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q motion of �Rigid Bodies�
(extended, finite size)

q rotation + translation, more 
complex motions possible

q rigid bodies: fixed size & 
shape, orientation matters

q dynamics

q rotational modifications to 
energy conservation

q conservation laws: energy & 
angular momentum 
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q Motion of point bodies
q Translational motion. 

Size and shape not 
considered

q dynamics

q conservation laws: 
energy & momentum
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Chapter 10 Key Equations 
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Chapter 9 Rotation of Rigid Bodies
q 9.1 Angular Velocity and  

Acceleration
q 9.2 Rotation with Constant 

Angular Acceleration 
q 9.3 Relating Linear and Angular 

Kinematics
q 9.4 Energy in Rotational Motion
q 9.5 Parallel-Axis Theorem
q Moments-of-Inertia Calculations



Rigid Object
qA rigid object is one that is nondeformable

n The relative locations of all particles making 
up the object remain constant

n All real objects are deformable to some 
extent, but the rigid object model is very 
useful in many situations where the 
deformation is negligible

qThis simplification allows analysis of the 
motion of an extended object



Angle and Radian
q What is the circumference S ?

q q can be defined as the arc 
length s along a circle divided 
by the radius r:

q q is a pure number, but 
commonly is given the artificial 
unit, radian (“rad”)
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q Whenever using rotational equations, you MUST use angles 
expressed in radians



Conversions
q Comparing degrees and radians

q Converting from degrees to radians

q Converting from radians to degrees

q Converting from revolutions to radians 
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1 revolution = 2π (rad) = 360� rpm: revolutions per minute



Conversion 
q A waterwheel turns at 360 revolutions per hour. 

Express this figure in radians per second.

A) 3.14 rad/s
B) 6.28 rad/s
C) 0.314 rad/s
D) 0.628 rad/s

1 "#$%&'()%*+ = 2. "/0/+



One Dimensional Position x
q What is motion? Change of position over time.
q How can we represent position along a straight line?
q Position definition:

n Defines a starting point: origin (x = 0), x relative to origin
n Direction: positive (right or up), negative (left or down)
n It depends on time: t = 0 (start clock), x(t=0) does not have 

to be zero.
q Position has units of [Length]: meters.

x = + 2.5 m

x = - 3 m



Angular Position
q Axis of rotation is the center of the 

disc
q Choose a fixed reference line
q Point P is at a fixed distance r from 

the origin
q As the particle moves, the only 

coordinate that changes is q
q As the particle moves through q, it 

moves though an arc length s.
q The angle q, measured in radians, 

is called the angular position.



Displacement
q Displacement is a change of position in time.
q Displacement: 

n f stands for final and i stands for initial.
q It is a vector quantity.
q It has both magnitude and direction: + or - sign
q It has units of [length]: meters.

)()( iiff txtxx -=D

x1 (t1) = + 2.5 m
x2 (t2) = - 2.0 m

Δx = -2.0 m - 2.5 m = -4.5 m
x1 (t1) = - 3.0 m
x2 (t2) = + 1.0 m

Δx = +1.0 m + 3.0 m = +4.0 m



Angular Displacement
q The angular displacement 

is defined as the angle the 
object rotates through 
during some time interval

q SI unit: radian (rad)
q A counterclockwise rotation 

is positive. 
q A clockwise rotation is 

negative.

f iθ θ θΔ = −



Velocity
qVelocity is the rate of change of position
qAverage velocity

qAverage speed

q Instantaneous velocity

displacement

distance

displacement

vavg =
Δx
Δt

=
x f − xi
Δt

Savg = total distance/total time

v = dx
dt
=

Δt→0
lim

x f − xi
Δt



Average and Instantaneous 
Angular Velocity

q The average angular velocity, ωavg, of a rotating 
rigid object is the ratio of the angular 
displacement to the time interval

q The instantaneous angular velocity is defined as 
the limit of the average velocity as the time 
interval approaches zero

q SI unit: radian per second (rad/s)
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Angular Velocity: + or - ?
q Angular velocity positive if 

rotating in counterclockwise
q Angular velocity will be 

negative if rotating in 
clockwise

q Every point on the rotating 
rigid object has the same 
angular velocity



Average Acceleration
q Changing velocity (non-uniform) means an 

acceleration is present.
q Acceleration is the rate of change of velocity.
q Acceleration is a vector quantity.
q Acceleration has both magnitude and direction.
q Acceleration has a unit of [length/time2]: m/s2.
q Definition:

n Average acceleration

n Instantaneous acceleration
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Average Angular Acceleration
q The average angular 

acceleration, a, of an 
object is defined as the 
ratio of the change in 
the angular speed to 
the time it takes for the 
object to undergo the 
change:



Instantaneous Angular Acceleration
q The instantaneous angular acceleration is defined as the 

limit of the average angular acceleration as the time goes 
to 0

q SI Units of angular acceleration: rad/s² 
q Positive angular acceleration is in the counterclockwise 

direction.
n if an object rotating counterclockwise is speeding up
n if an object rotating clockwise is slowing down

q Negative angular acceleration is in the clockwise direction.
n if an object rotating counterclockwise is slowing down
n if an object rotating clockwise is speeding up

lim
0 t

d
t dt
ω ω

α Δ →

Δ
≡ =

Δ



Rotational Kinematics
q A number of parallels exist between the equations 

for rotational motion and those for linear motion.

