat{i} \cdot\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right)+A_{y} \hat{j} \cdot\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right)+A_{z} \hat{k} \cdot\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right)
\end{aligned}
$$

- But

$$
\hat{i} \cdot \hat{j}=0 ; \hat{i} \cdot \hat{k}=0 ; \hat{j} \cdot \hat{k}=0
$$

$$
\hat{i} \cdot \hat{i}=1 ; \hat{j} \cdot \hat{j}=1 ; \hat{k} \cdot \hat{k}=1
$$

- So

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =A_{x} \hat{i} \cdot B_{x} \hat{i}+A_{y} \hat{j} \cdot B_{y} \hat{j}+A_{z} \hat{k} \cdot B_{z} \hat{k} \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

Scalar Product: An Example

\square The vectors $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=-\hat{i}+2 \hat{j}$ Determine the scalar product $\vec{A} \cdot \vec{B}=$?

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}=2 \cdot(-1)+3 \cdot 2=-2+6=4
$$

Find the angle θ between these two vectors

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{2^{2}+3^{2}}=\sqrt{13} \quad B=\sqrt{B_{x}^{2}+B_{y}^{2}}=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
$$

$\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}=\frac{4}{\sqrt{13} \sqrt{5}}=\frac{4}{\sqrt{65}}$
$\theta=\cos ^{-1} \frac{4}{\sqrt{65}}=60.3^{\circ}$

Definition of Work W

\square The work, W, done by a constant force on an object is defined as the scalar (dot) product of the component of the force along the direction of displacement and the magnitude of the displacement

$$
W \equiv(F \cos \phi) s=\vec{F} \cdot \vec{s}
$$

- \boldsymbol{F} is the magnitude of the force
$-\Delta \boldsymbol{x}$ is the the object's displacemen
- q is the angle between \boldsymbol{F} and $\Delta \boldsymbol{x}$

Unit of Work

\square This gives no information about

- the time it took for the displacement to occur
- the velocity or acceleration of the object
\square Work is a scalar quantity $\quad W \equiv(F \operatorname{co}$
\square Can be calculated using components

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \quad \vec{F} \cdot \vec{s}=F_{x} x+F_{y} y+F_{z} z
$$

\square SI Unit

- $\mathrm{N} \cdot \mathrm{m}=\mathrm{J}$
- J = (kg • m / s² $) \cdot m$

Scalar Product and Work

\square Steve apply a force $\vec{F}=3 \hat{i}+3 \hat{j} \mathrm{~N}$ on a car and makes it to move a displacement of $\vec{s}=-3 \hat{i}+5 \hat{j}$ m. How much work (in J) does Steve do in this case?

A) $9 \hat{i}$
B) $-9 \hat{i}$
C) 6
$W \equiv(F \cos \phi) S=\vec{F} \cdot \vec{S}$
D) 9
E) 15
$W=\vec{F} \cdot \vec{s}=F_{x} x+F_{v} y=3 \cdot(-3)+3 \cdot 5=-9+15=6$

Work: Positive or Negative?

\square Work can be positive, negative, or zero. The sign of the work depends on the direction of the force relative to the displacement

$$
W \equiv(F \cos \phi) s=\vec{F} \cdot \vec{s}
$$

\square Work positive: if $0^{\circ}<$? $<90^{\circ}$
\square Work negative: if $90^{\circ}<$? $<180^{\circ}$

\square Work zero: $\mathrm{W}=0$ if $?=90^{\circ}$
\square Work maximum if ${ }^{\circ}=0^{\circ}$

\square Work minimum if $?=180^{\circ}$

$\hat{H}_{-\rightarrow->}^{\vec{F}}$

Physics at

Example: When Work is Zero

\square A man carries a bucket of water horizontally at constant velocity.
\square The force does no work on the bucket
\square Displacement is horizontal
\square Force is vertical
$\square \cos 90^{\circ}=0$

$$
W \equiv(F \cos \phi) s=\vec{F} \cdot \vec{S}
$$

Example: Work Can Be Positive or Negative

\square Is the work positive or negative when lifting the box?
\checkmark Positive
\square Is the work positive or negative when lowering the box?
\checkmark Negative

