
Welcome to Phys 321 
Astronomy & Astrophysics II


Course	Instructor:	
	Prof.	Bin	Chen	
	Tiernan	Hall	101	
	bin.chen@njit.edu	



NJIT Astronomy Courses


•  The	Physics	Department	has	an	undergraduate	
minor	and	a	concentra.on	in	Astronomy,	which	
includes	the	following	courses:	
§ Phys	202,	202A	–	Intro	to	Astronomy	and	Cosmology	
§ Phys	203,	203A	–	The	Earth	in	Space	
§ Phys	320	–	Astronomy	&	Astrophysics	I	(last	semester)	
§ Phys	321	–	Astronomy	&	Astrophysics	II	(this	course)	
§ Phys	322	–	ObservaOonal	Astronomy	
§ Phys	420	–	Special	RelaOvity	
§ Phys	421	–	General	RelaOvity	
§ Phys	444	–	Fluid	and	Plasma	Dynamics	



Course Theme


• Use	the	physical	laws	and	forces	that	govern	our	
everyday	lives	
§ Gravity,	electricity	&	magneOsm…	

•  To	understand	the	cosmos	
• Use	physics	and	math	to	quanOtaOvely	determine	
the	physical	properOes	of	astrophysical	objects	
§  Planets,	stars,	galaxies,	clusters	of	galaxies,	and	the	

Universe	



Course Informa?on: Material


• MW	11:30	am–12:55	pm.	KUPF	
208	
•  Textbook:	“An	Introduc.on	to	
Modern	Astrophysics”,	2nd	
EdiOon,	by	Carroll	and	Ostlie	(the	
same	book	as	Phys320)	
•  Topics	include	stars,	galaxies,	and	
the	Universe	
•  Discussed	in	chapters	3,	5,	8,	9,	10,	
12,	13,	15,	16,	17,	18,	24,	25,	26,	
27,	28,	and	29	of	the	textbook.		



Science and Math Disclaimer


•  This	is	astrophysics	course	using	quanOtaOve	
methods,	NOT	just	general	descripOve	astronomy	
• We	use	mostly	freshman/sophomore	physics	
(physics	I,	II,	III)	and	calculus	
• We	will	also	introduce	some	very	basic	quantum	
physics	and	relaOvity	
• Be	prepared	for	quite	some	computaOon	in	HWs,	
quizzes,	and	exams	



Course Informa?on: Homework


• About	one	set	a	week,	given	Monday/Wednesday	
aeer	the	lecture	
• Okay	to	work	in	small	groups	(<=2).	But	must	be	
open	and	acknowledge	who	you	have	worked	with.	
In	all	cases,	you	have	to	write	answers	clearly	in	
your	own	words.	
• Due	in	a	week	(the	following	Monday/Wednesday)	
at	the	start	of	the	class	
•  Late	submissions	will	have	grades	reduced	by	50%.	
All	assignments	must	be	turned	in	by	4/30	to	
receive	any	credit.	



Class par?cipa?on: iClicker quizzes


q  iClicker is required as part of the course 
n  Similar to requiring a textbook for the course 
n  Can be purchased/rented at the NJIT bookstore 
n  Can’t share with your classmate 

q  iClicker use will be integrated into the course 
n  To be used during most or all lectures/discussions 
n  iClicker questions will be worked into subject matter 

q  Watch out for slides with an iClicker symbol 
q  Each lecture will have some iClicker questions 
q  You will receive both participation and performance credits, 

which constitute 20% of the final grade  
q  We will start to use it from the second week (Wed 1/24) 



•  I	post	quesOons	on	the	slide	during	
lecture.	

•  You	answer	using	your	i-Clicker	remote.	

•  I	can	display	a	graph	with	the	class	
results	on	the	screen.	

•  We	discuss	the	quesOons	and	answers.	

•  You	can	get	points	(for	parOcipaOng		
and/or	answering	correctly)!			These	will	
be	recorded	(e.g.,	for	quizzes	and	
akendance).	

How will we use the i-Clicker?  




