Physics 111: Mechanics Lecture 10

Bin Chen

NJIT Physics Department

Phys. 111 (Part I):

Translational Mechanics

- Motion of point bodies
- Translational motion. Size and shape not considered
\square dynamics $\quad \sum F_{\text {ext }}=m a$
- conservation laws: energy \& momentum

Phys. 111 (Part II):

Rotational Mechanics

- motion of "Rigid Bodies" (extended, finite size)
a rotation + translation, more complex motions possible
- rigid bodies: fixed size \& shape, orientation matters
- dynamics

$$
\sum \mathbf{F}_{\mathrm{ext}}=\mathrm{ma}_{\mathrm{cm}} \quad \sum \tau_{z}=I \alpha_{z}
$$

- rotational modifications to energy conservation
- conservation laws: energy \& angular momentum

Chapter 9 Rotation of Rigid Bodies

- 9.1 Angular Velocity and Acceleration
- 9.2 Rotation with Constant Angular Acceleration
- 9.3 Relating Linear and Angular Kinematics
- 9.4 Energy in Rotational Motion
- 9.5 Parallel-Axis Theorem
- Moments-of-Inertia Calculations

Rigid Object

$\square \mathrm{A}$ rigid object is one that is nondeformable

- The relative locations of all particles making up the object remain constant
- All real objects are deformable to some extent, but the rigid object model is very useful in many situations where the deformation is negligible
\square This simplification allows analysis of the motion of an extended object

Physics at N

Angle and Radian

\square What is the circumference S ?

$$
s=(2 \pi) r \quad 2 \pi=\frac{s}{r}
$$

$\square \theta$ can be defined as the arc length s along a circle divided by the radius r :

$$
\theta=\frac{s}{r}
$$

$\square \theta$ is a pure number, but commonly is given the artificial unit, radian ("rad")

In any equation that relates linear quantities to angular quantities, the angles MUST be expressed in radians ...

RIGHTI $>s=(\pi / 3) r$
... never in degrees or revolutions.
WRONG $>~ s={ }^{\circ} 0^{\circ} r$
\square Whenever using rotational equations, you MUST use angles expressed in radians

Conversions

\square Comparing degrees and radians

$$
2 \pi(\mathrm{rad})=360^{\circ} \quad \pi(\mathrm{rad})=180^{\circ}
$$

\square Converting from degrees to radians

$$
\theta(\mathrm{rad})=\frac{\pi}{180^{\circ}} \theta(\text { degrees })
$$

\square Converting from radians to degrees

$$
\theta(\operatorname{deg} \text { rees })=\frac{180^{\circ}}{\pi} \theta(\mathrm{rad}) \quad 1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi}=57.3^{\circ}
$$

\square Converting from revolutions to radians
1 revolution $=2 \pi(\mathrm{rad})=360^{\circ} \mathrm{rpm}$: revolutions per minute

Conversion

- A waterwheel turns at 360 revolutions per hour. Express this figure in radians per second.
A) $3.14 \mathrm{rad} / \mathrm{s}$
B) $6.28 \mathrm{rad} / \mathrm{s}$
C) $0.314 \mathrm{rad} / \mathrm{s}$
$0.628 \mathrm{rad} / \mathrm{s}$

$$
1 \frac{\text { revolution }}{\mathrm{s}}=2 \pi \mathrm{rad} / \mathrm{s}
$$

Physics at

One Dimensional Position x

\square What is motion? Change of position over time.
\square How can we represent position along a straight line?
\square Position definition:

- Defines a starting point: origin ($x=0$), x relative to origin
- Direction: positive (right or up), negative (left or down)
- It depends on time: $\mathrm{t}=0$ (start clock), $\mathrm{x}(\mathrm{t}=0)$ does not have to be zero.
\square Position has units of [Length]: meters.
Positive direction

Angular Position

\square Axis of rotation is the center of the disc
\square Choose a fixed reference line
\square Point P is at a fixed distance r from the origin

\square As the particle moves, the only coordinate that changes is θ
\square As the particle moves through θ, it moves though an arc length s .
\square The angle θ, measured in radians, is called the angular position.