Physics at

Work Done by a Constant Force

1. The right figure shows four situations in which a force is applied to an object. In all four cases, the force has the same magnitude, and the displacement of the object is to the right and of the same magnitude. Rank the situations in order of the work done by the force on the object, from most positive to most negative.
A. I, IV, III, II
B. II, I, IV, III
C. III, II, IV, I
D. I, IV, II, III

III, IV, I, II

I

III

II

IV

Work Done by a Constant Force

- The work W done a system by an agent exerting a constant force on the system is the product of the magnitude F of the force, the magnitude Δr of the displacement of the point of application of the force, and $\cos \theta$, where θ is the angle between the force and displacement vectors:

$$
W \equiv \vec{F} \cdot \Delta \vec{r}=F \Delta r \cos \theta
$$

III

$$
W_{I I}=F \Delta r
$$

IV
$W_{I V}=F \Delta r \cos \theta$

Work and Force

\square An Eskimo returning pulls a sled as shown. The total mass of the sled is 50.0 kg , and he exerts a force of 120 N on the sled by pulling on the rope. How much work does he do on the sled if $\theta=$ 30° and he pulls the sled 5.0 m ?

$$
\begin{aligned}
& W=(F \cos \phi) s \\
& =\left(1.20 \times 10^{2} N\right)\left(\cos 30^{\circ}\right)(5.0 \mathrm{~m}) \\
& =5.2 \times 10^{2} J
\end{aligned}
$$

Work Done by Multiple Forces

\square If more than one force acts on an object, then the total work is equal to the algebraic sum of the work done by the individual forces

$$
W_{\text {net }}=\sum W_{\text {by individual forces }}
$$

- Remember work is a scalar, so this is the algebraic sum

$$
W_{\text {net }}=W_{g}+W_{N}+W_{F}=(F \cos \theta) \Delta r
$$

Work and Multiple Forces

\square Suppose $\mu_{\mathrm{k}}=0.200$, How much work done on the sled by friction, and the net work if $\theta=30^{\circ}$ and he pulls the sled 5.0 m ?

$$
\begin{aligned}
& F_{n e t, y}=N-m g+F \sin \theta=0 \\
& N=m g-F \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& W_{\text {fric }}=\left(f_{k} \cos 180^{\circ}\right) \Delta r=-f_{k} \Delta r \\
& =-\mu_{k} N \Delta r=-\mu_{k}(m g-F \sin \theta) \Delta r \\
& =-(0.200)\left(50.0 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}\right. \\
& \left.-1.2 \times 10^{2} N \sin 30^{\circ}\right)(5.0 \mathrm{~m}) \\
& =-4.3 \times 10^{2} \mathrm{~J}
\end{aligned}
$$

Work and Motion

(a)

A block slides to the right on a frictionless surface.

If you push to the right on the moving block, the net force on the block is to the right.

- The total work done on the block during
a displacement \vec{s} is positive: $W_{\text {tot }}>0$.
- The block speeds up.
(b)

If you push to the left on the moving block, the net force on the block is to the left.

- The total work done on the block during a displacement \vec{s} is negative: $W_{\text {tot }}<0$.
- The block slows down.
(c)

If you push straight down on the moving block, the net force on the block is zero.

- The total work done on the block during a displacement \vec{s} is zero: $W_{\text {tot }}=0$.
- The block's speed stays the same.

Special case: Constant Acceleration

$\begin{array}{cl}\text { Remember result } & v^{2}-v_{0}{ }^{2}=2 a\left(x-x_{0}\right) \\ \text { eliminating } t: & { }^{-}\end{array}$
$\underset{\substack{1 / 2 \mathrm{~m}:}}{\text { Multiply by }} \quad \frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}=m a\left(x-x_{0}\right)$

$$
=m a \Delta x
$$

$$
\begin{aligned}
& \text { But } \\
& F=m a!
\end{aligned} \quad \Delta\left(\frac{1}{2} m v^{2}\right)=F \Delta x
$$

Kinetic Energy

For an object moving with a speed of v

$$
K=\frac{1}{2} m v^{2}
$$

\square Kinetic Energy is energy associated with the state of motion of an object
\square SI unit: joule (J)

Twice the mass, same speed: twice the kinetic energy

Same mass, twice the speed:
four times the kinetic energy

$$
1 \text { joule }=1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

Work-Energy Theorem

\square When work is done by a net force on an object and the only change in the object is its speed, the work done is equal to the change in the object' s kinetic energy

$$
W_{\mathrm{tot}}=K_{2}-K_{1}=\Delta K
$$

- Speed will increase if work is positive
- Speed will decrease if work is negative