Class Informa?on: Grading


• Homework	(20%)	
• Class	parOcipaOon	and	quizzes	(20%)	
•  Two	in-class	exams	(15%	each,	30%	total)	
•  Final	Exam	(30%)	
•  SomeOme	TBD	in	May	4–10	

• Conversion	chart	to	leker	grade	 	A 		>85	
B+	 		>75-85		
	B	 		>65-75		
	C+ 		>55-65	
C	 			50-55		
D,	F	<	50	



Course Website: hOps://web.njit.edu/~binchen/phys321 





Phys 321: Lecture 1


	Prof.	Bin	Chen	
	Tiernan	Hall	101	
	bin.chen@njit.edu	

Stars:	Distances	and	Magnitudes	



Cosmic Voyage: The Power of Ten




19

The celes?al sphere




How to measure distance


• Direct	measurements	
§ Using	a	standard	ruler	
§ ReflecOon	of	laser	light/waves	

• Indirect	measurements	
§ Angular	size	assuming	a	known	physical	size	
§ Stereoscopic	vision	



Review on Angle (Phys111)

• What	is	the	circumference	S	?		

•  θ	can	be	defined	as	the	arc	length	
s	along	a	circle	divided	by	the	
radius	r:	

•  θ	is	a	pure	number,	but	commonly	
is	given	the	arOficial	unit,	radian	
(“rad”)	
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θ 
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r
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r
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q Whenever	using	rotaOonal	equaOons,	you	MUST	use	angles	
expressed	in	radians	



Conversions between radians and degrees


q Comparing	degrees	and	radians	
				

q ConverOng	from	degrees	to	radians	

q ConverOng	from	radians	to	degrees		
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Unit conversion


• Degree,	arc-minute,	and	arc-second	

•  From	radians	to	arc-second	

October 28 - 
November 3 

Basic Units of Angular 
Measurement in Astronomy 

! Degree, arc-minute and arc-second 
    

 
 
! Converting from radians to degrees  

  
  

1!(deg) = 60'(arcmin)
1'(arcmin) = 60"(arcsec)
1!(deg) = 3600"(arcsec)

1 rad = 180!

π
(rad) = 57.2958! = 3438' = 206265"
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November 3 

Basic Units of Angular 
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! Degree, arc-minute and arc-second 
    

 
 
! Converting from radians to degrees  

  
  

1!(deg) = 60'(arcmin)
1'(arcmin) = 60"(arcsec)
1!(deg) = 3600"(arcsec)

1 rad = 180!

π
(rad) = 57.2958! = 3438' = 206265"



!  δ  depends upon the actual diameter of the object d 
!  δ  also depends upon the actual diameter of the object D 
!  Same object: the further away, the smaller?  δ ~ 1/D  
!  Different objects of the same size, the further away, the larger? δ ~ d/D  
!  Different objects with different sizes may have the same angular sizes? 

Use in Astronomy 
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Angular Size and Angular Distance


• Angular	size	of	an	object					
declines	with	increasing	
physical	distance					for	an	
object	of	a	fixed	physical	size		
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2.4 Angular Distance 
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D
"

#
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&
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!  If you draw lines from your eye to each of  two stars, the angle 
between the lines is the angular distance between the two stars. 

! Note: here we refer to the distance projected to the surface of 
an imaginary celestial sphere centered at the observer, as if 
the two objects were in this same spherical surface. 

Q: does the radius of this 
sphere matter?  



Measuring angular 
distances in the sky




Calcula?ng angular size in astronomy


α ≈ s /D
Angular	size	≈	physical	size	/	distance	

For	small	angles,	tanα	≈	α,	so			tan(δ
2
) = d
2D

tanα	=	α	



Angular size of the Sun


• What	is	the	angular	size	of	the	Sun	in	arcsec?	
•  The	Sun’s	radius	is	6.96	x	105	km	
•  Sun-Earth	distance	is	1.50	x	108	km	

!  δ  depends upon the actual diameter of the object d 
!  δ  also depends upon the actual diameter of the object D 
!  δ  is the angular diameter in unit of radian 

2.3 Angular Size in Astronomy 

δ = 2arctan d
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Angular size of planets


Venus	

Jupiter	

Saturn	

Mars	

Mercury	

Uranus	

Neptune	

Angular	size	in	arcsec	 RelaOve	Size	(orange	bar	is	the	maximum	value	for	Venus)	

Small	angle	approximaOon	works	preky	well	for	all	celesOal	bodies!	



How to measure astronomical 
distance?

§ Angular	size	assuming	a	known	physical	
size	

§ Stereoscopic	vision	

Angular	size	≈	physical	size	/	distance	

Distance	≈	angular	size	*	physical	size	

α ≈ s /D

D ≈αs



Stereoscopic Vision: 3D movie 




Stereoscopic Vision: 3D movie 


From	reallusion.com	



Parallax: Stereoscopic in astronomy




Measuring distances using parallax


Annual Parallax: observing a celestial object 6 months 
apart, B becomes the Sun-Earth distance, i.e., 1 AU. 