Physics at
New Jersey's Science \& Technology University

Displacement

\square Displacement is a change of position in time.
\square Displacement: $\Delta x=x_{f}\left(t_{f}\right)-x_{i}\left(t_{i}\right)$

- f stands for final and i stands for initial.
\square It is a vector quantity.
\square It has both magnitude and direction: + or - sign
\square It has units of [length]: meters.

$$
\begin{gathered}
x_{2}\left(t_{2}\right)=-2.0 \mathrm{~m} \\
\Delta x=-2.0 \mathrm{~m}-2.5 \mathrm{~m}=-4.5 \mathrm{~m} \\
x_{1}\left(t_{1}\right)=-3.0 \mathrm{~m} \\
x_{2}\left(t_{2}\right)=+1.0 \mathrm{~m} \\
\Delta x=+1.0 \mathrm{~m}+3.0 \mathrm{~m}=+4.0 \mathrm{~m}
\end{gathered}
$$

Angular Displacement

(a)
\square The angular displacement is defined as the angle the object rotates through during some time interval

$$
\Delta \theta=\theta_{f}-\theta_{i}
$$

\square SI unit: radian (rad)
\square A counterclockwise rotation is positive.
\square A clockwise rotation is negative.

Counterclockwise rotation positive:

Clockwise
rotation negative:
$\Delta \theta<0$, so
$\omega_{\mathrm{av}-\mathrm{z}}=\Delta \theta \mid \Delta t<0$

Axis of rotation (z-axis) passes through origin and points out of page.

Velocity

\square Velocity is the rate of change of position
\square Average velocity
-displacement

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}
$$

\square Average speed

$$
S_{\text {avg }}=\text { total distance/total time } \text { distance }
$$

\square Instantaneous velocity

$$
v=\frac{d x}{d t}=\lim _{\Delta \Delta \rightarrow 0} \frac{x_{f}-x_{i}}{\Delta t} \quad \text { displacement }
$$

Physics at

Average and Instantaneous Angular Velocity

\square The average angular velocity, $\omega_{\text {avg }}$ of a rotating rigid object is the ratio of the angular displacement to the time interval

$$
\omega_{\text {avg }}=\frac{\theta_{f}-\theta_{i}}{t_{f}-t_{i}}=\frac{\Delta \theta}{\Delta t}
$$

\square The instantaneous angular velocity is defined as the limit of the average velocity as the time interval approaches zero

$$
\omega \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
$$

\square SI unit: radian per second (rad/s)

New Jersey's Science \& Technology University

Angular Velocity: + or - ?

\square Angular velocity positive if rotating in counterclockwise
\square Angular velocity will be negative if rotating in clockwise
\square Every point on the rotating rigid object has the same angular velocity

Average Acceleration

\square Changing velocity (non-uniform) means an acceleration is present.
\square Acceleration is the rate of change of velocity.
\square Acceleration is a vector quantity.
\square Acceleration has both magnitude and direction.
\square Acceleration has a unit of [length/time ${ }^{2}$: $\mathrm{m} / \mathrm{s}^{2}$.
\square Definition:

- Average acceleration $a_{a v g}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}$
- Instantaneous acceleration

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d}{d t} \frac{d x}{d t}
$$

Average Angular Acceleration

\square The average angular acceleration, α, of an object is defined as the ratio of the change in the angular speed to the time it takes for the object to undergo the change:

$$
\alpha_{\mathrm{av}-z}=\frac{\omega_{2 z}-\omega_{1 z}}{t_{2}-t_{1}}=\frac{\Delta \omega_{z}}{\Delta t}
$$

The average angular acceleration is the change in angular velocity divided by the time interval:

$$
\alpha_{\mathrm{av}-z}=\frac{\omega_{2 z}-\omega_{1 z}}{t_{2}-t_{1}}=\frac{\Delta \omega_{z}}{\Delta t}
$$

Instantaneous Angular Acceleration

\square The instantaneous angular acceleration is defined as the limit of the average angular acceleration as the time goes to 0

$$
\alpha \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}
$$

\square SI Units of angular acceleration: rad/s ${ }^{2}$
\square Positive angular acceleration is in the counterclockwise direction.

