BINARYSTARSYSTEMS

What is a binary star system?

- A system in which there are <u>two</u> stars orbiting each other
- The two stars orbit around a common point
 - This point is the barycenter (i.e., the center of mass of the two stars).

What is a Binary Star System?

How are these systems formed?

Recall the Main Sequence of the H-R diagram:

- This is not only a "Mass Sequence" and a "Luminosity Sequence" (i.e., Earlier => More massive + luminous)
- It's also a Population Sequence:
 - Spectral classes earlier on the Main Sequence are *less common* than those found later.
 - Hence, Main Sequence stars with less mass are more common than those with more mass.
- But why?

How are these systems formed?

- Consider a protostar of high mass (i.e., a high-mass 'blob') which is "trying to be born" as a high-mass star:
 - As it undergoes stellar birth, it will contract.
 - Conservation of angular momentum:

$$m_i v_i \cdot r_i = m_f v_f \cdot r_f \Longrightarrow v_i \cdot r_i = v_f \cdot r_f$$

- Hence, as the radius decreases, the rotational speed must increase.
- In almost all cases:
 - The high-mass blob collapses to the point where it's spinning <u>so fast</u> that it fragments itself into two "lower-mass" blobs (fragmentation)
 - Subsequently, two low-mass stars are born and they form a binary star system.

Why are binary star systems special?

In a sense, they're not:

- The majority of star systems are binary.
 - o "Single-star" systems are far less common.
- In most of these systems, the stars are far away from each other:
 - They evolve 'normally' as though they each belong to their own isolated system.

So why should we care about them?

- On rare occasions, the stars are rather close to each other.
 - So close that they can interfere with each other's evolution
 - In these cases, much of what we know about Stellar Evolution is thrown out the window.

Close Binary Star Systems: The Preliminaries

Consider a system of two stars — call them Star A and Star B — which are born on the Main Sequence and orbit each other "closely".

Suppose that Star A is more massive than Star B.

- Then we know from "normal" stellar evolution that Star A has a shorter lifespan than Star B.
- Star A's core will collapse and the rest of it will swell to become a red giant as it leaves the Main Sequence.

Close Binary Star Systems: The Accretion Disk

- Since the pair of stars are "close" to one another, the outer layers of Star A can expand to the point where they're *gravitationally bound* to Star B.
 - The gas then starts 'falling toward' Star B.
 - Since the stars orbit each other, the gas has angular momentum.
 - Because of this, the gas doesn't fall 'directly' toward Star B.
 - Instead, the gas settles down into a 'disk' which is <u>orbiting</u> Star B.
 - This is called an accretion disk.
 - Why?

Close Binary Star Systems: Mass Transfer

In the 'accretion disk', the gas particles rub against each other — this generates friction, which in turn generates heat.

- Subsequently, the gas slowly spirals inward and eventually <u>crashes into</u> Star B.
 - Thus, Star B gains mass from these collisions the process of which is known as accretion.

But wait: The more <u>massive</u> a star is, the <u>shorter</u> it lives on the Main Sequence.

- Hence, as Star B gains more mass, it may eventually evolve off the Main Sequence prematurely.
- Star B then swells to become a red giant, and mass is transferred back to Star A.

Occasionally, we discover binary systems with a red giant which has <u>less mass</u> than its companion.

Close Binary Star Systems: A High-mass Companion

Most of the time, both stars in the system are of low mass (recall fragmentation).

On rare occasions, one of the stars will be high-mass.

When one star (say, Star A) is high-mass, it spends a very short time on the Main Sequence and eventually swells to become a supergiant.

• Mass is then transferred to Star B, much like before.

But: Mass transfer doesn't change the fact that the core of Star A is ready to implode.

- Star A will then go supernova but Star B can actually survive the explosion.
- If it survives, Star B will become a red giant.
 - The mass transfer/accretion disk process is similar, with a neutron star or a black hole on the receiving end.