 

Parsec (Parallax arcsec), or pc, is an astronomical 
distance units. 1 pc is the distance of an object whose 
parallax is 1 arcsec; 1pc = 3.26 ly.  

 Q: what is the parallax of Proxima Centauri? 9/22/15 

d = 1AU
tan p

≈
1
p
AU

p	is	the	parallax	angle	in	radians	
AU	is	the	Astronomical	Unit,	which	is	
the	mean	distance	from	the	Sun	to	
Earth:	1.496	x	108	km	



Parallax con?nued


d = 1AU
tan p

≈
1
p
AU

ConverOng	to	arcseconds,	knowing	1	radian	≈	206,265”	

2B
d p

FIGURE 1 Trigonometric parallax: d = B/ tan p.

d p
Sun

Earth

FIGURE 2 Stellar parallax: d = 1/p′′ pc.

where the small-angle approximation tan p ≃ p has been employed for the parallax angle
p measured in radians. Using 1 radian = 57.2957795◦ = 206264.806′′ to convert p to p′′

in units of arcseconds produces

d ≃ 206,265
p′′ AU.

Defining a new unit of distance, the parsec (parallax-second, abbreviated pc), as 1 pc =
2.06264806 × 105 AU = 3.0856776 × 1016 m leads to

d = 1
p′′ pc. (1)

By definition, when the parallax angle p = 1′′, the distance to the star is 1 pc. Thus 1 parsec
is the distance from which the radius of Earth’s orbit, 1AU, subtends an angle of 1′′.Another
unit of distance often encountered is the light-year (abbreviated ly), the distance traveled
by light through a vacuum in one Julian year: 1 ly = 9.460730472 × 1015 m. One parsec
is equivalent to 3.2615638 ly.

The Continuous Spectrum of Light

��

p	is	the	parallax	angle	in	radians	

P”	is	the	parallax	angle	in	arcsecs	

Defining	a	new	unit	of	distance,	the	parsec	(parallax-second,	or	
pc),	as	1	pc	≈	206,265	AU	≈	3.086	x	1016	m,	which	leads	to	

2B
d p

FIGURE 1 Trigonometric parallax: d = B/ tan p.

d p
Sun

Earth

FIGURE 2 Stellar parallax: d = 1/p′′ pc.

where the small-angle approximation tan p ≃ p has been employed for the parallax angle
p measured in radians. Using 1 radian = 57.2957795◦ = 206264.806′′ to convert p to p′′

in units of arcseconds produces

d ≃ 206,265
p′′ AU.

Defining a new unit of distance, the parsec (parallax-second, abbreviated pc), as 1 pc =
2.06264806 × 105 AU = 3.0856776 × 1016 m leads to

d = 1
p′′ pc. (1)

By definition, when the parallax angle p = 1′′, the distance to the star is 1 pc. Thus 1 parsec
is the distance from which the radius of Earth’s orbit, 1AU, subtends an angle of 1′′.Another
unit of distance often encountered is the light-year (abbreviated ly), the distance traveled
by light through a vacuum in one Julian year: 1 ly = 9.460730472 × 1015 m. One parsec
is equivalent to 3.2615638 ly.
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•  1	pc	≈	3.262	light	year	
•  Measured	parallax	angle	of	1”	gives	a	

distance	of	1	pc	
•  Smaller	parallax	angle	->	larger	distance	



Proxima Centauri: the nearest star

•  The	measured	parallax	angle	of	Proxima	
Centauri	is	0.77”,	what	is	its	distance	in	
pc?	And	light	years?		

•  Proxima	Centauri	has	a	planet	(called	
Proxima	b)	located	in	the	habitable	zone	
of	the	star.	Stephen	Hawking	has	a	plan	
to	build	a	solar	sail	(called	“Breakthrough	
Starshot”)	to	travel	to	the	stellar	system.	
In	theory,	the	nanocrae	can	reach	20%	of	
the	speed	of	light.	If	so,	how	long	does	it	
take	to	reach	the	star?	

Image	of	Proxima	Centauri	by	the	
Hubble	Space	Telescope	

2B
d p

FIGURE 1 Trigonometric parallax: d = B/ tan p.

d p
Sun

Earth

FIGURE 2 Stellar parallax: d = 1/p′′ pc.

where the small-angle approximation tan p ≃ p has been employed for the parallax angle
p measured in radians. Using 1 radian = 57.2957795◦ = 206264.806′′ to convert p to p′′

in units of arcseconds produces

d ≃ 206,265
p′′ AU.