- if an object rotating counterclockwise is speeding up
- if an object rotating clockwise is slowing down
\square Negative angular acceleration is in the clockwise direction.
- if an object rotating counterclockwise is slowing down
- if an object rotating clockwise is speeding up

Rotational Kinematics

\square A number of parallels exist between the equations for rotational motion and those for linear motion.

$$
v_{\text {avg }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{\Delta x}{\Delta t} \quad \omega_{\text {avg }}=\frac{\theta_{f}-\theta_{i}}{t_{f}-t_{i}}=\frac{\Delta \theta}{\Delta t}
$$

\square Under constant angular acceleration, we can describe the motion of the rigid object using a set of kinematic equations

- These are similar to the kinematic equations for linear motion
- The rotational equations have the same mathematical form as the linear equations

Comparison Between Rotational and Linear Equations

Table 9.1 Comparison of Linear and Angular Motion with Constant Acceleration

Straight-Line Motion with
Constant Linear Acceleration
$a_{x}=$ constant
$v_{x}=v_{0 x}+a_{x} t$
$x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}$
$v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right)$
$x-x_{0}=\frac{1}{2}\left(v_{x}+v_{0 x}\right) t$

Fixed-Axis Rotation with
Constant Angular Acceleration

$$
\alpha_{z}=\text { constant }
$$

$$
\omega_{z}=\omega_{0 z}+\alpha_{z} t
$$

$$
\theta=\theta_{0}+\omega_{0 z} t+\frac{1}{2} \alpha_{z} t^{2}
$$

$$
\omega_{z}^{2}=\omega_{0 z}^{2}+2 \alpha_{z}\left(\theta-\theta_{0}\right)
$$

$$
\theta-\theta_{0}=\frac{1}{2}\left(\omega_{z}+\omega_{0 z}\right) t
$$

Angular Motion

\square At $t=0$, a wheel rotating about a fixed axis at a constant angular acceleration has an angular velocity of $2.0 \mathrm{rad} / \mathrm{s}$. Two seconds later it has turned through 5.0 complete revolutions. Find the angular acceleration of this wheel?

$$
\text { A. } 17 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\text { B. } 14 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\text { C. } 20 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\text { D. } 23 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\text { E. } 12 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \alpha_{z}=\text { constant } \\
& \omega_{z}=\omega_{0 z}+\alpha_{z} t \\
& \theta=\theta_{0}+\omega_{0 z} t+\frac{1}{2} \alpha_{z} t^{2} \\
& \omega_{z}^{2}=\omega_{0 z}^{2}+2 \alpha_{z}\left(\theta-\theta_{0}\right) \\
& \theta-\theta_{0}=\frac{1}{2}\left(\omega_{z}+\omega_{0 z}\right) t
\end{aligned}
$$

Relating Angular and Linear Kinematics

- Every point on the rotating object has the same angular motion (angular displacement, angular velocity, angular acceleration)
\square Every point on the rotating object does not have the same linear motion
\square Displacement $s=\theta r$
\square Velocity

$$
v=\omega r
$$

\square Acceleration $\quad a=\alpha r$

Velocity Comparison

\square The linear velocity is always tangent to the circular path

- Called the tangential velocity
\square The magnitude is defined by the tangential velocity

$$
\Delta \theta=\frac{\Delta s}{r}
$$

$\frac{\Delta \theta}{\Delta t}=\frac{\Delta s}{r \Delta t}=\frac{1}{r} \frac{\Delta s}{\Delta t}$

$$
\omega=\frac{v}{r} \quad \text { or } \quad v=r \omega
$$

Acceleration Comparison

\square The tangential acceleration is the derivative of the tangential velocity

$$
\begin{gathered}
\Delta v=r \Delta \omega \\
\frac{\Delta v}{\Delta t}=r \frac{\Delta \omega}{\Delta t}=r \alpha \\
a_{t}=r \alpha
\end{gathered}
$$

Radial and tangential acceleration components:

- $a_{\text {rad }}=\omega^{2} r$ is point P 's centripetal acceleration.
- $a_{\mathrm{tan}}=r \alpha$ means that P 's rotation is speeding up
(the body has angular acceleration).

Velocity and Acceleration Note

\square All points on the rigid object will have the same angular speed, but not the same tangential speed
\square All points on the rigid object will have the same angular acceleration, but not the same tangential acceleration
\square The tangential quantities depend on r, and r is not the same for all points on the object

$$
\omega=\frac{v}{r} \quad \text { or } \quad v=r \omega \quad a_{t}=r \alpha
$$

Physics at \sim

New Jersey's Science \& Technology University

Centripetal Acceleration

\square An object traveling in a circle, even though it moves with a constant speed, will have an acceleration

- Therefore, each point on a rotating rigid object will experience a centripetal acceleration

$$
a_{r}=\frac{v^{2}}{r}=\frac{(r \omega)^{2}}{r}=r \omega^{2}
$$

Resultant Acceleration

\square The tangential component of the acceleration is due to changing speed

- The centripetal component of the acceleration is due to changing direction
\square Total acceleration can be found from these components

Radial and tangential acceleration components:

- $a_{\mathrm{rad}}=\omega^{2} r$ is point P 's centripetal acceleration.
- $a_{\mathrm{tan}}=r \alpha$ means that P 's rotation is speeding up (the body has angular acceleration).

