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The Wave Nature of Light


•  In	1600s,	Isaac	Newton	believed	that	light	consists	
of	a	rec@linear	stream	of	par@cles	
• Chris@an	Huygens	proposed	that	the	light	must	
consist	of	waves	
•  If	light	=	waves:	
•  It	has	a	wavelength	of	λ	and	frequency	of	ν	
•  Light	travels	at	c	=	2.99792458	x	108	m	s-1	

that star (radiant flux F and apparent magnitude m). At first glance, it may seem that
astronomers must start with the measurable quantities F and m and then use the distance
to the star (if known) to determine the star’s intrinsic properties. However, if the star
belongs to an important class of objects known as pulsating variable stars, its intrinsic
luminosity L and absolute magnitude M can be determined without any knowledge of its
distance. Equation ( 5) then gives the distance to the variable star.

the universe.

3 THE WAVE NATURE OF LIGHT

Much of the history of physics is concerned with the evolution of our ideas about the nature
of light.

The Speed of Light

The speed of light was first measured with some accuracy in 1675, by the Danish astronomer
Ole Roemer (1644–1710). Roemer observed the moons of Jupiter as they passed into the
giant planet’s shadow, and he was able to calculate when future eclipses of the moons should
occur by using Kepler’s laws. However, Roemer discovered that when Earth was moving
closer to Jupiter, the eclipses occurred earlier than expected. Similarly, when Earth was
moving away from Jupiter, the eclipses occurred behind schedule. Roemer realized that
the discrepancy was caused by the differing amounts of time it took for light to travel the
changing distance between the two planets, and he concluded that 22 minutes was required
for light to cross the diameter of Earth’s orbit.6 The resulting value of 2.2 × 108 m s−1 was
close to the modern value of the speed of light. In 1983 the speed of light in vacuo was
formally defined to be c = 2.99792458 × 108 m s−1, and the unit of length (the meter) is
now derived from this value.7

Young’s Double-Slit Experiment

Even the fundamental nature of light has long been debated. Isaac Newton, for example,
believed that light must consist of a rectilinear stream of particles, because only such a
stream could account for the sharpness of shadows. Christian Huygens (1629–1695), a
contemporary of Newton, advanced the idea that light must consist of waves. According
to Huygens, light is described by the usual quantities appropriate for a wave. The distance
between two successive wave crests is the wavelength λ, and the number of waves per
second that pass a point in space is the frequency ν of the wave. Then the speed of the light
wave is given by

c = λν. (10)

6We now know that it takes light about 16.5 minutes to travel 2 AU.
7In 1905Albert Einstein realized that the speed of light is a universal constant of nature whose value is independent
of the observe . This realization plays a central role in his Special Theory of Relativity.

These stars act as beacons that illuminate the fundamental distance scale of
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Young’s double-slit experiment
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FIGURE 4 Superposition principle for light waves. (a) Constructive interference. (b) Destructive
interference.

Both the particle and wave models could explain the familiar phenomena of the reflection
and refraction of light. However, the particle model prevailed, primarily on the strength
of Newton’s reputation, until the wave nature of light was conclusively demonstrated by
Thomas Young’s (1773–1829) famous double-slit experiment.

In a double-slit experiment, monochromatic light of wavelength λ from a single source
passes through two narrow, parallel slits that are separated by a distance d . The light then
falls upon a screen a distance L beyond the two slits (see Fig. 3). The series of light
and dark interference fringes that Young observed on the screen could be explained only
by a wave model of light. As the light waves pass through the narrow slits,8 they spread
out (diffract) radially in a succession of crests and troughs. Light obeys a superposition
principle, so when two waves meet, they add algebraically; see Fig. 4. At the screen, if a
wave crest from one slit meets a wave crest from the other slit, a bright fringe or maximum is
produced by the resulting constructive interference. But if a wave crest from one slit meets
a wave trough from the other slit, they cancel each other, and a dark fringe or minimum
results from this destructive interference.

The interference pattern observed thus depends on the difference in the lengths of the
paths traveled by the light waves from the two slits to the screen. As shown in Fig. 3,
if L ≫ d, then to a good approximation this path difference is d sin θ . The light waves
will arrive at the screen in phase if the path difference is equal to an integral number of
wavelengths. On the other hand, the light waves will arrive 180◦ out of phase if the path
difference is equal to an odd integral number of half-wavelengths. So for L ≫ d , the angular

8Actually, Young used pinholes in his original experiment.
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positions of the bright and dark fringes for double-slit interference are given by

d sin θ =
{

nλ (n = 0, 1, 2, … for bright fringes)
(

n − 1
2

)

λ (n = 1, 2, 3, … for dark fringes).
(11)

In either case, n is called the order of the maximum or minimum. From the measured
positions of the light and dark fringes on the screen, Young was able to determine the
wavelength of the light. At the short-wavelength end, Young found that violet light has
a wavelength of approximately 400 nm, while at the long-wavelength end, red light has
a wavelength of only 700 nm.9 The diffraction of light goes unnoticed under everyday
conditions for these short wavelengths, thus explaining Newton’s sharp shadows.

