Physics 111: Mechanics Lecture 11

Bin Chen

NJIT Physics Department

Textbook Chapter 10: Dynamics of Rotational Motion

- 10.1 Torque
\square 10.2 Torque and Angular Acceleration for a Rigid Body
- 10.3 Rigid-Body Rotation about a Moving Axis
- 10.4 Work and Power in Rotational Motion (partially covered in previous lecture)
- 10.5 Angular Momentum
10.6 Conservation of Angular Momentum
- 10.7* Gyroscopes and Precession

Dynamics of Rotation

Physics at

Force vs. Torque

\square Forces cause accelerations
\square What cause angular accelerations?
\square A door is free to rotate about an axis through O
\square There are three factors that determine the effectiveness of the force in loosening the tight bolt:

- The magnitude of the force
- The position of the application of the force
- The angle at which the force is applied

Torque Definition

\square Torque, τ, is the tendency of a force to rotate an object about some axis
\square Let \mathbf{F} be a force acting on an object, and let \mathbf{r} be a position vector from a rotational center to the point of application of the force, with F perpendicular to \mathbf{r}. The magnitude of the torque is given by

$$
\tau=r F
$$

$\overrightarrow{\boldsymbol{F}}_{1}$ tends to cause counterclockwise rotation about point O, so its torque is positive:

$\overrightarrow{\boldsymbol{F}}_{2}$ tends to cause clockwise rotation about point O, so its torque is negative: $\tau_{2}=-F_{2} l_{2}$

Cross Product

$$
\vec{C}=\vec{A} \times \vec{B}
$$

\square The cross product of two vectors says something about how perpendicular they are.

- Magnitude:

$$
|\vec{C}|=|\vec{A} \times \vec{B}|=A B \sin \theta
$$

- θ is smaller angle between the vectors
- Cross product of any parallel vectors = zero
- Cross product is maximum for perpendicular vectors
- Cross products of Cartesian unit vectors:

$$
\begin{aligned}
& \hat{i} \times \hat{j}=\hat{k} ; \hat{i} \times \hat{k}=-\hat{j} ; \hat{j} \times \hat{k}=\hat{i} \\
& \hat{i} \times \hat{i}=0 ; \hat{j} \times \hat{j}=0 ; \hat{k} \times \hat{k}=0
\end{aligned}
$$

Cross Product

\square Direction: C perpendicular to both A and B (right-hand rule)

- Place A and B tail to tail
- Right hand, not left hand
- Four fingers are pointed along the first vector A
- "sweep" from first vector A into second vector B through the smaller angle between them
- Your outstretched thumb points the direction of C

$$
\vec{A} \times \vec{B}=\vec{B} \times \vec{A} \text { ? }
$$

(a)

(b)

Torque Units and Direction

\square The SI units of torque are $\mathrm{N} \cdot \mathrm{m}$
\square Torque is a vector quantity

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

\square Torque magnitude is given by

$$
\tau=r F \sin \phi=F l
$$

\square Torque will have direction

Three ways to calculate torque: $\tau=F l=r F \underset{\overrightarrow{\boldsymbol{F}}}{\overrightarrow{\boldsymbol{F}}} \boldsymbol{\operatorname { s i n }} \phi=F_{\tan r} r$

Understand $\sin \phi$

\square The component of the force ($F \cos \phi$) has no tendency to produce a rotation
\square The component of the force ($F \sin \phi$) causes it to rotate
\square The moment arm, l, is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force

$$
I=r \sin \phi
$$

$$
\tau=r F \sin \phi=F l
$$

Three ways to calculate torque:

Net Torque

\square The force $\overrightarrow{\mathbf{F}}_{1}$ will tend to cause a counterclockwise rotation about O
\square The force \vec{F}_{2} will tend to cause a clockwise rotation about O
$\square \Sigma \tau=\tau_{1}+\tau_{2}+\tau_{3}=F_{1} /_{1}-F_{2} / 2$
\square If $\Sigma \tau \neq 0$, starts rotating
\square If $\Sigma \tau=0$, rotation rate does not change
$\overrightarrow{\boldsymbol{F}}_{1}$ tends to cause counterclockwise rotation about point O, so its torque is positive: $\tau_{1}=+F_{1} l_{1}$