Work with Varying Forces

\square On a graph of force as a function of position, the total work done by the force is represented by the area under the curve between the initial and the final position
\square Note there could be negative work!
\square Straight-line motion

$$
\begin{aligned}
& W=F_{a x} \Delta x_{a}+F_{b x} \Delta x_{b}+\ldots \ldots \\
& W=\int_{x_{1}}^{x_{2}} F_{x} d x
\end{aligned}
$$

\square Motion along a curve

$$
W=\int_{P_{1}}^{P_{2}} F \cos \phi d l=\int_{P_{1}}^{P_{2}} F_{\|} d l=\int_{P_{1}}^{P_{2}} \vec{F} \cdot d \vec{l}
$$

(a) Particle moving from x_{1} to x_{2} in response
to a changing force in the x-direction

(b)

(c)

Work-Energy with Varying Forces

\square Work-energy theorem $\mathrm{W}_{\text {tol }}=$? K holds for varying forces as well as for constant ones

$$
\begin{gathered}
a_{x}=\frac{d v_{x}}{d t}=\frac{d v_{x}}{d x} \frac{d x}{d t}=v_{x} \frac{d v_{x}}{d x} \\
W_{t o t}=\int_{x_{1}}^{x_{2}} F_{x} d x=\int_{x_{1}}^{x_{2}} m a_{x} d x=\int_{x_{1}}^{x_{2}} m v_{x} \frac{d v_{x}}{d x} d x \\
W_{t o t}=\int_{v_{1}}^{v_{2}} m v_{x} d v_{x} \\
W_{\text {tot }}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=\Delta K
\end{gathered}
$$

Spring Force: a Varying Force

\square Involves the spring constant, k
\square Hooke' s Law gives the force

- Where $F \downarrow x$ is the force exerted on the spring in the same direction of x
- The force exerted by the spring is $F \downarrow_{s}=-F \downarrow x$ $=-k x$
- k depends c

Work done on a Spring

\square To stretch a spring, we must do work
\square We apply equal and opposite forces to the ends of the spring and gradually increase the forces

- The work we must do to stretch the spring from x 1 to x 2
$W=\int_{x_{1}}^{x_{2}} F_{x} d x=\int_{x_{1}}^{x_{2}} k x d x=\frac{1}{2} k x_{2}^{2}-\frac{1}{2} k x_{1}^{2}$
(a) Stretching a spring from elongation x_{1} to elongation x_{2}

(b) Force-versus-distance graph

The trapezoidal area under the graph represents the work done on the spring to stretch it from $x=x_{1}$ to $x=x_{2}: W=\frac{1}{2} k x_{2}{ }^{2}-\frac{1}{2} k x_{1}{ }^{2}$

Power

\square Work does not depend on time interval
\square The rate at which energy is transferred is important in the design and use of practical device
\square The time rate of energy transfer is called power
\square The average power is given by

$$
\bar{P}=\frac{W}{\Delta t}
$$

- when the method of energy transfer is work

New Jersey's Science \& Technology University

Instantaneous Power

\square Power is the time rate of energy transfer. Power is valid for any means of energy transfer
\square Other expression

$$
\bar{P}=\frac{W}{\Delta t}=\frac{F \Delta x}{\Delta t}=F \bar{v}
$$

\square A more general definition of instantaneous power

$$
\begin{gathered}
P=\lim _{\Delta t \rightarrow 0} \frac{W}{\Delta t}=\frac{d W}{d t}=\vec{F} \cdot \frac{d \vec{r}}{d t}=\vec{F} \cdot \vec{v} \\
P=\vec{F} \cdot \vec{v}=F v \cos \theta
\end{gathered}
$$

Units of Power

\square The SI unit of power is called the watt

- 1 watt $=1$ joule $/$ second $=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}$
\square A unit of power in the US Customary system is horsepower
- $1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}=746 \mathrm{~W}$
\square Units of power can also be used to express units of work or energy
$-1 \mathrm{kWh}=(1000 \mathrm{~W})(3600 \mathrm{~s})=3.6 \times 10^{6} \mathrm{~J}$