Maxwell’s Electromagnetic Wave Theory

The nature of these waves of light remained elusive until the early 1860s, when the Scottish
mathematical physicist James Clerk Maxwell (1831–1879) succeeded in condensing every-
thing known about electric and magnetic fields into the four equations that today bear his
name. Maxwell found that his equations could be manipulated to produce wave equations
for the electric and magnetic field vectors E and B. These wave equations predicted the
existence of electromagnetic waves that travel through a vacuum with speed v = 1/

√
ϵ0µ0,

where ϵ0 and µ0 are fundamental constants associated with the electric and magnetic fields,
respectively. Upon inserting the values of ϵ0 and µ0, Maxwell was amazed to discover
that electromagnetic waves travel at the speed of light. Furthermore, these equations im-
plied that electromagnetic waves are transverse waves, with the oscillatory electric and
magnetic fields perpendicular to each other and to the direction of the wave’s propagation
(see Fig. 5); such waves could exhibit the polarization10 known to occur for light. Max-
well wrote that “we can scarcely avoid the inference that light consists in the transverse
modulations of the same medium which is the cause of electric and magnetic phenomena.”

Maxwell did not live to see the experimental verification of his prediction of electro-
magnetic waves. Ten years after Maxwell’s death, the German physicist Heinrich Hertz
(1857–1894) succeeded in producing radio waves in his laboratory. Hertz determined that
these electromagnetic waves do indeed travel at the speed of light, and he confirmed their
reflection, refraction, and polarization properties. In 1889, Hertz wrote:

What is light? Since the time of Young and Fresnel we know that it is wave
motion.We know the velocity of the waves, we know their lengths, and we know
that they are transverse; in short, our knowledge of the geometrical conditions
of the motion is complete. A doubt about these things is no longer possible; a
refutation of these views is inconceivable to the physicist. The wave theory of
light is, from the point of view of human beings, certainty.

9Another commonly used measure of the wavelength of light is the angstrom; 1 Å = 0.1 nm. In these units, violet
light has a wavelength of 4000 Å and red light has a wavelength of 7000 Å.
10The electromagnetic wave shown in Fig. 5 is plane-polarized, with its electric and magnetic fields oscillating
in planes. Because E and B are always perpendicular, their respective planes of polarization are perpendicular as
well.
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Maxwell: Light = ElectromagneHc Waves
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FIGURE 5 Electromagnetic wave.

TABLE 1 The Electromagnetic Spectrum.

Region Wavelength
Gamma ray λ < 1 nm
X-ray 1 nm < λ < 10 nm
Ultraviolet 10 nm < λ < 400 nm
Visible 400 nm < λ < 700 nm
Infrared 700 nm < λ < 1 mm
Microwave 1 mm < λ < 10 cm
Radio 10 cm < λ

The Electromagnetic Spectrum

Today, astronomers utilize light from every part of the electromagnetic spectrum. The total
spectrum of light consists of electromagnetic waves of all wavelengths, ranging from very
short-wavelength gamma rays to very long-wavelength radio waves. Table 1 shows how
the electromagnetic spectrum has been arbitrarily divided into various wavelength regions.

The Poynting Vector and Radiation Pressure

Like all waves, electromagnetic waves carry both energy and momentum in the direction
of propagation. The rate at which energy is carried by a light wave is described by the
Poynting vector,11

S = 1
µ0

E × B,

where S has units of W m−2. The Poynting vector points in the direction of the electro-
magnetic wave’s propagation and has a magnitude equal to the amount of energy per unit
time that crosses a unit area oriented perpendicular to the direction of the propagation of

11The Poynting vector is named after John Henry Poynting (1852–1914), the physicist who first described it.
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The Electromagnetic Spectrum

Today, astronomers utilize light from every part of the electromagnetic spectrum. The total
spectrum of light consists of electromagnetic waves of all wavelengths, ranging from very
short-wavelength gamma rays to very long-wavelength radio waves. Table 1 shows how
the electromagnetic spectrum has been arbitrarily divided into various wavelength regions.

The Poynting Vector and Radiation Pressure

Like all waves, electromagnetic waves carry both energy and momentum in the direction
of propagation. The rate at which energy is carried by a light wave is described by the
Poynting vector,11

S = 1
µ0

E × B,

where S has units of W m−2. The Poynting vector points in the direction of the electro-
magnetic wave’s propagation and has a magnitude equal to the amount of energy per unit
time that crosses a unit area oriented perpendicular to the direction of the propagation of

11The Poynting vector is named after John Henry Poynting (1852–1914), the physicist who first described it.
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FIGURE 6 Radiation pressure force. The surface area A is seen edge on.

the wave. Because the magnitudes of the fields E and B vary harmonically with time, the
quantity of practical interest is the time-averaged value of the Poynting vector over one cy-
cle of the electromagnetic wave. In a vacuum the magnitude of the time-averaged Poynting
vector, ⟨S⟩, is

⟨S⟩ = 1
2µ0

E0B0, (12)

where E0 and B0 are the maximum magnitudes (amplitudes) of the electric and magnetic
fields, respectively. (For an electromagnetic wave in a vacuum, E0 and B0 are related by
E0 = cB0.) The time-averaged Poynting vector thus provides a description of the radiant
flux in terms of the electric and magnetic fields of the light waves. However, it should be
remembered that the radiant flux discussed in Section 2 involves the amount of energy
received at all wavelengths from a star, whereas E0 and B0 describe an electromagnetic
wave of a specified wavelength.