3

Methods of Classifying Binary Star Systems

Distance

- Wide binaries
- Close binaries
 - Detached
 - Semi-detached
 - Contact

Observational

- Visual binaries
- Spectroscopic binaries
- Eclipsing Binaries
- Astrometric Binaries
- "Exotic" types

Artist rendition of close binary star system

Close Binary Systems

Types

- Algols
 - Two semidetached main-sequence or subgiant stars
- RS Canum Venaticorum & BY Draconis Stars
 - Two chromospherically active stars
- W Ursae Majoris Contact Systems
 - Two short period contact stars
- Cataclysmic Variables & Nova-like Binaries
 - White dwarf primary with cool M-type secondary
- X-ray Binaries
 - Contain neutron star or black hole

White Dwarf Binaries

White Dwarf Binaries

No Explosion

- Secondary star main sequence type G or older
- Period length: From 23
 minutes up to 5 days. Most
 are 1-12 hrs
- Produce dwarf and classical novae when mass transfer rate spikes

Explosion

- Supernova 1a most consistent type of supernova
- Enough mass falls on the star to surpass
 Chandrasekhar limit
- Double-degenerate model two white dwarves, one disintegrates
- Single-degenerate model one white dwarf, one evolving star

5 X-ray Binaries

X-ray Binaries

Formation

 An evolving star in a binary system survives the supernova of it's massive companion

OR

- A star captures a nearby isolated neutron star
- For neutron stars, if the accretion disk is large enough, it will turn into a pulsar
- Categorized into LMXBs (low mass X-ray binaries) and MXRBs (massive X-ray binaries)

X-ray Binaries

Resultant Phenomena

- Black Widow Pulsars
 - Pulsar evaporates companion white dwarf
- Double Neutron Star Binaries
 - No mass exchange in a relativistic system
- End of X-ray binary systems
 - If secondary star is also massive, its supernova could potentially blast its companion neutron star into space
 - Merge of two neutron stars or neutron star with black hole: short-hard gamma ray bursts

Role of Binary Star Systems in Proving General Relativity

Role of Binary Star Systems in Proving General Relativity

Role of Binary Star Systems in Proving General Relativity

The Laser Interferometer Gravitational Wave Observatory (LIGO) searches for distortions in space-time that indicate the passage of gravitational waves through the Earth. A laser beam is split down two 2.5-mile (4 kilometers) arms containing mirrors. The laser beams reflect off of mirrors to converge at the crux of the arms, canceling each other out. The passage of a gravitational wave alters the length of the arms, causing the beams to travel different distances. The mismatch is measurable with a light detector. LIGO facilities in Louisiana and Washington state operate simultaneously; the two data points allow triangulation of a wave's source in the sky.

The End!

Sources

- https://www.atnf.csiro.au/outreach//education/senior/astrophysics/binary_types.html
- https://upload.wikimedia.org/wikipedia/commons/d/d2/Artist%E2%80%99s_impression
 of the exotic binary star system AR Scorpii.jpg
- B. W. Carroll, D. A. Ostlie. An Introduction to Modern Astrophysics, Second Editon. Pearson International
- https://www.google.com/search?q=close+binary+star+systems&rlz=1C1PRFI_enUS710US 710&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjSlJexvsPaAhWvmuAKHRrQDrcQ_AUI CigB&biw=1707&bih=816&dpr=1.13#imgrc=3EYa87HyeOcOoM
- https://phys.org/news/2009-12-imaging-young-binary.html
- http://www.astronomy.com/magazine/ask-astro/2009/07/could-the-nearby-star-sirius-b-explode-as-a-type-ia-supernova-like-some-other-white-dwarf-stars-in-binary-star-systems-have
- https://www.space.com/38469-gravitational-waves-from-neutron-stars-discovery-ligo.h
 tml
- https://www.space.com/25445-how-ligo-lasers-hunt-gravitational-waves-infographic.ht
 ml
- http://www.astro.cornell.edu/academics/courses/astro201/images/hr diagram.gif
- Libby