$a=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{r^{2} \alpha^{2}+r^{2} \omega^{4}}=r \sqrt{\alpha^{2}+\omega^{4}}$

Angular and Linear Quantities

\square For a rigid rotational CD, which statement below is true for the two points A and B on this $C D$?
A) Same distance travelled in 1 s
B) Same linear velocity
C) Same centripetal acceleration
D) Same linear acceleration
E) Same angular velocity

Rotational Kinetic Energy

\square An object rotating about z axis with an angular speed, ω, has rotational kinetic energy
\square Each particle has a kinetic energy of - $K_{i}=1 / 2 m_{i} v_{i}^{2}$
\square Since the tangential velocity depends on the distance, r, from the axis of rotation, we can substitute
 $v_{i}=\omega r_{i}$

Rotational Kinetic Energy, cont

\square The total rotational kinetic energy of the rigid object is the sum of the energies of all its particles

$$
\begin{aligned}
& K_{R}=\sum_{i} K_{i}=\sum_{i} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2} \\
& K_{R}=\frac{1}{2}\left(\sum_{i} m_{i} r_{i}^{2}\right) \omega^{2}=\frac{1}{2} I \omega^{2}
\end{aligned}
$$

\square Where I is called the moment of inertia

Rotational Kinetic Energy, final

\square There is an analogy between the kinetic energies associated with linear motion ($K=1 / 2$ $m v^{2}$) and the kinetic energy associated with rotational motion ($K_{R}=1 / 2 I \omega^{2}$)
\square Rotational kinetic energy is not a new type of energy, the form is different because it is applied to a rotating object
\square Units of rotational kinetic energy are Joules (J)

Moment of Inertia of Point Mass

\square For a single particle, the definition of moment of inertia is

$$
I=m r^{2}
$$

- m is the mass of the single particle
$-r$ is the rotational radius
\square SI units of moment of inertia are $\mathrm{kg} \cdot \mathrm{m}^{2}$
\square Moment of inertia and mass of an object are different quantities
\square It depends on both the quantity of matter and its distribution (through the r^{2} term)

Moment of Inertia

- The figure shows three small spheres that rotate about a vertical axis. The perpendicular distance between the axis and the center of each sphere is given. Rank the three spheres according to their moment of inertia about that axis, greatest first ?
A) a, b, c

$$
I=m r^{2}
$$

B) b, a, c
C) c, b, a
D) all tie
E) a and c tie, b

Moment of Inertia of Point Mass

\square For a composite particle, the definition of moment of inertia is

$$
I=\sum m_{i} r_{i}^{2}=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+m_{4} r_{4}^{2}+\ldots
$$

- m_{i} is the mass of the ith single particle
- r_{i} is the rotational radius of ith particle
\square SI units of moment of inertia are $\mathrm{kg} \cdot \mathrm{m}^{2}$

\square Consider an unusual baton made up of four sphere fastened to the ends of very light rods
\square Find I about an axis perpendicular to the page and passing through the point O where the rods cross

$$
I=\sum m_{i} r_{i}^{2}=m b^{2}+M a^{2}+m b^{2}+M a^{2}=2 M a^{2}+2 m b^{2}
$$

Moment of Inertia of Point Mass

\square For a composite particle, the definition of moment of inertia is

$$
I=\sum m_{i} r_{i}^{2}=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+m_{4} r_{4}^{2}+\ldots
$$

- m_{i} is the mass of the ith single particle
- r_{i} is the rotational radius of ith particle
\square SI units of moment of inertia are $\mathrm{kg} \cdot \mathrm{m}^{2}$
\square Consider an unusual baton made up of four sphere fastened to the ends of very light rods
\square Find I about axis y

$$
I=\sum m_{i} r_{i}^{2}=M r_{1}^{2}+M r_{2}^{2}+m r_{3}^{2}+m r_{4}^{2}=M a^{2}+M a^{2}+0+0
$$

Moment of Inertia of Extended Objects

\square Divided the extended objects into many small volume elements, each of mass $\Delta \mathrm{m}_{\mathrm{i}}$
\square We can rewrite the expression for I in terms of Δm

$$
I=\lim _{\Delta m_{i} \rightarrow 0} \sum_{i} r_{i}^{2} \Delta m_{i}=\int r^{2} d m
$$