Because an electromagnetic wave carries momentum, it can exert a force on a surface
hit by the light. The resulting radiation pressure depends on whether the light is reflected
from or absorbed by the surface. Referring to Fig. 6, if the light is completely absorbed,
then the force due to radiation pressure is in the direction of the light’s propagation and has
magnitude

Frad = ⟨S⟩A
c

cos θ (absorption), (13)

where θ is the angle of incidence of the light as measured from the direction perpendicular
to the surface of area A. Alternatively, if the light is completely reflected, then the radiation
pressure force must act in a direction perpendicular to the surface; the reflected light cannot
exert a force parallel to the surface. Then the magnitude of the force is

Frad = 2⟨S⟩A
c

cos2 θ (reflection). (14)

Radiation pressure has a negligible effect on physical systems under everyday conditions.
However, radiation pressure may play a dominant role in determining some aspects of the
behavior of extremely luminous objects such as early main-sequence stars, red supergiants,
and accreting compact stars. It may also have a significant effect on the small particles of
dust found throughout the interstellar medium.
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This	is	the	flux	(unit:	W	m-2)	carried	
by	a	light	wave	at	a	single	wavelength	
(monochroma@c	wave)	
	
The	flux	F	we	discussed	before	is	the	
result	of	integra(on	over	all	
wavelengths	
	



The ElectromagneHc Spectrum


From	Wikipedia	



Color and Temperature

A	“red-hot”	nail	

Which	part	of	the	nail	is	ho^er?	



Color and Temperature: Stars

Constella3on	Orion	

Which	star	is	the	coolest?	

Red	to	blue	->	increasing	temperature	



Intensity vs. Flux

•  Flux	F:	energy	received	in	a	unit	@me	through	a	unit	

surface	area	from	all	direc@ons	
§  unit	W	m-2	

•  Intensity	I	accounts	for	both	the	direc@on	and	size	of	
the	source,	so	it	is	the	energy	received	per	unit	@me	
per	unit	surface	area	(along	the	direc@on	of	the	light	
ray)	per	unit	solid	angle,	in	language	of	calculus	

§  It	is	independent	of	distance	(why?)	
§  It	is	the	same	at	the	source	and	detector	

•  The	flux	F	is	an	integra@on	of	intensity	I	over	solid	angle	
	

dE = I cosθdAdtdΩ

Ω	

F = I(θ,φ)cosθ dΩ
source∫ = I(θ,φ)cosθ sinθ dθ dφ

source∫



Specific intensity and flux density


•  I	and	F	are	quan@@es	integrated	over	all	wavelengths	
•  Light	emi^ed	from	stars	distribute	over	the	en@re	
electromagne@c	spectrum	
•  Specific	intensity					or						and	flux	density					or						are	
intensity	and	flux	within	given	a	wavelength	range	or	
frequency	range	(				to											,	or				to												)	

dE = Iλ cosθdAdtdΩdλ

Iλ Fλ

Specific	intensity	(per	wavelength)	
Unit:	J	s-1	m-2	sr-1	m-1	

Flux	density	(per	wavelength)	
Unit:	J	s-1	m-2	m-1		 Fλ = Iλ (θ,φ)cosθ dΩsource∫

ν ν + dνλ λ + dλ

Iν Fν



Blackbody


•  Is	an	idealized	physical	
body	that	absorbs	all	
incident	electromagne@c	
radia@on,	regardless	of	
frequency	and	angle	of	
incidence,	and	reradiates	
all	the	energy	with	a	
characteris@c	spectrum.	
•  Is	black	hole	a	blackbody?	

o Yes,	if	Stephen	Hawking	is	
correct	on	his	“Hawking	
Radia@on”	

Solar	irradiance	at	Earth	(no	atmosphere)	



Wien’s Displacement Law




Example: Peak wavelength of 
Betelgeuse and Rigel

• Betelgeuse	and	Rigel	have	surface	temperature	of	
3,600	K	and	13,000	K.	What	are	their	peak	
wavelengths?	In	which	region	of	the	
electromagne@c	spectrum?	

Visible light
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FIGURE 8 Blackbody spectrum [Planck function Bλ(T )].

T is known as Wien’s displacement law:13

λmaxT = 0.002897755 m K. (15)

Example 4.1. Betelgeuse has a surface temperature of 3600 K. If we treat Betelgeuse
as a blackbody, Wien’s displacement law shows that its continuous spectrum peaks at a
wavelength of

λmax ≃ 0.0029 m K
3600 K

= 8.05 × 10−7 m = 805 nm,

which is in the infrared region of the electromagnetic spectrum. Rigel, with a surface
temperature of 13,000 K, has a continuous spectrum that peaks at a wavelength of

λmax ≃ 0.0029 m K
13,000 K

= 2.23 × 10−7 m = 223 nm,

in the ultraviolet region.

The Stefan–Boltzmann Equation

Figure 8 also shows that as the temperature of a blackbody increases, it emits more
energy per second at all wavelengths. Experiments performed by the Austrian physicist

13In 1911, the German physicist Wilhelm Wien (1864–1928) received the Nobel Prize in 1911 for his theoretical
contributions to understanding the blackbody spectrum.

The Continuous Spectrum of Light

��

Betelgeuse:	 Infrared	
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FIGURE 8 Blackbody spectrum [Planck function Bλ(T )].

