Physics 111: Mechanics Lecture 14

Bin Chen

NJIT Physics Department

Chapter 13 Gravitation

13.1 Newton's Law of Gravitation

- 13.2 Weight
- 13.3 Gravitational Potential Energy
13.4 The Motion of Satellites
- 13.5 *Kepler's Law and Motion of Planets
\square 13.6* Spherical Mass Distributions
- 13.7* Apparent Weight and the Earth's Rotation
\square 13.8* Black Holes

December 9, 2018

Newton' s Law of Universal Gravitation

\square The apple was attracted to the Earth
\square All objects in the Universe were attracted to each other in the same way the apple was attracted to the Earth
\square The force law governing the motion of planets was the same as the force law that attracted a falling apple the Earth

Phil Plait's Crash Course on Gravity

Physics at
NJIT
December 9, 2018

THE EDGE IN KNOWLEDGE

Newton' s Law of Universal Gravitation

\square Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Universal Gravitation

$\square \mathrm{G}$ is the constant of universal gravitation
$\square G=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
\square This is an example of an inverse square law
\square Determined experimentally
\square Henry Cavendish in 1798

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Universal Gravitation

\square The force that mass 1 exerts on mass 2 is equal and opposite to the force mass 2 exerts on mass 1
\square The forces form a Newton's third law action-reaction

\square The gravitational force exerted by a uniform sphere on a particle outside the sphere is the same as the force exerted if the entire mass of the sphere were concentrated on its center

December 9, 2018

Gravitational force

- A ball falls to the ground. Which of the following statements is not true?
A) The force that the ball exerts on Earth is equal in magnitude to the force that Earth exert on the ball
B) The force that the ball exerts on Earth is opposite in direction to the force that Earth exert on the ball
C) The ball undergoes a larger acceleration than the Earth
D) Earth pulls much harder on the ball than the ball pulls on Earth, so the ball falls while Earth remains at rest

December 9, 2018

Gravitational Force

- A planet has two moons of equal mass. Moon Y is in a circular orbit of radius r. Moon X is in a circular orbit of radius $2 r$. The magnitude of the gravitational force exerted by the planet on Moon X is

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

A) Four times as large as that on Moon Y
B) Twice as large as that on Moon Y
C) Equal to that on Moon Y
D) Half as large as that on Moon Y
E) one-fourth as large as that on Moon Y

(a)

Free-Fall Acceleration and Gravitational Force

\square Consider an object of mass m near the Earth's surface

$$
F=G \frac{m_{1} m_{2}}{r^{2}}=G \frac{m M_{E}}{R_{E}{ }^{2}}
$$

\square Acceleration a_{g} due to gravity
\square Since

$$
F=G \frac{m M_{E}}{R_{E}{ }^{2}}=m a_{g}
$$

$$
M_{E}=5.9742 \times 10^{23} \mathrm{~kg} \quad R_{E}=6378.1 \mathrm{~km}
$$

\square Near the Earth's surface

$$
a_{g}=G \frac{M_{E}}{R_{E}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

$\square a_{g}$ also known as gravitational field, which depends on not only the massive object, but also the location.
Physics at

December 9, 2018

Free-Fall Acceleration and the Gravitational Force

\square Consider an object of mass m at a height h above the Earth's surface

$$
F=G \frac{m_{1} m_{2}}{r^{2}}=G \frac{m M_{E}}{\left(R_{E}+h\right)^{2}}
$$

\square Acceleration a_{g} due to gravity

$$
F=G \frac{m M_{E}}{R_{E}{ }^{2}}=m a_{g}
$$

$\square \mathrm{a}_{g}$ will vary with altitude

$$
a_{g}=G \frac{M_{E}}{\left(R_{E}+h\right)^{2}}
$$

Physics at
December 9, 2018

Free-Fall Acceleration

- Superman stands on top of a very tall mountain and throws a baseball horizontally with a speed such that the baseball goes into a circular orbit around the Earth. While the baseball is in orbit, what is the magnitude of the acceleration of the ball $a_{g}=G \frac{M_{E}}{\left(R_{E}+h\right)^{2}}$
A) It depends on how fast the baseball is thrown.
B) It is zero because the ball does not fall to the ground
C) It is slightly less than $9.80 \mathrm{~m} / \mathrm{s}^{2}$
D) It is equal to $9.80 \mathrm{~m} / \mathrm{s}^{2}$
E) It is slightly larger than $9.80 \mathrm{~m} / \mathrm{s}^{2}$

Variation of g with Altitude

TABLE 7.1

Free-Fall Acceleration g at Various Altitudes

Altitude $(\mathbf{k m})^{\mathbf{a}}$	$\boldsymbol{g}\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
1000	7.33
2000	5.68
3000	4.53
4000	3.70
5000	3.08
6000	2.60
7000	2.23
8000	1.93
9000	1.69
10000	1.49
50000	0.13

${ }^{\text {a All figures are distances above Earth's }}$ surface.

$$
a_{g}=G \frac{M_{E}}{r^{2}}=G \frac{M_{E}}{\left(R_{E}+h\right)^{2}}
$$

December 9, 2018

Astronaut in Orbit

\square I weigh 600 N on the surface of the earth. If I travel on a space shuttle orbiting at a distance of 3 times the Earth's radius above ground. What is my mass in kg at the space shuttle?
$\begin{array}{lllll}\text { a. } 37.5 & \text { b. } 150 & \text { c. } 15.0 & \text { d. } 3.83 & \text { e. } 61.2\end{array}$
Mass is an intrinsic measure of the object, and does not change with distance!
Physics at

December 9, 2018

Astronauts in Orbit

- Have you heard this claim:
- Astronauts are weightless in space, therefore there is no gravity in space?
\square It is true that if an astronaut on the International Space Station (ISS) tries to step on a scale, he/she will weigh nothing.
- It may seem reasonable to think that if weight $=m g$, since weight $=0$, $g=0$, but this is NOT true.
- If you stand on a scale in an elevator and then the cables are cut, you will also weigh nothing ($m a=N-m g$, but in free-fall $a=g$, so the normal force $N=0$). This does not mean $g=0$!
\square Astronauts in orbit are in free-fall around the Earth, just as you would be in the elevator. They do not fall to Earth, only because of their very high tangential speed.

December 9, 2018

Gravitational Potential Energy

$\square U=m g y$ is valid only near the earth's surface
\square For objects high above the earth' s surface, an alternate expression is needed

$$
U=-G \frac{M_{E} m}{r}
$$

- Zero reference level is infinitely far from the earth, so potential energy is everywhere negative!
\square Energy conservation

$$
E=K+U=\frac{1}{2} m v^{2}-G \frac{M_{E} m}{r}
$$

December 9, 2018

Escape Speed

\square The escape speed is the speer TABLE 7.2 object to soar off into space a Escape Speeds for the Planets and the Moon

$$
E=K+U=\frac{1}{2} m v^{2}-G \frac{M_{E} m}{r}=0
$$

Planet	$v_{e}(\mathbf{k m} / \mathbf{s})$
Mercury	4.3
Venus	10.3
Earth	11.2
Moon	2.3
Mars	5.0
Jupiter	60.0
Saturn	36.0
Uranus	22.0
Neptune	24.0
Pluto	1.1

© 2006 Brooks/Cole - Thomson

