Physics 111: Mechanics Lecture 13

Bin Chen

NJIT Physics Department

Chapter 12 Fluid Mechanics

\square 12.1 Density
\square 12.2 Pressure in a Fluid
\square 12.3 Buoyancy
\square 12.4 Fluid Flow
\square 12.5 Bernoulli' s Equation
\square 12.6* Viscosity and Turbulence

Density

- The density of a material is its mass per unit volume:
\square SI unit of density is $\mathrm{kg} / \mathrm{m}^{3}$
- Objects made of the same material have the same density even though they may have different masses and different volumes
- The specific gravity of a material is its density compared to that of water at $4^{\circ} \mathrm{C}$ (better named "relative density")

Because the wrench and nail are both made of steel, they have the same density (mass

Table 12.1 Densities of Some Common Substances

Material	Density $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)^{*}$	Material	Density $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)^{*}$
Air $\left(1 \mathrm{~atm}, 20^{\circ} \mathrm{C}\right)$	1.20	Iron, steel	7.8×10^{3}
Ethanol	0.81×10^{3}	Brass	8.6×10^{3}
Benzene	0.90×10^{3}	Copper	8.9×10^{3}
Ice	0.92×10^{3}	Silver	10.5×10^{3}
Water	1.00×10^{3}	Lead	11.3×10^{3}
Seawater	1.03×10^{3}	Mercury	13.6×10^{3}
Blood	1.06×10^{3}	Gold	19.3×10^{3}
Glycerine	1.26×10^{3}	Platinum	21.4×10^{3}
Concrete	2×10^{3}	White dwarf star	10^{10}
Aluminum	2.7×10^{3}	Neutron star	10^{18}

*To obtain the densities in grams per cubic centimeter, simply divide by 10^{3}.

Pressure in a Fluid

- The pressure in a fluid is the normal force per unit area:

$$
p=\frac{d F_{\perp}}{d A}
$$

\square SI unit of pressure is the pascal

- 1 pascal $=1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
- $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
- 1 millibar = 100 Pa
- Atmospheric pressure is the pressure of the earth's atmosphere
\square Normal atmospheric pressure at sea level is 1 atmosphere (atm)

The surface does not accelerate, so the surrounding fluid exerts equal normal forces on both sides of it. (The fluid cannot exert any force parallel to the surface, since that would cause the surface to accelerate.)

- $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=1.013 \mathrm{bar}$

Pressure at Depth in a Fluid

(a)

- Consider an element of a fluid at rest with area A and thickness dy

$$
d w=g d m=g \rho d V=\rho g A d y
$$

- The fluid element is in equilibrium

$$
\begin{gathered}
\sum F_{y}=0 \\
p A-(p+d p) A-\rho g A d y=0 \\
\frac{d p}{d y}=-\rho g
\end{gathered}
$$

- When y increases, p decreases. As we move upward in the fluid, pressure decreases

(b)

Because the fluid is in equilibrium, the vector sum of the vertical forces on the fluid element must be zero: $p A-(p+d p) A-d w=0$. © 2012 Pearson Education, Inc.

Pressure at Depth in a Fluid

- If p_{1} and p_{2} are the pressures at elevations y_{1} and y_{2}, respectively

$$
p_{2}-p_{1}=-\rho g\left(y_{2}-y_{1}\right)
$$

- Take point 2 at the surface of the fluid, where the pressure is p_{0}

$$
p_{0}-p_{1}=-\rho g\left(y_{2}-y_{1}\right)=-\rho g h
$$

- The pressure p at a depth h is greater than p_{0} at the surface by an amount ?gh

$$
p=p_{0}+\rho g h
$$

Pressure difference between levels 1 and 2:

$$
p_{2}-p_{1}=-\rho g\left(y_{2}-y_{1}\right)
$$

The pressure is greater at the lower level.

Pressure at Depth in a Fluid

\square Rank the pressures at different levels from big to small

The pressure at the top of each liquid column is atmospheric pressure, p_{0}.

E) Neel more information

$$
p=p_{0}+\rho g h
$$

Physics at

Pascal's law

- Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel

$$
p=\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

$$
F_{2}=\frac{A_{2}}{A_{1}} F_{1}
$$

- The hydraulic lift is a forcemultiplying device with a multiplication factor equal to the ratio of the areas of the two pistons

A small force is applied to a small piston.
Because the pressure p is the same at all points at a given height in the fluid ...