Defining a new unit of distance, the parsec (parallax-second, abbreviated pc), as 1 pc =
2.06264806 × 105 AU = 3.0856776 × 1016 m leads to

d = 1
p′′ pc. (1)

By definition, when the parallax angle p = 1′′, the distance to the star is 1 pc. Thus 1 parsec
is the distance from which the radius of Earth’s orbit, 1AU, subtends an angle of 1′′.Another
unit of distance often encountered is the light-year (abbreviated ly), the distance traveled
by light through a vacuum in one Julian year: 1 ly = 9.460730472 × 1015 m. One parsec
is equivalent to 3.2615638 ly.

The Continuous Spectrum of Light
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d	≈	1.3	pc	≈	4.23	ly	



Parallax Example


Even Proxima Centauri, the nearest star other than the Sun, has a parallax angle of less
than 1′′. (Proxima Centauri is a member of the triple star system α Centauri, and has a
parallax angle of 0.77′′. If Earth’s orbit around the Sun were represented by a dime, then
Proxima Centauri would be located 2.4 km away!) In fact, this cyclic change in a star’s
position is so difficult to detect that it was not until 1838 that it was first measured, by
Friedrich Wilhelm Bessel (1784–1846), a German mathematician and astronomer.1

Example 1.1. In 1838, after 4 years of observing 61 Cygni, Bessel announced his mea-
surement of a parallax angle of 0.316′′ for that star. This corresponds to a distance of

d = 1
p′′ pc = 1

0.316
pc = 3.16 pc = 10.3 ly,

within 10% of the modern value 3.48 pc. 61 Cygni is one of the Sun’s nearest neighbors.

From 1989 to 1993, the European Space Agency’s (ESA’s) Hipparcos Space Astrometry
Mission operated high above Earth’s distorting atmosphere.2 The spacecraft was able to
measure parallax angles with accuracies approaching 0.001′′ for over 118,000 stars, cor-
responding to a distance of 1000 pc ≡ 1 kpc (kiloparsec). Along with the high-precision
Hipparcos experiment aboard the spacecraft, the lower-precision Tycho experiment pro-
duced a catalog of more than 1 million stars with parallaxes down to 0.02′′ – 0.03′′. The
two catalogs were published in 1997 and are available on CD-ROMs and the World Wide
Web. Despite the impressive accuracy of the Hipparcos mission, the distances that were
obtained are still quite small compared to the 8-kpc distance to the center of our Milky Way
Galaxy, so stellar trigonometric parallax is currently useful only for surveying the local
neighborhood of the Sun.

However, within the next decade, NASA plans to launch the Space Interferometry Mis-
sion (SIM PlanetQuest). This observatory will be able to determine positions, distances,
and proper motions of stars with parallax angles as small as 4 microarcseconds (0.000004′′),
leading to the direct determination of distances of objects up to 250 kpc away, assuming that
the objects are bright enough. In addition, ESA will launch the Gaia mission within the next
decade as well, which will catalog the brightest 1 billion stars with parallax angles as small
as 10 microarcseconds. With the anticipated levels of accuracy, these missions will be able
to catalog stars and other objects across the Milky Way Galaxy and even in nearby galaxies.
Clearly these ambitious projects will provide an amazing wealth of new information about
the three-dimensional structure of our Galaxy and the nature of its constituents.

1Tycho Brahe had searched for stellar parallax 250 years earlier, but his instruments were too imprecise to find it.
Tycho concluded that Earth does not move through space, and he was thus unable to accept Copernicus’s model
of a heliocentric Solar System.
2Astrometry is the subdiscipline of astronomy that is concerned with the three-dimensional positions of celestial
objects.
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Topic 2: The Magnitude Scale




Apparent magnitude

•  Some	stars	appear	brighter	and	some	stars	appear	
fainter.	How	to	characterize	this	“brightness”?	
•  Apparent	magnitude,	introduced	originally	by	Greek	
astronomer	Hipparchus	(190-120	BC)	
•  Magnitudes	1	through	6	for	the	brightest	to	the	dimmest	stars	
visible	to	the	naked	eye	

•  The	brighter	the	object,	the	smaller	the	magnitude		
•  The	magnitude	scheme	follows	a	logarithmic	scale	

•  A	m=1	star	is	100	x	brighter	than	a	m=6	star	
•  A	m=1	star	is	1001/5	brighter	than	a	m=2	star	
•  A	m=1	star	is	1002/5	brighter	than	a	m=3	star	
•  A	m=1	star	is	1003/5	brighter	than	a	m=4	star	
•  …	



Redefine “brightness”


•  The	apparent	“brightness”	of	an	object	is	actually	
measured	in	terms	of	the	radiant	flux						received	
from	the	object	

•  That	is,	brightness	is	really	the	radiant	energy	
passing	through	a	given	area	in	a	given	2me.	For	
our	eye,	it	is	the	area	of	the	pupil.	