T is known as Wien’s displacement law:13

λmaxT = 0.002897755 m K. (15)

Example 4.1. Betelgeuse has a surface temperature of 3600 K. If we treat Betelgeuse
as a blackbody, Wien’s displacement law shows that its continuous spectrum peaks at a
wavelength of

λmax ≃ 0.0029 m K
3600 K

= 8.05 × 10−7 m = 805 nm,

which is in the infrared region of the electromagnetic spectrum. Rigel, with a surface
temperature of 13,000 K, has a continuous spectrum that peaks at a wavelength of

λmax ≃ 0.0029 m K
13,000 K

= 2.23 × 10−7 m = 223 nm,

in the ultraviolet region.

The Stefan–Boltzmann Equation

Figure 8 also shows that as the temperature of a blackbody increases, it emits more
energy per second at all wavelengths. Experiments performed by the Austrian physicist

13In 1911, the German physicist Wilhelm Wien (1864–1928) received the Nobel Prize in 1911 for his theoretical
contributions to understanding the blackbody spectrum.
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Rigel:	 Ultraviolet	



Understanding color of stars


According	to	Wien’s	law	…	
•  A	low	temperature	star	emits	most	of	its	energy	at	long	wavelengths	
•  A	high	temperature	star	emits	most	of	its	energy	at	short	wavelengths	
•  Thus,	a	cool	star	appears	red,	while	a	hot	one	appears	blue	



Stefan-Boltzmann EquaHon


•  T	increases	->	intensity	
increases	at	all	
wavelengths	
•  Experiment	show	that	
luminosity	depends	on	
temperature	T	and	area	A	Josef Stefan (1835–1893) in 1879 showed that the luminosity, L, of a blackbody of area A

and temperature T (in kelvins) is given by

L = AσT 4. (16)

Five years later another Austrian physicist, Ludwig Boltzmann (1844–1906), derived this
equation, now called the Stefan–Boltzmann equation, using the laws of thermodynamics
and Maxwell’s formula for radiation pressure. The Stefan–Boltzmann constant, σ , has the
value

σ = 5.670400 × 10−8 W m−2 K−4.

For a spherical star of radius R and surface area A = 4πR2, the Stefan–Boltzmann equation
takes the form

L = 4πR2σT 4
e . (17)

Since stars are not perfect blackbodies, we use this equation to define the effective temper-
ature Te of a star’s surface. Combining this with the inverse square law, Eq. ( 2), shows
that at the surface of the star (r = R), the surface flux is

Fsurf = σT 4
e . (18)

Example 4.2. The luminosity of the Sun is L⊙ = 3.839 × 1026 W and its radius is
R⊙ = 6.95508 × 108 m. The effective temperature of the Sun’s surface is then

T⊙ =
(

L⊙
4πR2

⊙σ

)
1
4

= 5777 K.

The radiant flux at the solar surface is

Fsurf = σT 4
⊙ = 6.316 × 107 W m−2.

According to Wien’s displacement law, the Sun’s continuous spectrum peaks at a wave-
length of

λmax ≃ 0.0029 m K
5777 K

= 5.016 × 10−7 m = 501.6 nm.

This wavelength falls in the green region (491 nm < λ < 575 nm) of the spectrum of
visible light. However, the Sun emits a continuum of wavelengths both shorter and longer
than λmax, and the human eye perceives the Sun’s color as yellow. Because the Sun emits
most of its energy at visible wavelengths (see Fig. 8), and because Earth’s atmosphere is
transparent at these wavelengths, the evolutionary process of natural selection has produced
a human eye sensitive to this wavelength region of the electromagnetic spectrum.

Rounding off λmax and T⊙ to the values of 500 nm and 5800 K, respectively, permits
Wien’s displacement law to be written in the approximate form

λmaxT ≈ (500 nm)(5800 K). (19)

The Continuous Spectrum of Light

��

Josef Stefan (1835–1893) in 1879 showed that the luminosity, L, of a blackbody of area A

and temperature T (in kelvins) is given by

L = AσT 4. (16)

Five years later another Austrian physicist, Ludwig Boltzmann (1844–1906), derived this
equation, now called the Stefan–Boltzmann equation, using the laws of thermodynamics
and Maxwell’s formula for radiation pressure. The Stefan–Boltzmann constant, σ , has the
value

σ = 5.670400 × 10−8 W m−2 K−4.

For a spherical star of radius R and surface area A = 4πR2, the Stefan–Boltzmann equation
takes the form

L = 4πR2σT 4
e . (17)

Since stars are not perfect blackbodies, we use this equation to define the effective temper-
ature Te of a star’s surface. Combining this with the inverse square law, Eq. ( 2), shows
that at the surface of the star (r = R), the surface flux is

Fsurf = σT 4
e . (18)

Example 4.2. The luminosity of the Sun is L⊙ = 3.839 × 1026 W and its radius is
R⊙ = 6.95508 × 108 m. The effective temperature of the Sun’s surface is then

T⊙ =
(

L⊙
4πR2

⊙σ

)
1
4

= 5777 K.

The radiant flux at the solar surface is

Fsurf = σT 4
⊙ = 6.316 × 107 W m−2.

According to Wien’s displacement law, the Sun’s continuous spectrum peaks at a wave-
length of

λmax ≃ 0.0029 m K
5777 K

= 5.016 × 10−7 m = 501.6 nm.

This wavelength falls in the green region (491 nm < λ < 575 nm) of the spectrum of
visible light. However, the Sun emits a continuum of wavelengths both shorter and longer
than λmax, and the human eye perceives the Sun’s color as yellow. Because the Sun emits
most of its energy at visible wavelengths (see Fig. 8), and because Earth’s atmosphere is
transparent at these wavelengths, the evolutionary process of natural selection has produced
a human eye sensitive to this wavelength region of the electromagnetic spectrum.