Line of
action of $\overrightarrow{\boldsymbol{F}}_{2}$

Battle of the Revolving Door

- A man and a boy are trying to use a revolving door. The man enters the door on the right, pushing with 200 N of force directed perpendicular to the door and 0.60 m from the hub, while the boy exerts a force of
$\pm \quad 100 \mathrm{~N}$ perpendicular to the door, 1.25 m to the left of the hub. Finally, the door will
A) Rotate in counterclockwise Rotate in clockwise
C) Stay at rest
D) Not enough information is given

The Swinging Door

\square Two forces F_{1} and F_{2} are applied to the door, as shown in figure. Suppose a wedge is placed 1.5 m from the hinges on the other side of the door. What minimum force F_{3} must the wedge exert so that the force applied won't open the door? Assume $\mathrm{F}_{1}=150 \mathrm{~N}, \mathrm{~F}_{2}=300 \mathrm{~N}, \theta=30^{\circ}$

Newton' s Second Law for a Rotating Object

\square When a rigid object is subject to a net torque ($\neq 0$), it undergoes an angular acceleration

$$
\Sigma \tau=I \alpha
$$

\square The angular acceleration is directly proportional to the net torque
\square The angular acceleration is inversely proportional to the moment of inertia of the object
\square The relationship is analogous to

$$
\sum F=m a
$$

Newton $2^{\text {nd }}$ Law in Rotation

\square The two rigid objects shown in figure have the same mass, radius, and initial angular speed. If the same braking torque is applied to each,
$\div \quad$ which takes longer to stop?
A) Solid cylinder
B) Thin cylinder shell
C) More information is needed
D) Same time required for solid and thin cylinders

Strategy to use the Newton's $2^{\text {nd }}$ Law

- Draw or sketch system. Adopt coordinates, indicate rotation axes, list the known and unknown quantities, ...
- Draw free body diagrams of key parts. Show forces at their points of application. find torques about a (common) axis
- May need to apply Second Law twice to each part
$>$ Translation: $F_{\text {net }}=\sum \vec{F}_{\mathbf{i}}=\mathbf{m a}$ \Rightarrow Rotation: $\quad \vec{\tau}_{\text {net }}=\sum \vec{\tau}_{i}=\mid \vec{\alpha}$

$$
\begin{aligned}
& \text { Note: can have } \\
& \text { F }_{\text {net }} \cdot \text { eq. } 0 \\
& \text { but } \tau_{\text {net }} . \text { ne. } 0
\end{aligned}
$$

- Make sure there are enough (N) equations: there may be constraint equations (extra conditions connecting unknowns)
- Simplify and solve the set of (simultaneous) equations.
- Find unknown quantities and check answers

The Falling Object

\square A solid, frictionless cylindrical reel of mass $\mathrm{M}=2.5 \mathrm{~kg}$ and radius $\mathrm{R}=0.2 \mathrm{~m}$ is used to draw water from a well. A bucket of mass $\mathrm{m}=1.2 \mathrm{~kg}$ is attached to a cord that is wrapped around the cylinder.
\square (a) Find the tension T in the cord and acceleration a of the bucket.
\square (b) If the bucket starts from rest at the top of the well and falls for 3.0 s before hitting the water, how far does it fall ?

Newton 2nd Law for Rotation

\square Draw free body diagrams of each object
\square Only the cylinder is rotating, so apply
$\Sigma \tau=\mathrm{I} \alpha$
\square The bucket is falling, but not rotating, so apply $\Sigma \mathrm{F}=\mathrm{m} \mathrm{a}$
\square Remember that $a=\alpha r$ and solve the resulting equations

- Cord wrapped around disk, hanging weight
- Cord does not slip or stretch \rightarrow constraint
- Disk's rotational inertia slows accelerations
- Let $m=1.2 \mathrm{~kg}, M=2.5 \mathrm{~kg}, \mathrm{r}=0.2 \mathrm{~m}$

