Physics 111: Mechanics Lecture 9

Bin Chen

NJIT Physics Department

Circular Motion

\square 3.4 Motion in a Circle
\square 5.4 Dynamics of Circular Motion

If it weren't for the spinning, you would not be thrown up high in the air

If it weren't for the spinning, all the galaxies would collapse into a black hole

Uniform Circular Motion: Definition

Uniform circular motion

Constant speed, or,
Motion along a circle:
constant magnitude of velocity
Changing direction of velocity
Physics at

Circular Motion: Velocity

\square An object is moving in a clockwise direction around a circle at constant speed. Which vector below represents the direction of the velocity vector when the object is located at that point on the circle?
B)
C) \longleftarrow
D)

Circular Motion: Acceleration

\square An object is moving in a clockwise direction around a circle at constant speed. Which vector below represents the direction of the acceleration vector when the object is located at that point on the circle?

Physics at
New Jersey's Science \& Technology University

Uniform Circular Motion

\square Acceleration: $\vec{a}_{\text {avg }}=\Delta \vec{v} / \Delta t$
\square Direction: Centripetal
\square Magnitude:

$$
\begin{aligned}
& \frac{\Delta v}{v}=\frac{\Delta r}{r} \quad \text { so }, \quad \Delta v=\frac{v \Delta r}{r} \\
& \frac{\Delta v}{\Delta t}=\frac{\Delta r}{\Delta t} \frac{v}{r}=\frac{v^{2}}{r} \\
& a_{r}=\frac{\Delta v}{\Delta t}=\frac{v^{2}}{r}
\end{aligned}
$$

$$
\Delta v=\mathbf{v}_{\mathbf{f}}-\mathbf{v}_{\mathbf{i}}
$$

Uniform Circular Motion

\square Velocity:

- Magnitude: constant v
- The direction of the velocity is tangent to the circle
\square Acceleration:
- Magnitude: $a_{r}=v^{2} / R$
- directed toward the center of the circle of motion
Period:

- time interval required for one complete revolution of the particle

$$
T=2 \pi R / v
$$

Non-Uniform Circular Motion

 Uniform circular motion}Car speeding up along a circular path\square Car slowing down along a circular path
(a) Car speeding up along a circular path

Component of acceleration parallel to velocity: Changes car's speed

(b) Car slowing down along a circular path

(c) Uniform circular motion: Constant speed along a circular path

Centripetal Force

\square Acceleration:

- Magnitude: $\quad a_{r}=\frac{}{R}$
- Direction: toward the center of the circle of motion
\square Force:
- Start from Newton's $2^{\text {nd }}$ Law
- Magnitude:

$$
\vec{F}_{n e t}=m \vec{a}
$$

$$
\vec{F}_{n e t}=m a_{r}=\frac{m v^{2}}{R}
$$

- Direction: toward the center of the circle of motion

Centripetal Force

\square A motorcycle moves around a curve of radius r with speed v. Later the cycler increases its speed to $4 v$ while traveling along another curve with radius $4 r$. The centripetal force of the particle
A) 8
B) 0.5
C) 2
D) 4
E) unchanged

Physics at

What provide Centripetal Force ?

\square Centripetal force is not a new kind of force
\square Centripetal force stands for any force that keeps an object following a circular path

$$
F_{c}=m a_{r}=\frac{m v^{2}}{R}
$$

\square In our class, centripetal force is likely a combination of

- Gravitational force mg: downward to the ground
- Normal force \mathbf{N} : perpendicular to the surface
- Tension force \mathbf{T} : along the cord and away from object
- Static friction force: $f_{s}^{\max }=\mu_{s} N$

What provide Centripetal Force ?

$$
\begin{aligned}
& F_{n e t}=N-m g=m a \\
& N=m g+m \frac{v^{2}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& F_{n e t}=T=m a \\
& T=\frac{m v^{2}}{r}
\end{aligned}
$$

Problem Solving Strategy

\square Draw a free body diagram, showing and labeling all the forces acting on the object(s)
\square Choose a coordinate system that has one axis perpendicular to the circular path and the other axis tangent to the circular path
\square Find the net force toward the center of the circular path (this is the force that causes the centripetal acceleration, F_{C})
\square Use Newton's second law