Rounding off λmax and T⊙ to the values of 500 nm and 5800 K, respectively, permits
Wien’s displacement law to be written in the approximate form

λmaxT ≈ (500 nm)(5800 K). (19)

The Continuous Spectrum of Light

��

Stefan-Boltzamann	Equa3on	

Where	

Is	the	Stefan-Boltzmann	constant	



Example

The	Sun’s	luminosity	and	radius	are	

	
What	is	the	surface	temperature	of	the	Sun?	What	is	
the	Sun’s	peak	wavelength?	

Josef Stefan (1835–1893) in 1879 showed that the luminosity, L, of a blackbody of area A

and temperature T (in kelvins) is given by

L = AσT 4. (16)

Five years later another Austrian physicist, Ludwig Boltzmann (1844–1906), derived this
equation, now called the Stefan–Boltzmann equation, using the laws of thermodynamics
and Maxwell’s formula for radiation pressure. The Stefan–Boltzmann constant, σ , has the
value

σ = 5.670400 × 10−8 W m−2 K−4.

For a spherical star of radius R and surface area A = 4πR2, the Stefan–Boltzmann equation
takes the form

L = 4πR2σT 4
e . (17)

Since stars are not perfect blackbodies, we use this equation to define the effective temper-
ature Te of a star’s surface. Combining this with the inverse square law, Eq. ( 2), shows
that at the surface of the star (r = R), the surface flux is

Fsurf = σT 4
e . (18)

Example 4.2. The luminosity of the Sun is L⊙ = 3.839 × 1026 W and its radius is
R⊙ = 6.95508 × 108 m. The effective temperature of the Sun’s surface is then

T⊙ =
(

L⊙
4πR2

⊙σ

)
1
4

= 5777 K.

The radiant flux at the solar surface is

Fsurf = σT 4
⊙ = 6.316 × 107 W m−2.

According to Wien’s displacement law, the Sun’s continuous spectrum peaks at a wave-
length of

λmax ≃ 0.0029 m K
5777 K

= 5.016 × 10−7 m = 501.6 nm.

This wavelength falls in the green region (491 nm < λ < 575 nm) of the spectrum of
visible light. However, the Sun emits a continuum of wavelengths both shorter and longer
than λmax, and the human eye perceives the Sun’s color as yellow. Because the Sun emits
most of its energy at visible wavelengths (see Fig. 8), and because Earth’s atmosphere is
transparent at these wavelengths, the evolutionary process of natural selection has produced
a human eye sensitive to this wavelength region of the electromagnetic spectrum.

Rounding off λmax and T⊙ to the values of 500 nm and 5800 K, respectively, permits
Wien’s displacement law to be written in the approximate form

λmaxT ≈ (500 nm)(5800 K). (19)
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Wien’s displacement law to be written in the approximate form

λmaxT ≈ (500 nm)(5800 K). (19)
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Josef Stefan (1835–1893) in 1879 showed that the luminosity, L, of a blackbody of area A

and temperature T (in kelvins) is given by

L = AσT 4. (16)

Five years later another Austrian physicist, Ludwig Boltzmann (1844–1906), derived this
equation, now called the Stefan–Boltzmann equation, using the laws of thermodynamics
and Maxwell’s formula for radiation pressure. The Stefan–Boltzmann constant, σ , has the
value

σ = 5.670400 × 10−8 W m−2 K−4.

For a spherical star of radius R and surface area A = 4πR2, the Stefan–Boltzmann equation
takes the form

L = 4πR2σT 4
e . (17)

Since stars are not perfect blackbodies, we use this equation to define the effective temper-
ature Te of a star’s surface. Combining this with the inverse square law, Eq. ( 2), shows
that at the surface of the star (r = R), the surface flux is

Fsurf = σT 4
e . (18)

Example 4.2. The luminosity of the Sun is L⊙ = 3.839 × 1026 W and its radius is
R⊙ = 6.95508 × 108 m. The effective temperature of the Sun’s surface is then

T⊙ =
(

L⊙
4πR2

⊙σ

)
1
4

= 5777 K.

The radiant flux at the solar surface is

Fsurf = σT 4
⊙ = 6.316 × 107 W m−2.

According to Wien’s displacement law, the Sun’s continuous spectrum peaks at a wave-
length of

λmax ≃ 0.0029 m K
5777 K

= 5.016 × 10−7 m = 501.6 nm.

This wavelength falls in the green region (491 nm < λ < 575 nm) of the spectrum of
visible light. However, the Sun emits a continuum of wavelengths both shorter and longer
than λmax, and the human eye perceives the Sun’s color as yellow. Because the Sun emits
most of its energy at visible wavelengths (see Fig. 8), and because Earth’s atmosphere is
transparent at these wavelengths, the evolutionary process of natural selection has produced
a human eye sensitive to this wavelength region of the electromagnetic spectrum.