For mass m:

FBD for disk, with axis at " 0 ":

$$
\sum \tau_{0}=+\operatorname{Tr}=\operatorname{lo}
$$

$$
\mathrm{I}=\frac{1}{2} \mathrm{Mr}^{2}
$$

$$
\alpha=\frac{\mathrm{Tr}}{\mathrm{I}}=\frac{\mathrm{m}(\mathrm{~g}-\mathrm{a}) \mathrm{r}}{\frac{1}{2} \mathrm{Mr}^{2}}
$$

Unknowns: a, α

So far: 2 Equations, 3 unknowns \rightarrow Need a constraint:
 from "no Substitute and solve:

$$
\alpha=\frac{2 m g r}{M r^{2}}-\frac{2 m \alpha r^{2}}{M r^{2}}
$$

$$
\alpha\left(1+2 \frac{m}{M}\right)=\frac{2 m g}{M r}
$$

$$
\alpha=\frac{\mathrm{mg}}{\mathrm{r}(\mathrm{~m}+\mathrm{M} / 2)}\left(=24 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

N J IT

- Cord wrapped around disk, hanging weight
- Cord does not slip or stretch \rightarrow constraint
- Disk' s rotational inertia slows accelerations
- Let $m=1.2 \mathrm{~kg}, \mathrm{M}=2.5 \mathrm{~kg}, \mathrm{r}=0.2 \mathrm{~m}$

For mass m:

$$
\begin{cases}T & \sum F_{y}=m a=m g-T \\ \mathrm{mg} & T=m(g-a) \\ & \alpha=\frac{\mathrm{mg}}{\mathrm{r}(\mathrm{~m}+\mathrm{M} / 2)}\left(=24 \mathrm{rad} / \mathrm{s}^{2}\right) \\ & a=\frac{\mathrm{mg}}{(\mathrm{~m}+\mathrm{M} / 2)}\left(=4.8 \mathrm{~m} / \mathrm{s}^{2}\right)\end{cases}
$$

$$
T=m(g-a)=1.2(9.8-4.8)=6 \mathrm{~N}
$$

$$
x_{f}-x_{f}=v_{i} t+\frac{1}{2} a t^{2}=0+\frac{1}{2} \times 4.8 \times 3^{2}=21.6 \mathrm{~m}
$$

Momentum of Rotation

Physics at

Angular Momentum

\square Same basic techniques that were used in linear motion can be applied to rotational motion.

- F becomes τ
- m becomes I
- a becomes α
- v becomes ω
- x becomes θ
\square Linear momentum defined as $p=m v$
\square What if mass of center of object is not moving, but it is rotating?
\square Angular momentum $\quad L=I \omega$

Angular Momentum of a Rigid Body

\square Angular momentum of a rotating rigid object

$$
\vec{L}=I \vec{\omega}
$$

- L has the same direction as ω
- L is positive when object rotates in CCW

- L is negative when object rotates in CW
\square Angular momentum SI unit: $\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}$
- Calculate L of a 10 kg disc when $\omega=320 \mathrm{rad} / \mathrm{s}, \mathrm{R}=9 \mathrm{~cm}=0.09 \mathrm{~m}$
- $\mathrm{L}=\mathrm{I} \omega$ and $\mathrm{I}=\mathrm{MR}^{2} / 2$ for disc
- $L=1 / 2 \mathrm{MR}^{2} \omega=1 / 2(10)(0.09)^{2}(320)=12.96 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$

Angular Momentum of a particle

\square Angular momentum of a particle

$$
L=I \omega=m r^{2} \omega=m v_{\perp} r=m v r \sin \phi=r p \sin \phi
$$

\square Angular momentum of a particle

$$
\vec{L}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v})
$$

- r is the particle' s instantaneous position vector
- p is its instantaneous linear momentum
- Only tangential momentum component contribute
- r and p tail to tail form a plane, L is perpendicular to this plane

