Physics 111: Week 1-4 Review

Bin Chen

NJ/T Physics Department

Common Exam \#1 Information

\square Phys 111-013: Monday, Oct 08, 4:15-5:45 PM, KUPF 107
\square All are multiple choice questions (most, if not all, only have one choice).
\square Budget your time. If you get stuck on one question, move on.
\square We will use Scantron Card. Bring your pencils.
\square Physical constants and key equations are provided. Derived equations are NOT provided (e.g., time for a free-fall object to hit the floor from a height h). See example test on our course website for the provided equations.

Week 1: Units (Chap. 1)

\square Three fundamental physical quantities: meter (m), kilogram (kg), and second (s)
\square Derived units: area, volume, velocity, etc.
\square Unit conversion

Week 1: 1D Kinetic Motions (Chap. 2)

\square Kinematic variables in one dimension

- Position
- Velocity
- Acceleration
- All depend on time
- All are vectors: magnitude and direction vector
\square Properly interpret position-time and velocity-time diagrams
- Equations for motion with constant acceleration: missing quantities

$$
\begin{array}{rlrl}
v & =v_{0}+a t & x, x_{0} \\
x & =x_{0}+\frac{1}{2}\left(v_{0}+v\right) t & a \\
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} & v \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right) & & t
\end{array}
$$

See also Table 2.4 of your textbook (page 49)

Week 2: Vectors

Vector Addition

(a) We can add two vectors by placing them head to tail.

Vector Subtraction

$$
=\overbrace{-\vec{B} \quad \vec{A}+(-\vec{B})}^{=\vec{A}-\vec{B}}=\vec{B}
$$

With $\overrightarrow{\boldsymbol{A}}$ and $-\overrightarrow{\boldsymbol{B}}$ head to tail, $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is the vector from the tail of \boldsymbol{A} to the head of $-\overrightarrow{\boldsymbol{B}}$.

With $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ head to head, $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}$ is the vector from the tail of $\overrightarrow{\boldsymbol{A}}$ to the tail of $\overrightarrow{\boldsymbol{B}}$.

Week2: Vector Math

\square Consider two vectors

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=A_{x} \hat{\boldsymbol{\imath}}+A_{y} \hat{\boldsymbol{\jmath}} \\
& \overrightarrow{\boldsymbol{B}}=B_{x} \hat{\boldsymbol{\imath}}+B_{y} \hat{\boldsymbol{\jmath}}
\end{aligned}
$$

\square Then

$$
\begin{gathered}
\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}=\left(A_{x} \hat{\imath}+A_{y} \hat{\boldsymbol{\jmath}}\right)+\left(B_{x} \hat{\imath}+B_{y} \hat{\boldsymbol{\jmath}}\right) \\
=\left(A_{x}+B_{x}\right) \hat{\boldsymbol{\imath}}+\left(A_{y}+B_{y}\right) \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}=\left(A_{x}+B_{x}\right) \hat{\boldsymbol{\imath}}+\left(A_{y}+B_{y}\right) \hat{\boldsymbol{\jmath}} \\
\overrightarrow{\boldsymbol{R}}=C_{x} \hat{\boldsymbol{\imath}}+C_{y} \hat{\boldsymbol{\jmath}}
\end{gathered}
$$

\square So we have reproduced

$$
R_{x}=A_{x}+B_{x}, R_{y}=A_{y}+B_{y}
$$

The components of $\overrightarrow{\boldsymbol{R}}$ are the sums of the components of $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$:

$$
R_{y}=A_{y}+B_{y} \quad R_{x}=A_{x}+B_{x}
$$

Week 2: (Vector) Position, Velocity, Acceleration (Chap. 3)

\square Position $\overrightarrow{\boldsymbol{r}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}$
\square Average velocity $\overrightarrow{\mathrm{u}}_{\mathrm{av}}=\frac{\vec{r}_{2}-\vec{r}_{1}}{t_{2}-t_{1}}=\frac{\Delta \vec{r}}{\Delta t}$

- Instantaneous velocity $\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}$

$$
v_{x}=\frac{d x}{d t} \quad v_{y}=\frac{d y}{d t} \quad v_{z}=\frac{d z}{d t} \quad \text { (components of instantaneous velocity) }
$$

- Acceleration $\vec{a}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}$

$$
a_{x}=\frac{d v_{x}}{d t} \quad a_{y}=\frac{d v_{y}}{d t} \quad a_{z}=\frac{d v_{z}}{d t} \quad \text { (components of instantaneous acceleration) }
$$

$\square \vec{r}(t), \vec{v}(t)$, and $\vec{a}(t)$ are not necessarily along the same direction.