\square With the small volume segment assumption,

$$
I=\int \rho r^{2} d V
$$

\square If ρ is constant, the integral can be evaluated with known geometry, otherwise its variation with position must be known

Moment of Inertia of a Uniform Rigid Rod

\square The shaded area has a mass

- $d m=\lambda d x \quad \lambda=M / L$
\square Then the moment of inertia is
$I_{y}=\int r^{2} d m=\int_{-L / 2}^{L / 2} x^{2} \frac{M}{L} d x$
$I=\frac{1}{12} M L^{2}$

M-I for some other common shapes

(a) Slender rod,
axis through center

$$
I=\frac{1}{12} M L^{2}
$$

(b) Slender rod,
axis through one end
(c) Rectangular plate, axis through center
(d) Thin rectangular plate, axis along edge

$$
I=\frac{1}{12} M\left(a^{2}+b^{2}\right)
$$

$$
I=\frac{1}{3} M a^{2}
$$

(e) Hollow cylinder

$$
I=\frac{1}{2} M\left(R_{1}^{2}+R_{2}^{2}\right)
$$

(f) Solid cylinder

$$
I=\frac{1}{2} M R^{2}
$$

(g) Thin-walled hollow cylinder
$I=M R^{2}$

(h) Solid sphere

$$
I=\frac{2}{5} M R^{2}
$$

(i) Thin-walled hollow sphere

$$
I=\frac{2}{3} M R^{2}
$$

Physics at
THE EDGE IN KNOWLEDGE

Parallel-Axis Theorem

\square In the previous examples, the axis of rotation coincided with the axis of symmetry of the object
\square For an arbitrary axis, the parallel-axis theorem often simplifies calculations
\square The theorem states

$$
I=I_{\mathrm{CM}}+M D^{2}
$$

- I is about any axis parallel to the axis through the center of mass of the object
- I_{CM} is about the axis through the center of mass
- D is the distance from the center of mass axis to the arbitrary axis

Moment of Inertia of a Uniform Rigid Rod

\square The moment of inertia about y is

$$
\begin{aligned}
& I_{y}=\int r^{2} d m=\int_{-L / 2}^{L / 2} x^{2} \frac{M}{L} d x \\
& I=\frac{1}{12} M L^{2}
\end{aligned}
$$

\square The moment of inertia about y ' is

$I_{y^{\prime}}=I_{C M}+M D^{2}=\frac{1}{12} M L^{2}+M\left(\frac{L}{2}\right)^{2}=\frac{1}{3} M L^{2}$
Physics at

Chap. 9 Summary

Rotational Kinematics

$$
\begin{align*}
& \omega_{z}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} \tag{9.3}\\
& \alpha_{z}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega_{z}}{\Delta t}=\frac{d \omega_{z}}{d t}=\frac{d^{2} \theta}{d t^{2}}
\end{align*}
$$

$\theta=\theta_{0}+\omega_{0 z} t+\frac{1}{2} \alpha_{z} t^{2}$
(constant α_{z} only)
$\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0 z}+\omega_{z}\right) t$
(constant α_{z} only)

$$
\begin{equation*}
\omega_{z}=\omega_{0 z}+\alpha_{z} t \tag{9.7}
\end{equation*}
$$

(constant α_{z} only)

$$
\begin{equation*}
\omega_{z}^{2}=\omega_{0 z}^{2}+2 \alpha_{z}\left(\theta-\theta_{0}\right) \tag{9.12}
\end{equation*}
$$

(constant α_{z} only)

Relating linear and angular kinematics

$$
\begin{align*}
& v=r \omega \tag{9.13}\\
& a_{\mathrm{tan}}=\frac{d v}{d t}=r \frac{d \omega}{d t}=r \alpha \tag{9.14}\\
& a_{\mathrm{rad}}=\frac{v^{2}}{r}=\omega^{2} r \tag{9.15}
\end{align*}
$$

Moment of inertia and rotational kinetic energy

$$
\begin{align*}
I & =m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+\cdots \\
& =\sum_{i} m_{i} r_{i}^{2} \tag{9.16}\\
K & =\frac{1}{2} I \omega^{2} \tag{9.17}
\end{align*}
$$

The parallel-axis theorem

$$
\begin{equation*}
I_{P}=I_{\mathrm{cm}}+M d^{2} \tag{9.19}
\end{equation*}
$$