Angular Momentum of a Particle in Uniform Circular Motion

Example: A particle moves in the xy plane in a circular path of radius r. Find the magnitude and direction of its angular momentum relative to an axis through O when its velocity is v .
\square The angular momentum vector points out of the diagram
\square The magnitude is
$L=r p \sin \theta=m v r \sin \left(90^{\circ}\right)=m v r$
\square A particle in uniform circular motion has a constant angular momentum about an axis through the center of
 its path

Angular momentum III

\square Angular momentum of a system of particles

$$
\overrightarrow{\mathrm{L}}_{\text {net }}=\overrightarrow{\mathrm{L}}_{1}+\overrightarrow{\mathrm{L}}_{2}+\ldots+\overrightarrow{\mathrm{L}}_{n}=\sum_{\text {alli }} \overrightarrow{\mathrm{L}}_{i}=\sum_{\text {alli }} \overrightarrow{\mathrm{r}}_{\mathrm{i}} \times \mathrm{p}_{i}
$$

- angular momenta add as vectors
- be careful of sign of each angular momentum
for this case:

$$
\begin{aligned}
& \vec{L}_{n e t}=\vec{L}_{1}+\vec{L}_{2}=\vec{r}_{1} \times \vec{p}_{1}+\vec{r}_{2} \times \vec{p}_{2} \\
& \left|\vec{L}_{n e t}\right|=+\mathbf{r}_{\perp 1} \mathbf{p}_{1}-\mathbf{r}_{\perp 2} \mathbf{p}_{2}
\end{aligned}
$$

Calculating angular momentum for particles

Two objects are moving as shown in the figure. What is their total angular momentum about point O ?

$$
\begin{aligned}
& \vec{L}_{\text {net }}=\vec{L}_{1}+\vec{L}_{2}=\vec{r}_{1} \times \vec{p}_{1}+\vec{r}_{2} \times \vec{p}_{2} \\
& L_{\text {net }}=r_{1} m v_{1} \sin \theta_{1}-r_{2} m v_{2} \sin \theta_{2} \\
& =r_{1} m v_{1}-r_{2} m v_{2} \\
& =2.8 \times 3.1 \times 3.6-1.5 \times 6.5 \times 2.2 \\
& =31.25-21.45=9.8 \mathrm{kgm}^{2} / \mathrm{s}
\end{aligned}
$$

Linear Momentum and Force

\square Linear motion: apply force to a mass
\square The force causes the linear momentum to change
\square The net force acting on a body is the time rate of change of its linear momentum

$$
\begin{gathered}
\vec{F}_{n e t}=\Sigma \vec{F}=m \vec{a}=m \frac{d \vec{v}}{d t}=\frac{d \vec{p}}{d t} \\
\vec{p}=m \vec{v} \quad \vec{J}=\vec{F}_{n e t} \Delta t=\Delta \vec{p}
\end{gathered}
$$

Angular Momentum and Torque

\square Net torque acting on an object is equal to the time rate of change of the object's angular momentum

$$
\sum \tau=I \alpha=I \frac{\Delta \omega}{\Delta t}=I\left(\frac{\omega-\omega_{0}}{\Delta t}\right)=\frac{I \omega-I \omega_{0}}{\Delta t}
$$

\square Using the definition of angular momemtum

$$
\sum \tau=\frac{\text { change in angular momentum }}{\text { time interval }}=\frac{\Delta L}{\Delta t}
$$

Angular Momentum and Torque

\square Rotational motion: apply torque to a rigid body
\square The torque causes the angular momentum to change
\square The net torque acting on a body is the time rate of change of its angular momentum

$$
\vec{F}_{n e t}=\Sigma \vec{F}=\frac{d \vec{p}}{d t} \quad \vec{\tau}_{\text {net }}=\Sigma \vec{\tau}=\frac{d \vec{L}}{d t}
$$

$\square \Sigma \vec{\tau}$ and \vec{L} to be measured about the same origin
\square The origin should not be accelerating, should be an inertial frame

Isolated System

\square Isolated system: net external torque acting on a system is ZERO

- Scenario \#1: no external forces
- Scenario \#2: net external force acting on a system is ZERO

$$
\begin{array}{r}
\sum \vec{\tau}_{\text {ext }}=\frac{d \vec{L}_{\text {tot }}}{d t}=0 \\
\vec{L}_{\text {tot }}=\text { constant } \quad \text { or } \quad \vec{L}_{i}=\vec{L}_{f}
\end{array}
$$