Rounding off λmax and T⊙ to the values of 500 nm and 5800 K, respectively, permits
Wien’s displacement law to be written in the approximate form

λmaxT ≈ (500 nm)(5800 K). (19)
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What	is	the	luminosity	of	a	star	with	a	surface	
temperature	of	12,000	K	and	a	radius	of	Rsun/2?	The	
Sun’s	surface	temperature	is	approximately	6,000	K	
and	its	luminosity	is	Lsun	
	
A.  Lsun/4	
B.  Lsun/2	
C.  Lsun	
D.  2	Lsun	
E.  4	Lsun	



Blackbody	

Predic@on	from	
classical	physics	

Ultraviolet	Catastrophe	

The Nature of Light: Dawn of a New View

•  Classical	physics	(thermal	mechanics	

and	Maxwell’s	equa@on)	->	
Rayleigh-Jeans	Law	

Bν (T ) ≈
2ν 2kT
c2

Only	agrees	well	with	the	very	low	end	
of	the	blackbody	spectrum	(from	
experiments).	At	shorter	wavelengths,										
Bλ	increases	without	limit	

Ultraviolet	
Catastrophe	

At	high	frequencies,	an	empirical	rela@on	is	found	
from	experiments	named	Wien’s	Approxima3on:	

Bλ (T ) ≈ aλ
−5e−b/λT

Bλ :	specific	intensity	from	blackbody	

k =1.38×10−23 J	K-1:	Boltzmann’s	constant	

Bλ (T ) ≈
2ckT
λ 4



Classical	physics	goes	terribly	wrong	at	
higher	frequencies/shorter	wavelengths!	

Blackbody	

Predic@on	from	
classical	physics	

Ultraviolet	Catastrophe	



Photons: quanHzaHon of energy


• By	late	1900,	Max	Planck	tried	to	make	sense	of	the	
blackbody	spectra	
• He	assumes	the	allowed	energy	carried	by	any	
wave	cannot	be	infinitely	small,	but	should	be	an	
integer	number	of	hν,	or	hc/λ,	where	h	is	a	
constant,	i.e.,	the	energy	is	quan3zed.		
•  This	smallest,	quan@zed	energy	E	is	carried	by	a	
type	of	elementary	par@cles,	known	as	photons.	A	
single	photon	carries	

E = hν
We	will	come	back	to	this	next	week	



The Planck FuncHon

• With	quan@zed	energy	of	light	waves,	Max	Planck	
got	the	famous	Planck	Func3on:	

were integral multiples of a minimum wave energy.17 This minimum energy, a quantum of
energy, is given by hν or hc/λ, where h is a constant. Thus the energy of an electromagnetic
wave is nhν or nhc/λ, where n (an integer) is the number of quanta in the wave. Given this
assumption of quantized wave energy with a minimum energy proportional to the frequency
of the wave, the entire oven could not contain enough energy to supply even one quantum
of energy for the short-wavelength, high-frequency waves. Thus the ultraviolet catastrophe
would be avoided. Planck hoped that at the end of his derivation, the constant h could be
set to zero; certainly, an artificial constant should not remain in his final result for Bλ(T ).

Planck’s stratagem worked! His formula, now known as the Planck function, agreed
wonderfully with experiment, but only if the constant h remained in the equation:18

Bλ(T ) = 2hc2/λ5

ehc/λkT − 1
. (22)

Planck’s constant has the value h = 6.62606876 × 10−34 J s.

The Planck Function and Astrophysics

Finally armed with the correct expression for the blackbody spectrum, we can apply Planck’s
function to astrophysical systems. In spherical coordinates, the amount of radiant energy per
unit time having wavelengths between λ and λ+ dλ emitted by a blackbody of temperature
T and surface area dA into a solid angle d# ≡ sin θ dθ dφ is given by

Bλ(T ) dλ dA cos θ d# = Bλ(T ) dλ dA cos θ sin θ dθ dφ; (23)

see Fig. 9.19 The units of Bλ are therefore W m−3 sr−1. Unfortunately, these units can
be misleading. You should note that “W m−3” indicates power (energy per unit time) per
unit area per unit wavelength interval, W m−2 m−1, not energy per unit time per unit
volume. To help avoid confusion, the units of the wavelength interval dλ are sometimes
expressed in nanometers rather than meters, so the units of the Planck function become
W m−2 nm−1 sr−1, as in Fig. 8.20

At times it is more convenient to deal with frequency intervals dν than with wavelength
intervals dλ. In this case the Planck function has the form

Bν(T ) = 2hν3/c2

ehν/kT − 1
. (24)

17Actually, Planck restricted the possible energies of hypothetical electromagnetic oscillators in the oven walls
that emit the electromagnetic radiation.
18It is left for you to show that the Planck function reduces to the Rayleigh–Jeans law at long wavelengths
(Problem 10) and to Wien’s expression at short wavelengths (Problem 11).
19Note that dA cos θ is the area dA projected onto a plane perpendicular to the direction in which the radiation is
traveling. . .
20The value of the Planck function thus depends on the units of the wavelength interval. The conversion of dλ

from meters to nanometers means that the values of Bλ obtained by evaluating Eq. ( 22) must be divided by 109.
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Diff.	in	
wavelength	

Diff.	in	
frequency	

Long	wavelength	limit:	

Short	wavelength	limit:	

Rayleigh-Jeans	Law	

Wien’s	Approxima@on	

Bλ (T ) ≈
2ckT
λ 4

Bλ (T ) ≈ aλ
−5e−b/λT

Blackbody	

Predic@on	from	
classical	physics	

Ultraviolet	Catastrophe	



The Planck FuncHon and Astrophysics


• Most	stellar	spectra	can	be	approximated	by	
blackbody	in	general	
•  They	emit	nearly	isotropically,	i.e.,	independent	of	
angle	
•  So	the	star’s	luminosity	in	a	given	frequency	range	