- The directions will be radial, normal, and tangential
- The acceleration in the radial direction will be the centripetal acceleration
\square Solve for the unknown(s)

Level Curves

\square The force of static friction directed toward the center of the curve keeps the car moving in a circular path.

$$
\begin{aligned}
& f_{s, \max }=\mu_{s} N=m \frac{v_{\max }^{2}}{r} \\
& \sum F_{y}=N-m g=0 \\
& N=m g \\
& v_{\max }=\sqrt{\frac{\mu_{s} N r}{m}}=\sqrt{\frac{\mu_{s} m g r}{m}}=\sqrt{\mu_{s} g r} \\
& =\sqrt{(0.523)\left(9.8 m / s^{2}\right)(35.0 m)}=13.4 m / s
\end{aligned}
$$

The Conical Pendulum

\square A small ball is suspended from a string. The ball revolves with constant speed v in a horizontal circle of radius r. Which is the correct free-body diagram for the ball?

> Physics at

The Conical Pendulum

\square A small ball of mass m is suspended from a string of length L. The ball revolves with constant speed v in a horizontal circle of radius r. Find an expression for speed v, acceleration a, and period

$$
\begin{aligned}
& m=5 \mathrm{~kg} \quad L=5 m \quad r=2 m \\
& \sum F_{y}=T \cos \theta-m g=0 \\
& T \cos \theta=m g
\end{aligned}
$$

$$
\sum F_{x}=T \sin \theta=m a_{c}=\frac{m v^{2}}{r}
$$

$$
\begin{aligned}
& \sin \theta=\frac{r}{L}=0.4 \\
& \tan \theta=\frac{r}{\sqrt{L^{2}-r^{2}}}=0.44
\end{aligned}
$$

The Conical Pendulum

Find v, a, and t

$$
\begin{aligned}
& m=5 \mathrm{~kg} \quad L=5 m \quad r=2 m \\
& \sum F_{y}=T \cos \theta-m g=0 \\
& T \cos \theta=m g
\end{aligned}
$$

$$
\sum F_{x}=T \sin \theta=\frac{m \nu^{2}}{r}
$$

$$
\sin \theta=\frac{r}{L}=0.4
$$

$$
v=\sqrt{r g \tan \theta}
$$

$$
v=\sqrt{L g \sin \theta \tan \theta}=2.9 \mathrm{~m} / \mathrm{s}
$$

$$
\tan \theta=\frac{r}{\sqrt{L^{2}-r^{2}}}=0.44
$$

(b)

$$
a=\frac{v^{2}}{r}=g \tan \theta=4.3 \mathrm{~m} / \mathrm{s}^{2}
$$

Time to complete one revolution: $T=2 \pi r / v$

Banked Curves

\square A car moving at the designated speed can negotiate the curve. Such a ramp is usually banked, which means that the roadway is tilted toward the inside of the curve. Suppose the designated speed for the ramp is $13.4 \mathrm{~m} / \mathrm{s}$ and the radius of the curve is 35.0 m . At what angle should the curve be banked so that no friction at all is needed?

Physics at

Banked Curves

$$
\begin{aligned}
& v=13.4 \mathrm{~m} / \mathrm{s} \quad r=35.0 \mathrm{~m} \\
& \sum F_{r}=n \sin \theta=m a_{c}=\frac{m v^{2}}{r} \\
& \sum F_{y}=n \cos \theta-m g=0 \\
& n \cos \theta=m g \\
& \tan \theta=\frac{v^{2}}{r g} \\
& \theta=\tan ^{-1}\left(\frac{13.4 \mathrm{~m} / \mathrm{s}}{(35.0 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}\right)=27.6^{\circ}
\end{aligned}
$$

Physics at

Practice Problems

Physics

N J I T

Getting off a Parkway ramp

\square John is driving his car off the Parkway at 60 mph around a ramp with a curvature of 300 m . The coefficient of friction between the tires and the flat road is 0.20 . Will his car slip or not? (1 mile = 1609 m)
A. Yes B. No

Physics at

Swing a ball

\square Maggie is swinging a ball of mass 10.0 kg tied to a thin string in a circle on a frictionless table. The length of the string is 1 m , and the largest force it can sustain is 20 N . What is the maximum speed of the ball it can reach, in m / s, before the string breaks?
A. 14
B. 200
C. 2
D. 1.4