Week 2: Projectile Motion (Chap. 3)

\square Projectile motion is one type of 2-D motion under constant acceleration, where $a_{x}=0, a_{y}=-g$.
\square The key to analyzing projectile motion is to treat the x - and y components separately and apply 1-D constant acceleration kinematics equations to each direction:

horizontal direction

$$
\begin{gathered}
v_{x}=v_{0 x}+a_{x} t \\
x-x_{0}=v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\
v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right)
\end{gathered}
$$

Vertical direction

$$
v_{y}=v_{0 y}+a_{y} t
$$

$$
y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}
$$

$$
v_{y}^{2}=v_{0 y}^{2}+2 a_{y}\left(y-y_{0}\right)
$$

$$
a_{x}=0 \quad a_{y}=-g \text { (projectile motion, no air resistance) }
$$

Week 3: Newton's Laws (Chap. 4)

\square Forces as vectors
\square Net Force: $\vec{F}_{n e t}=\sum \vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots .$.
\square Newton's $1^{\text {st }}$ law:
An object at rest tends to stay at rest and an object in motion tends to stay in motion with the same speed and in the same direction unless acted upon by an unbalanced force
\square Newton's 2nd law: $\overrightarrow{\boldsymbol{F}}_{\text {net }}=\Sigma \overrightarrow{\boldsymbol{F}}=m \overrightarrow{\boldsymbol{a}}$
\square Newton's 3rd law: $\overrightarrow{\boldsymbol{F}}_{A \text { on } B}=-\overrightarrow{\boldsymbol{F}}_{B \text { on } A}$

Free Body Diagram

\square Be sure to include only the forces acting on the object of interest
\square Include any field forces acting on the object
\square Do not assume the normal force or tension force equals to the weight

(a)

Physical picture

Week 4: Application of Newton's Law (Chap. 5)
\square Equilibrium problems: object at rest or moving at constant velocity

$$
F_{\mathrm{net}, x}=\sum F_{x}=0 \quad F_{\mathrm{net}, y}=\sum F_{y}=0
$$

\square Accelerating objects: net force is not zero, use Newton's 2nd Law.

$$
F_{n e t, x}=\sum F_{x}=m a_{x} \quad F_{n e t, y}=\sum F_{y}=m a_{y}
$$

Two Connected Objects

The glider on the air track and the falling weight move in different directions, but their accelerations have the same magnitude. Find the acceleration and tension in the string (Textbook Example 5.12).
(a) Apparatus

(b) Free-body
diagram for glider

(c) Free-body
diagram for weight

Two Connected Objects

(a) Apparatus

(b) Free-body diagram for glider

(c) Free-body
diagram for weight

Glider:

$$
\sum F_{x}=T=m_{1} a_{1 x}=m_{1} a
$$

Glider:

$$
\begin{array}{ll}
\text { Glider: } & \sum F_{y}=n+\left(-m_{1} g\right)=m_{1} a_{1 y}=0 \\
\text { Lab weight: } & \sum F_{y}=m_{2} g+(-T)=m_{2} a_{2 y}=m_{2} a
\end{array}
$$

Two Connected Objects

(a) Apparatus

Glider: $\quad T=m_{1} a$
Lab weight: $\quad m_{2} g-T=m_{2} a$
(b) Free-body
diagram for glider

Acceleration

$$
a=\frac{m_{2}}{m_{1}+m_{2}} g
$$

(c) Free-body
diagram for weight

Tension

$T=\frac{m_{1} m_{2}}{m_{1}+m_{2}} g$

A bucket of $M=15 \mathrm{~kg}$ and a counter weight of m $=5 \mathrm{~kg}$ is connected by a rope at two opposite sides of a frictionless pulley. The bucket is initially held by a person at rest. Then the person let it go. What is the tension force on the rope in N when the bucket is falling?
A. 50
B. 150
C. 100
(1)+(2): $(\mathrm{M}-\mathrm{m}) \mathrm{g}=(\mathrm{M}+\mathrm{m})$ a, so $\mathrm{a}=(\mathrm{M}-$ 75
E. 125 have: $\mathrm{T}=2 \mathrm{Mm} /(\mathrm{M}+\mathrm{m})$