A tale of two fluids

- A manometer tube is partially filled with water. Oil is poured into the left arm of the tube until the oil-water interface is at the midpoint of the tube as shown. Both arms of the tube are open to the air. Find the relationship between the heights $h_{\text {oil }}$ and $h_{\text {water }}$.

$$
\begin{aligned}
& p=p_{0}+\rho_{\text {water }} g h_{\text {water }} \\
& p=p_{0}+\rho_{\text {oil }} h_{\text {oil }} \\
& h_{\text {oil }}=\frac{\rho_{\text {water }}}{\rho_{\text {oil }}} h_{\text {water }}
\end{aligned}
$$

Buoyancy

- Archimedes' Principle: When a body is completely or partially immersed in a fluid, the fluid exerts an upward force (the "buoyant force") on the body equal to the weight of the fluid displaced by the body
- Buoyant force B

$$
B=\rho_{\text {fuud }} V g
$$

\square Gravity of the body

$$
w=\rho_{b o d y} V g
$$

(a) Arbitrary element of fluid in equilibrium

(b) Fluid element replaced with solid body

\square When the body is less dense than the fluid, it floats

Buoyancy

- A $15.0-\mathrm{kg}$ solid gold statue is raised from the sea bottom as shown in the figure. What is the tension in the hoisting cable (assumed massless) when the statue is (a) at rest and completely underwater and (b) at rest and completely out of the water?

$V=\frac{m_{\text {statue }}}{\rho_{\text {statue }}}=\frac{15.0 \mathrm{~kg}}{19.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}=7.77 \times 10^{-4} \mathrm{~m}^{3}$
$B_{s w}=w_{s w}=m_{s w} g=\rho_{s w} V g=7.84 \mathrm{~N}$

$$
\sum \mathrm{F}_{\mathrm{y}}=B_{s w}+T_{s w}+\left(-m_{\text {statue }} g\right)=0
$$

$$
\begin{aligned}
& B_{\text {air }}=m_{\text {air }} g=\rho_{\text {air }} V g=9.1 \times 10^{-3} \mathrm{~N} \\
& \sum F_{y}=B_{\text {air }}+T_{\text {air }}+\left(-m_{\text {statue }} g\right)=0
\end{aligned}
$$

$$
T_{s w}=m_{\text {statue }} g-B_{s w}=139 \mathrm{~N} \quad T_{\text {air }}=m_{\text {statue }} g-B_{\text {air }}=m_{\text {statue }} g=147 \mathrm{~N}
$$

Fluid Flow

- Fluid flow can be extremely complex.
- Idealized Models: ideal fluid is a fluid that is incompressible and has no internal friction
- Its density cannot change
- Viscosity: laminar flow

Physics at $\int_{\text {New Jersey's Science \& Technology University }}^{\text {? }}$

Continuity Equation

- The figure at the right shows a flow tube with changing cross-sectional area from A_{1} to A_{2}
- The mass flowing into the tube across A_{l} in time $d t$ equal to the mass flowing out across A_{2} in time $d t$

$$
\rho A_{1} v_{1} d t=\rho A_{2} v_{2} d t
$$

- Continuity equation for an incompressible fluid:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

- Continuity equation for a compressible fluid:

$$
\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}
$$

Bernoulli's Equation

- Bernoulli' s equation relates the pressure, flow speed, and height for flow of an ideal, incompressible fluid
- The net work $d W$ done on this fluid element by the surrounding fluid during this displacement is

$$
d W=p_{1} A_{1} d s_{1}-p_{2} A_{2} d s_{2}=\left(p_{1}-p_{2}\right) d V
$$

- The net change in Kinetic energy $d K$ during time $d t$ is

$$
d K=\frac{1}{2} \rho d V\left(v_{2}^{2}-v_{1}^{2}\right)
$$

- The net change in potential energy $d U$ during time $d t$ is

$$
d U=\rho d V g\left(y_{2}-y_{1}\right)
$$

December 9, 2018

Bernoulli's Equation

- The work-energy theorem gives $d W=d K+d U$

$$
\left(p_{1}-p_{2}\right) d V=\frac{1}{2} \rho d V\left(v_{2}^{2}-v_{1}^{2}\right)+\rho g d V\left(y_{2}-y_{1}\right)
$$