•  Integra@ng											over	all	frequencies,	we	recover	
the	Stefan-Boltzmann	Equa@on:		

Lνdν = Bν dν dAcosθ sinθ dθ dφstar∫ = 4π 2R2Bνdν

ν + dνν

Lνdν

L = AσT 4 = 4πR2σT 4 A	star’s	luminosity	depends	only	on	
radius	R	and	temperature	T	(if	it	is	
well	approximated	by	a	blackbody)	

Radius	of	the	star		



The Planck FuncHon and Astrophysics


•  Flux	received	at	a	distance	

Recall	from	Lecture	1		 F = L
4πd 2

Where	d	is	the	distance	to	the	light	source	

L = 4πR2σT 4

Subs@tute	Stefan-Boltzmann’s	Equa@on	for	stellar	luminosity	

We	have	

F =σT 4 R
d
⎛

⎝
⎜

⎞

⎠
⎟
2

The	flux	density	(or	monochroma@c	flux)	

In Problem 14, you will use Eq. ( 27) to express the Stefan–Boltzmann constant, σ , in
terms of the fundamental constants c, h, and k. The monochromatic luminosity is related
to the monochromatic flux, Fλ dλ, by the inverse square law for light, Eq. ( 2):

Fλ dλ = Lλ

4πr2
dλ = 2πhc2/λ5

ehc/λkT − 1

(

R

r

)2

dλ, (29)

where r is the distance to the model star. Thus Fλ dλ is the number of joules of starlight
energy with wavelengths between λ and λ+ dλ that arrive per second at one square meter
of a detector aimed at the model star, assuming that no light has been absorbed or scattered
during its journey from the star to the detector. Of course, Earth’s atmosphere absorbs some
starlight, but measurements of fluxes and apparent magnitudes can be corrected to account
for this absorption The values of these quantities usually quoted for stars are
in fact corrected values and would be the results of measurements above Earth’s absorbing
atmosphere.

6 THE COLOR INDEX

The apparent and absolute magnitudes discussed in Section 2, measured over all wave-
lengths of light emitted by a star, are known as bolometric magnitudes and are denoted by
mbol and Mbol, respectively.21 In practice, however, detectors measure the radiant flux of a
star only within a certain wavelength region defined by the sensitivity of the detector.

UBV Wavelength Filters

The color of a star may be precisely determined by using filters that transmit the star’s light
only within certain narrow wavelength bands. In the standard UBV system, a star’s apparent
magnitude is measured through three filters and is designated by three capital letters:

• U , the star’s ultraviolet magnitude, is measured through a filter centered at 365 nm
with an effective bandwidth of 68 nm.

• B, the star’s blue magnitude, is measured through a filter centered at 440 nm with an
effective bandwidth of 98 nm.

• V , the star’s visual magnitude, is measured through a filter centered at 550 nm with
an effective bandwidth of 89 nm.

Color Indices and the Bolometric Correction

Using Eq. ( 6), a star’s absolute color magnitudes MU , MB , and MV may be determined if
its distance d is known.22 Astar’s U − B color index is the difference between its ultraviolet

21A bolometer is an instrument that measures the increase in temperature caused by the radiant flux it receives at
all wavelengths.
22Note that although apparent magnitude is not denoted by a subscripted “m” in the UBV system, the absolute
magnitude is denoted by a subscripted “M .”

.
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Revisit magnitudes


•  The	apparent	and	absolute	magnitudes	in	lecture	1	
are	values	integrated	over	the	en8re	spectrum,	
known	as	bolometric	magnitudes,	denoted	by	mbol	
and	Mbol	

• However,	in	prac@ce,	we	usually	only	measure	the	
flux	of	a	star	within	certain	wavelength	ranges	

Imagine a star of luminosity L surrounded by a huge spherical shell of radius r . Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F ,
measured at distance r is related to the star’s luminosity by

F = L

4πr2
, (2)

the denominator being simply the area of the sphere. Since L does not depend on r , the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.4

Example 2.1. The luminosity of the Sun is L⊙ = 3.839 × 1026 W. At a distance of
1 AU = 1.496 × 1011 m, Earth receives a radiant flux above its absorbing atmosphere of

F = L

4πr2
= 1365 W m−2.

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 × 106 AU, an observer would measure the
radiant flux to be only 1/(2.063 × 106)2 as large. That is, the radiant flux from the Sun
would be 3.208 × 10−10 W m−2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M , to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

F2

F1
= 100(m1−m2)/5. (3)

Taking the logarithm of both sides leads to the alternative form:

m1 − m2 = −2.5 log10

(

F1

F2

)

. (4)

The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Eqs. (2) and (3):

100(m−M)/5 = F10

F
=
(

d

10 pc

)2

,

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.
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Color filters and UBV magnitude System


Ultraviolet	 Blue	

Visible	



UBV magnitudes


• Apparent	bolometric	magnitude	

• Apparent	UBV	magnitudes	

of these wavelength regions and are chosen so that the star Vega (α Lyrae) has a magnitude
of zero as seen through each filter.23 This is a completely arbitrary choice and does not
imply that Vega would appear equally bright when viewed through the U , B, and V filters.
However, the resulting values for the visual magnitudes of stars are about the same as those
recorded by Hipparchus two thousand years ago.24