Bucket: Mg - T = Ma (1)

$$
\text { Counterweight: } \mathbf{T}-\mathrm{mg}=\mathrm{ma}(2)
$$

D.	75	$\mathrm{~m}) \mathrm{g} /(\mathbf{M}+\mathrm{m})$, plug back in (1), we
E.	125	have: $T=2 \mathbf{M m} /(\mathbf{M}+\mathrm{m})$

Physics at

Practice Problems

1D Motion

A train enters a train station at an initial speed of $20 \mathrm{~m} / \mathrm{s}$ and decelerates at a constant acceleration. It travels 100 m before it fully stops. How much time, in seconds, does it take?
A. 5
B. 10
C. 20
D. 2.5
E. 1

1D Motion

In Mission Impossible 6, one agent jumped out from a plane but lost his conscious. He was descending a constant speed of $20 \mathrm{~m} / \mathrm{s}$. Tom Cruise tried to save his colleague. He started from a zero vertical speed, but accelerated downward at $10 \mathrm{~m} / \mathrm{s}^{2}$. How far did he travel, in m , before he managed to reach his colleague and save him?
A. 100
B. 200

80
D. 40
E. 20

Physics at
New Jersey's Science \& Technology University

2D Motion

A fighter jet flying horizontally at 3000 m above the ground at a speed of $100 \mathrm{~m} / \mathrm{s}$ shoots a bullet with a vertical speed of $198 \mathrm{~m} / \mathrm{s}$. What is the maximum height does the bullet reach above the ground, in m ?
A. 2000
B. 3000
C. 5000
D. 7000
E. 9000
\square In Mission Impossible 6, Tom Cruise jumps off a rooftop and landed on a nearby building that is 5 m lower. The horizontal distance between the two buildings is 10 m . Assume he jumps off the edge nearly horizontally. How fast in m / s should he run in order to make it to the other side (without dying)?
A) $5 \mathrm{~m} / \mathrm{s}$
B) $10 \mathrm{~m} / \mathrm{s}$
C) $20 \mathrm{~m} / \mathrm{s}$
D) $7 \mathrm{~m} / \mathrm{s} \quad$ E) $15 \mathrm{~m} / \mathrm{s}$

Already discussed in a previous class

In the figure, a block of mass M hangs at rest. The rope that is fastened to the wall is horizontal and has a tension of 52 N . The rope that is fastened to the ceiling has a tension of 91 N , and makes an angle θ with the ceiling. What is the angle θ ?

A) 55°
B) 35°
C) 30°
D) 63°
E) 45°

A glider starts from rest and slides down an icy slope of 30 degrees. Assume there is no friction. How far along the slope, in meters, did the glider go when it reaches $5 \mathrm{~m} / \mathrm{s}$?
A. 1.25
B. 2.5
C. 5
D. 10
E. 20

Physics at

Newton's second law: two connected bodies

A bucket with a mass 20 kg , hangs on a rope over the side of well. The bucket is tied to rock with a mass of 20 kg , which initially sits at rest on the horizontal ground. Suddenly the rock lost contact with the ground and the bucket starts to fall. Assuming no friction, what is the acceleration of the bucket, in $\mathrm{m} / \mathrm{s}^{2}$?
A. 9.8
B. 4.9
C. 19.6
D. 0
E. 2.5

Physics at
New Jersey's Science \& Technology University

Two boxes, one with $\mathrm{M}=20 \mathrm{~kg}$, and another with $\mathrm{m}=10 \mathrm{~kg}$, connected by a rope were initially sitting on an icy lake (with no friction). A person comes up and pull the heavier box M with a horizonal force of 90 N , so the two boxes start to accelerate. What is the tension force on the rope, in N ?
A. 0
B. 30
C. 60
D. 90
E. 120

Physics at

Back up problems

Physics at

New Jersey's Science \& Technology University

Force balance

A traffic light weighing 100 N is supported by two ropes as shown in the figure. The tensions in the ropes are closest to
A) 50 N .
B) 56 N .
C) 63 N .
D) 66 N .
E) 83 N .