q Under constant angular acceleration, we can 
describe the motion of the rigid object using a set 
of kinematic equations
n These are similar to the kinematic equations for 

linear motion
n The rotational equations have the same 

mathematical form as the linear equations
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Comparison Between Rotational 
and Linear Equations



Angular Motion 

A. 17 rad/s2

B. 14 rad/s2

C. 20 rad/s2

D. 23 rad/s2

E. 13 rad/s2

q At t = 0, a wheel rotating about a fixed axis at a 
constant angular acceleration has an angular velocity 
of 2.0 rad/s. Two seconds later it has turned through 
5.0 complete revolutions. Find the angular acceleration 
of this wheel?
A. 17 rad/s2

B. 14 rad/s2

C. 20 rad/s2

D. 23 rad/s2

E. 12 rad/s2



Relating Angular and Linear Kinematics
q Every point on the rotating object 

has the same angular motion 
(angular displacement, angular 
velocity, angular acceleration)

q Every point on the rotating object 
does not have the same linear 
motion

q Displacement

q Velocity

q Acceleration

s rθ=

v rω=

a rα=



Velocity Comparison
q The linear velocity is always 

tangent to the circular path
n Called the tangential velocity

q The magnitude is defined by 
the tangential velocity
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Acceleration Comparison
q The tangential 

acceleration is the 
derivative of the 
tangential velocity

aw r
t

r
t
v

=
D
D

=
D
D

wD=D rv

arat =



Velocity and Acceleration Note
q All points on the rigid object will have the same 

angular speed, but not the same tangential 
speed

q All points on the rigid object will have the same 
angular acceleration, but not the same 
tangential acceleration

q The tangential quantities depend on r, and r is 
not the same for all points on the object

ww rvor
r
v
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Centripetal Acceleration
q An object traveling in a circle, 

even though it moves with a 
constant speed, will have an 
acceleration
n Therefore, each point on a 

rotating rigid object will 
experience a centripetal 
acceleration

2
22 )( ww r

r
r

r
var ===



Resultant Acceleration
q The tangential component of 

the acceleration is due to 
changing speed

q The centripetal component of 
the acceleration is due to 
changing direction

q Total acceleration can be 
found from these components

2 2 2 2 2 4 2 4
t ra a a r r rα ω α ω= + = + = +



Angular and Linear Quantities
q For a rigid rotational CD, which statement below 

is true for the two points A and B on this CD?

A) Same distance travelled in 1s
B) Same linear velocity
C) Same centripetal acceleration
D) Same linear acceleration
E) Same angular velocity

A

B



Rotational Kinetic Energy
q An object rotating about z axis with 

an angular speed, ω, has rotational 
kinetic energy 

q Each particle has a kinetic energy of
n Ki = ½ mivi

2

q Since the tangential velocity 
depends on the distance, r, from the 
axis of rotation, we can substitute 
vi = wri



Rotational Kinetic Energy, cont
q The total rotational kinetic energy of the rigid 

object is the sum of the energies of all its 
particles

q Where I is called the moment of inertia
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Rotational Kinetic Energy, final
q There is an analogy between the kinetic 

energies associated with linear motion (K = ½ 
mv 2) and the kinetic energy associated with 
rotational motion (KR= ½ Iw2)

q Rotational kinetic energy is not a new type of 
energy, the form is different because it is 
applied to a rotating object

q Units of rotational kinetic energy are Joules (J)



Moment of Inertia of Point Mass
q For a single particle, the definition of moment 

of inertia is 

n m is the mass of the single particle
n r is the rotational radius

q SI units of moment of inertia are kg.m2

q Moment of inertia and mass of an object are 
different quantities

q It depends on both the quantity of matter and 
its distribution (through the r2 term)



Moment of Inertia
q The figure shows three small spheres that rotate about 

a vertical axis. The perpendicular distance between the 
axis and the center of each sphere is given. Rank the 
three spheres according to their moment of inertia 
about that axis, greatest first ? 

A) a, b, c
B) b, a, c
C) c, b, a
D) all tie
E) a and c tie, b

36kg1m

2m

3m

8kg

4kg

a

b

c
Rotation axis



Moment of Inertia of Point Mass
q For a composite particle, the definition of moment of 

inertia is 

n mi is the mass of the ith single particle
n ri is the rotational radius of ith particle

q SI units of moment of inertia are kg.m2

q Consider an unusual baton made up of four sphere 
fastened to the ends of very light rods

q Find I about an axis perpendicular to the page and 
passing through the point O where the rods cross