- The work done on a unit volume of fluid by
the surrounding fluid is equal to the sum of the changes in kinetic and potential energies per unit volume that occur during the flow

$$
p_{1}-p_{2}=\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)+\rho g\left(y_{2}-y_{1}\right)
$$

- Bernoulli's equation

$$
\begin{gathered}
p_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}^{2} \\
p+\rho g y+\frac{1}{2} \rho v^{2}=\mathrm{constant}
\end{gathered}
$$

$$
d V=A_{2} d s_{2}
$$

December 9, 2018

Water Pressure in the Home

- Water enters a house through a pipe with an inside diameter of 2 cm at an pressure of $4 \times 10^{5} \mathrm{~Pa}$. A 1 -cm-diameter pipe leads to the $2^{\text {nd }}$ floor bathroom 5 m above. When the flow speed at the inlet pipe is $1.5 \mathrm{~m} / \mathrm{s}$. Find 1) flow speed, 2) volume flow rate, and 3) pressure in the bathroom.

$$
\begin{aligned}
& v_{2}=\frac{A_{1}}{A_{2}} v_{1}=6.0 \mathrm{~m} / \mathrm{s} \\
& \frac{d V}{d t}=A_{2} v_{2}=\pi\left(0.5 \times 10^{-2} \mathrm{~m}\right)^{2}(6.0 \mathrm{~m} / \mathrm{s})=4.7 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}=0.47 \mathrm{~L} / \mathrm{s} \\
& p_{2}=p_{1}-\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)-\rho g\left(y_{2}-y_{1}\right)=3.3 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Practice Problems

Physics
 at

Density of a Neutron Star

A neutron star is the collapsed core of a massive star when it burns down all its fuel - this process comes with a supernova explosion. A typical neutron star has a radius of 10 km , but weights twice that of our Sun. How many times denser are neutron stars comparing to our Earth? The Sun's mass is $2 \times 10^{30} \mathrm{~kg}$, and the Earth's mean density is $5500 \mathrm{~kg} / \mathrm{m}^{3}$.
(A) 2
(B) 200
(C) 2×10^{10}
(D) 2×10^{14}
(E) 2×10^{18}

Physics at

Air Pressure

\square A laptop of size $30 \mathrm{~cm} \times 20 \mathrm{~cm}$ is sitting on the table. What is the magnitude of downward force that the surface of the laptop feels, in N, exerted by the air in the room? The air pressure in the room is 1 atm, or $10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

$\begin{array}{lll}\text { A. } 60 & \text { B. } 600 & \text { C. } 6000 .\end{array}$
 D. 60000 E. 60000000

Measuring Density

\square I would like to check if the goldbrick I bought (for $\$ 100$) is really made of gold, so I did an experiment: It weights 5 N in the air and 4 N when it is immersed in the water (density 1000 $\mathrm{kg} / \mathrm{m}^{3}$). What is its density in $\mathrm{kg} / \mathrm{m}^{3}$?
A. 1250 B. 2500 C. 5000 D. 10000
E. 20000

Physics at

Water Pressure in the Home

\square Water enters a house through a pipe with an inside diameter of 2.0 cm at an pressure of $4 \times 10^{5} \mathrm{~Pa}$. A $1.0-\mathrm{cm}-$ diameter pipe leads to the $2^{\text {nd }}$ floor bathroom 5 m above. When the flow speed at the inlet pipe is $1.5 \mathrm{~m} / \mathrm{s}$, Find the flow speed in the bathroom.
A) $3.0 \mathrm{~m} / \mathrm{s}$
B) $0.75 \mathrm{~m} / \mathrm{s}$
C) $0.375 \mathrm{~m} / \mathrm{s}$
D) $5.0 \mathrm{~m} / \mathrm{s}$
E) $1.5 \mathrm{~m} / \mathrm{s}$

$$
v_{2}=\frac{A_{1}}{A_{2}} v_{1}=\frac{\pi(1.0 \mathrm{~cm})^{2}}{\pi(0.5 \mathrm{~cm})^{2}}(1.5 \mathrm{~m} / \mathrm{s})=6.0 \mathrm{~m} / \mathrm{s}
$$