A different method is used to determine the constant Cbol in the expression for the
bolometric magnitude, measured over all wavelengths of light emitted by a star. For a
perfect bolometer, capable of detecting 100 percent of the light arriving from a star, we set
S(λ) ≡ 1:

mbol = −2.5 log10

(
∫ ∞

0
Fλ dλ

)

+ Cbol. (32)

The value for Cbol originated in the wish of astronomers that the value of the bolometric
correction

BC = mbol − V

be negative for all stars (since a star’s radiant flux over all wavelengths is greater than
its flux in any specified wavelength band) while still being as close to zero as possible.
After a value of Cbol was agreed upon, it was discovered that some supergiant stars have
positive bolometric corrections. Nevertheless, astronomers have chosen to continue using
this unphysical method of measuring magnitudes.25 It is left as an exercise for you to
evaluate the constant Cbol by using the value of mbol assigned to the Sun: mSun = −26.83.

The color indices U − B and B − V are immediately seen to be

U − B = −2.5 log10

(

∫

FλSU dλ
∫

FλSB dλ

)

+ CU−B, (33)

where CU−B ≡ CU − CB . A similar relation holds for B − V . From Eq. ( 29), note that
although the apparent magnitudes depend on the radius R of the model star and its distance
r , the color indices do not, because the factor of (R/r)2 cancels in Eq. ( 33). Thus the
color index is a measure solely of the temperature of a model blackbody star.

Example 6.2. A certain hot star has a surface temperature of 42,000 K and color indices
U − B = −1.19 and B − V = −0.33. The large negative value of U − B indicates that
this star appears brightest at ultraviolet wavelengths, as can be confirmed with Wien’s
displacement law, Eq. (19). The spectrum of a 42,000-K blackbody peaks at

λmax = 0.0029 m K
42,000 K

= 69 nm,

continued

23Actually, the average magnitude of several stars is used for this calibration.
24See Chapter 1 of Böhm-Vitense (1989b) for a further discussion of the vagaries of the magnitude system used
by astronomers.
25Some authors, such as Böhm-Vitense (1989a, 1989b), prefer to define the bolometric correction as BC =
V − mbol, so their values of BC are usually positive.
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mB = B = −2.5log10 FλSB dλ0

∞

∫( )+CB

mU =U = −2.5log10 FλSU dλ0

∞

∫( )+CU

mV =V = −2.5log10 FλSV dλ0

∞

∫( )+CV

SU SB SV

Sensi@vity	Func@ons	Constants	Cu,	CB,	CV	are	chosen	so	that	U,	B,	V	of	
star	Vega	are	all	zero	



Color Indices


• A	star’s	color	index	is	the	difference	between	the	
apparent	magnitudes	of	two	different	color	filters	

U −B =mU −mB

B−V =mB −mV

=MU −MB

=MB −MV

m−M = 5log10
d

10pc
⎛

⎝
⎜

⎞

⎠
⎟

2

These	are	independent	of	distance!	



Bolometric correcHon


• Difference	between	a	star’s	bolometric	magnitude	
and	its	visual	magnitude	

and blue magnitudes, and a star’s B − V color index is the difference between its blue and
visual magnitudes:

U − B = MU − MB

and

B − V = MB − MV .

Stellar magnitudes decrease with increasing brightness; consequently, a star with a smaller
B − V color index is bluer than a star with a larger value of B − V . Because a color index
is the difference between two magnitudes, Eq. ( 6) shows that it is independent of the star’s
distance. The difference between a star’s bolometric magnitude and its visual magnitude is
its bolometric correction BC:

BC = mbol − V = Mbol − MV . (30)

Example 6.1. Sirius, the brightest-appearing star in the sky, has U , B, and V apparent
magnitudes of U = −1.47, B = −1.43, and V = −1.44. Thus for Sirius,

U − B = −1.47 − (−1.43) = −0.04

and

B − V = −1.43 − (−1.44) = 0.01.

Sirius is brightest at ultraviolet wavelengths, as expected for a star with an effective tem-
perature of Te = 9970 K. For this surface temperature,

λmax = 0.0029 m K
9970 K

= 291 nm,

which is in the ultraviolet portion of the electromagnetic spectrum. The bolometric correc-
tion for Sirius is BC = −0.09, so its apparent bolometric magnitude is

mbol = V + BC = −1.44 + (−0.09) = −1.53.

The relation between apparent magnitude and radiant flux, Eq. ( 4), can be used to
derive expressions for the ultraviolet, blue, and visual magnitudes measured (above Earth’s
atmosphere) for a star. A sensitivity function S(λ) is used to describe the fraction of the
star’s flux that is detected at wavelength λ. S depends on the reflectivity of the telescope
mirrors, the bandwidth of the U , B, and V filters, and the response of the photometer. Thus,
for example, a star’s ultraviolet magnitude U is given by

U = −2.5 log10

(
∫ ∞

0
FλSU dλ

)

+ CU, (31)

where CU is a constant. Similar expressions are used for a star’s apparent magnitude within
other wavelength bands. The constants C in the equations for U , B, and V differ for each
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Visual	All	wavelengths	



Color Index and Surface Temperature


Color	indices	tell	us	the	
colors	of	the	star,	which	are	
related	to	their	surface	
temperatures	
	
e.g.,	the	smaller	B-V	index,	
the	bluer	the	star,	the	ho<er	
the	star	