Moment of Inertia of Point Mass
q For a composite particle, the definition of moment of 

inertia is 

n mi is the mass of the ith single particle
n ri is the rotational radius of ith particle

q SI units of moment of inertia are kg.m2

q Consider an unusual baton made up of four sphere 
fastened to the ends of very light rods

q Find I about axis y



Moment of Inertia of Extended Objects
q Divided the extended objects into many small volume 

elements, each of mass Dmi
q We can rewrite the expression for I in terms of Dm

q With the small volume segment assumption,

q If r is constant, the integral can be evaluated with 
known geometry, otherwise its variation with position 
must be known

lim 2 2
0im i i
i

I r m r dmΔ →= Δ =∑ ∫

2I r dVρ= ∫



Moment of Inertia 
of a Uniform Rigid Rod

q The shaded area has 
a mass 
n dm = l dx    l=M/L

q Then the moment of 
inertia is
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M-I for some other common shapes



Parallel-Axis Theorem
q In the previous examples, the axis of 

rotation coincided with the axis of 
symmetry of the object

q For an arbitrary axis, the parallel-axis 
theorem often simplifies calculations

q The theorem states 
I = ICM + MD 2

n I is about any axis parallel to the axis through 
the center of mass of the object

n ICM is about the axis through the center of 
mass

n D is the distance from the center of mass axis 
to the arbitrary axis



Moment of Inertia 
of a Uniform Rigid Rod

q The moment of inertia 
about y is

q The moment of inertia 
about y� is
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CHAPTER 9 SUMMARY

Relating linear and angular kinematics: The angular
speed of a rigid body is the magnitude of its angular
velocity. The rate of change of is For a
particle in the body a distance r from the rotation axis,
the speed and the components of the acceleration 
are related to and (See Examples 9.4 and 9.5.)a.v

aSv

a = dv>dt.v
v

Moment of inertia and rotational kinetic energy: The
moment of inertia I of a body about a given axis is a
measure of its rotational inertia: The greater the value 
of I, the more difficult it is to change the state of the
body’s rotation. The moment of inertia can be expressed
as a sum over the particles that make up the body,
each of which is at its own perpendicular distance 
from the axis. The rotational kinetic energy of a rigid
body rotating about a fixed axis depends on the angular
speed and the moment of inertia I for that rotation
axis. (See Examples 9.6–9.8.)

v

ri

mi

Calculating the moment of inertia: The parallel-axis
theorem relates the moments of inertia of a rigid body
of mass M about two parallel axes: an axis through the
center of mass (moment of inertia ) and a parallel
axis a distance d from the first axis (moment of inertia

(See Example 9.9.) If the body has a continuous
mass distribution, the moment of inertia can be calcu-
lated by integration. (See Examples 9.10 and 9.11.)

IP).

Icm
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(9.14)

(9.15)arad = v2

r
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atan = dv
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= ra

v = rv

(9.16)
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i
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2
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(9.19)IP = Icm + Md2

Rotational kinematics: When a rigid body rotates about 
a stationary axis (usually called the z-axis), its position
is described by an angular coordinate The angular
velocity is the time derivative of and the angular
acceleration is the time derivative of or the second
derivative of (See Examples 9.1 and 9.2.) If the angu-
lar acceleration is constant, then and are related
by simple kinematic equations analogous to those for
straight-line motion with constant linear acceleration.
(See Example 9.3.)
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measure of its rotational inertia: The greater the value 
of I, the more difficult it is to change the state of the
body’s rotation. The moment of inertia can be expressed
as a sum over the particles that make up the body,
each of which is at its own perpendicular distance 
from the axis. The rotational kinetic energy of a rigid
body rotating about a fixed axis depends on the angular
speed and the moment of inertia I for that rotation
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theorem relates the moments of inertia of a rigid body
of mass M about two parallel axes: an axis through the
center of mass (moment of inertia ) and a parallel
axis a distance d from the first axis (moment of inertia

(See Example 9.9.) If the body has a continuous
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Rotational kinematics: When a rigid body rotates about 
a stationary axis (usually called the z-axis), its position
is described by an angular coordinate The angular
velocity is the time derivative of and the angular
acceleration is the time derivative of or the second
derivative of (See Examples 9.1 and 9.2.) If the angu-
lar acceleration is constant, then and are related
by simple kinematic equations analogous to those for
straight-line motion with constant linear acceleration.
(See Example 9.3.)
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measure of its rotational inertia: The greater the value 
of I, the more difficult it is to change the state of the
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Rotational kinematics: When a rigid body rotates about 
a stationary axis (usually called the z-axis), its position
is described by an angular coordinate The angular
velocity is the time derivative of and the angular
acceleration is the time derivative of or the second
derivative of (See Examples 9.1 and 9.2.) If the angu-
lar acceleration is constant, then and are related
by simple kinematic equations analogous to those for
straight-line motion with constant linear acceleration.
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a stationary axis (usually called the z-axis), its position
is described by an angular coordinate The angular
velocity is the time derivative of and the angular
acceleration is the time derivative of or the second
derivative of (See Examples 9.1 and 9.2.) If the angu-
lar acceleration is constant, then and are related
by simple kinematic equations analogous to those for
straight-line motion with constant linear acceleration.
(See Example 9.3.)
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Rotational Kinematics Relating linear and angular kinematics

Moment of inertia and 
rotational kinetic energy

The parallel-axis theorem