Conservation of Angular Momentum

$$
\vec{L}_{o t}=\text { constant } \quad \text { or } \quad \vec{L}_{i}=\vec{L}_{f}
$$

- where i denotes initial state, f is final state
$\square L$ is conserved separately for x, y, z direction
\square For an isolated system consisting of particles,

$$
\vec{L}_{\text {tot }}=\sum \vec{L}_{n}=\vec{L}_{1}+\vec{L}_{2}+\vec{L}_{3}+\cdots=\text { constant }
$$

\square For an isolated system is deformable

$$
I_{i} \omega_{i}=I_{f} \omega_{f}=\text { constant }
$$

PHYSICS + BALLET

-One of the classic scenes in Swan Lake

 -Physics explainedPhysics at

Isolated System

$$
\vec{\tau}_{\text {net }}=0 \text { about } z-\text { axis } \Rightarrow \vec{L}=\mathrm{constant}
$$

$$
\vec{L}=\sum_{\text {initial }} I_{i} \omega_{i}=\sum_{\text {final }} I_{f} \omega_{f}
$$

Moment of inertia changes

How fast does the ballerina spin?

The ballerina is initially rotating with angular speed 1.2 radian/s with her arms/legs out-stretched. The moment of inertia is $6.0 \mathrm{~kg} \mathrm{~m}^{2}$. Now she pull in her arms and legs and the moment of inertial reduces to $2.0 \mathrm{~kg} \mathrm{~m}^{2}$.
(a) what is the resulting angular speed of the ballerina?
(b) what is the ratio of the new kinetic energy to the original kinetic energy?

Larger $\mathrm{I}_{\mathrm{i}}=\mathbf{6 k g - m}{ }^{\mathbf{2}}$
Smaller $\omega_{\mathrm{i}}=1.2 \mathrm{rad} / \mathrm{s}$

Smaller $\mathrm{I}_{\mathrm{f}}=\mathbf{2 k g}-\mathrm{m}^{2}$
Larger $\omega_{f}=$? rad/s

L is constant... while moment of inertia changes,

Zero external torque $\Rightarrow L_{\text {final }}=L_{\text {initial }}=\mathrm{L}$.about a fixed axis $\overrightarrow{\mathrm{L}}=I_{\mathrm{i}} \omega_{i}=I_{f} \omega_{f}$

Solution (a):

$$
\omega_{f}=\frac{I_{i}}{I_{f}} \omega_{i}=\frac{6}{2} \times 1.2=3.6 \mathrm{rad} / \mathrm{s}
$$

Solution (b):

$$
\frac{K_{f}}{K_{i}}=\frac{\frac{1}{2} I_{f} \omega_{f}^{2}}{\frac{1}{2} I_{i} \omega_{i}^{2}}=\frac{I_{f}}{I_{i}}\left(\frac{\omega_{f}}{\omega_{f}}\right)^{2}=\frac{I_{f}}{I_{i}}\left(\frac{I_{i}}{I_{f}}\right)^{2}=\frac{I_{i}}{I_{f}}=3
$$

KE has increased!!

SUMMARY

Translation

Force
 \vec{F}

Linear
Momentum $\quad \overrightarrow{\mathbf{p}}=\mathbf{m} \overrightarrow{\mathbf{v}}$
Kinetic
Energy

$$
\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}
$$

Systems and Rigid Bodies

Linear
Momentum

$$
\overrightarrow{\mathbf{P}}=\sum \overrightarrow{\mathbf{p}}_{\mathrm{i}}=\mathbf{M} \overrightarrow{\mathrm{v}}_{\mathrm{cm}}
$$

Second

Law

Momentum conservation - for closed, isolated systems

$$
\vec{P}_{\text {sys }}=\text { constant } \quad \overrightarrow{\mathrm{L}}_{\text {sys }}=\text { constant }
$$