• Unit:	J/s/m2,	or	W/m2	

F



The amount of luminosity 
passing through each 
sphere is the same. 
 
 
Area of sphere: 
 
         4π (radius)2 
 
 
Divide luminosity by area 
to get Flux, or “apparent 
brightness”. 

Inverse Square Law

•  The	“brightness”,	or	flux	decreases	at	greater	
distance	following	the	inverse	square	law:		

F∝ 1
d 2

Why?	
	
Energy	is	conserved!	
	
The	total	amount	of	power	
passing	through	each	sphere	
is	the	same	
	
Area	of	sphere:	4π(distance)2		
	



Luminosity and Flux


•  The	intrinsic	“power”	of	the	star	is	defined	as	the	
luminosity	L,	which	is	the	total	energy	given	off	by	
the	star	per	unit	Ome	(unit:	J/s,	or	W)	

Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1

F2

)

. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
(

d

10 pc

)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.
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For	our	Sun:	

F = L
4πd 2

•  So,	the	flux	is		 Flux	=		
Luminosity		

4π(distance)2	



Brightness and Apparent Magnitude m


• Recall:	A	difference	of	5	magnitudes,	or	m1-m2	=	5,		
corresponds	to	the	smaller-magnitude	star	(with	m2)	
100	Omes	brighter	in	its	apparent	brightness	than	the	
larger-magnitude	star	(with	m1),	or	F2/F1=100	
•  It	means:	

•  Taking	the	logarithm	of	both	sides	

Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1
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)

. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
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d
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)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.
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Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1

F2

)

. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
(
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)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.
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Absolute Magnitude M 

• Apparent	magnitude	m	depends	strongly	on	
distance	–	inconvenient	to	compare	the	intrinsic	
brightness	among	stars	

• We	define	Absolute	Magnitude	(M)	of	a	star	as	the	
apparent	magnitude	the	star	would	have	if	it	were	
placed	at	a	distance	of	10	pc.		

Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1

F2
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. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
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10 pc

)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.

The Continuous Spectrum of Light

��

F = L
4πd 2

Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1

F2

)

. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
(

d

10 pc

)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.
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Distance Modulus

•  From	the	expression	of	Absolute	Magnitude	

•  Take	logarithm	on	both	sides	

•  The	difference															is	a	measure	of	the	distance,	called	the	
distance	modulus		

•  Very	useful	in	measuring	distance	if	m	is	measured	and	M	can	be	
inferred	(standard	candles)	–>	this	principle	is	the	key	in	the	
discovery	of	the	accelera8ng	expansion	of	the	Universe	–	2011	
Nobel	Prize	

Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1

F2

)

. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
(

d

10 pc

)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.

The Continuous Spectrum of Light

��

m−M = 5log10
d

10pc
⎛

⎝
⎜

⎞

⎠
⎟

m−M



Summary


• Distance	in	astronomy	
	
• Parallax	

• Apparent	magnitude	

•  Flux,	Luminosity,	and	inverse	square	law	

• Absolute	magnitude	and	distance	

	



Register your iClickers


•  Step	1:	Switch	your	frequency	to	“AB”	
ü Press	and	hold	power	bukon	unOl	the	indicator	
starts	to	flash	

ü Enter	AB	using	the	bukons	(ABCD)	on	the	clicker	

•  Step	2:	We	will	start	a	Roll	Call	session	to	register	
your	iClickers.	You	will	see	your	name	on	the	
screen.	Enter	the	2-le;er	codes	associated	with	
your	name.	



Clicker	QuesOons	



Two	stars	in	a	binary	system	are	observed	to	orbit	
each	other	with	a	fixed	angular	separaOon	1”.	If	the	
system	has	a	measured	parallax	angle	of	p=0.1”,	the	
physical	separaOon	between	the	two	stars	is:	
	
A.  0.1	AU	
B.  1	Au	
C.  0.01	AU	
D.  10	AU	
E.  100	AU	



Two	stars	A	and	B	have	a	luminosity	raOo	of	LA/LB	=	64.	
However	an	observer	claim	that	they	appear	to	have	
the	same	brightness.	From	parallax	measurements,	
people	find	that	star	A	is	located	at	80	pc.	How	far	is	
star	B	in	pc?	
	
A.  8	
B.  10	
C.  1.25	
D.  5120	
E.  640	


