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Fraunhofer Lines

• By	1814,	German	op;cian	Joseph	von	Fraunhofer	
cataloged	475	of	dark	lines	in	the	solar	spectrum,	
known	today	as	the	“Fraunhofer	Lines”	
• A	video	story	



Kirchhoff’s 
Laws


1.  A	hot,	dense	gas	or	hot	
solid	object	produces	a	
con2nuous	spectrum	

2.  A	hot,	diffuse	gas	
produces	bright	spectral	
lines	(emission	lines)	

3.  A	cool,	diffuse	gas	in	
front	of	a	source	of	a	
con;nuous	spectrum	
produces	dark	spectral	
lines	(absorp2on	lines)	in	
the	con;nuous	spectrum	



Measuring Spectra: Prism


Astronomers	use	spectrographs	to	separate	the	light	
in	different	wavelengths	and	measure	the	spectra	of	
stars	and	galaxies	



Measuring Spectra: DiffracAon GraAng




Spectra from different elements


Hα	Hβ	Hγ	Hδ	

Fraunhofer	lines	in	Solar	Spectrum	

Lab	measurements	



Spectroscopy: ApplicaAons


•  Iden;fy	elements	on	distant	astronomical	bodies:	
Chemical	Composi-on	
•  The	element	Helium	is	first	discovered	from	the	
solar	spectrum,	not	Earth.		
• Measure	physical	proper;es:	temperature,	density,	
pressure,	magne;c	fields,	high-energy	par;cles,	
etc.	
• Measure	veloci;es	of	distant	objects	via	Doppler	
shi/	



Doppler ShiF


“It’s	the	apparent	change	in	the	frequency	of	a	wave	
caused	by	rela;ve	mo;on	between	the	source	of	the	
wave	and	the	observer.”	---	Sheldon	Cooper	

A	short	animated	explana;on	(Youtube)	



Reference	spectrum	in	lab	

Observed	spectrum	from	Star	A	

Observed	spectrum	from	Star	B	

Ques;on:	Which	star	is	moving	towards	us?		

A. 	Star	A	
	
B. 	Star	B	



Doppler ShiF


• A hot, dense gas or hot solid object produces a continuous spectrum with no dark
spectral lines.1

• A hot, diffuse gas produces bright spectral lines (emission lines).

• Acool, diffuse gas in front of a source of a continuous spectrum produces dark spectral
lines (absorption lines) in the continuous spectrum.

Applications of Stellar Spectra Data

An immediate application of these results was the identification of elements found in the
Sun and other stars. A new element previously unknown on Earth, helium,2 was discovered
spectroscopically on the Sun in 1868; it was not found on Earth until 1895. Figure 1
shows the visible portion of the solar spectrum, and Table 1 lists some of the elements
responsible for producing the dark absorption

equation

 lines.
Another rich line of investigation was pursued by measuring the Doppler shifts of spectral

lines. For individual stars, vr ≪ c, and so the low-speed approximation of the following 

λobs − λrest

λrest
= "λ

λrest
= vr

c
, (1)

can be utilized to determine their radial velocities. By 1887 the radial velocities of Sirius,
Procyon, Rigel, and Arcturus had been measured with an accuracy of a few kilometers per
second.

Example 1.1. The rest wavelength λrest for an important spectral line of hydrogen
(known as Hα) is 656.281 nm when measured in air. However, the wavelength of the
Hα absorption line in the spectrum of the star Vega in the constellation Lyra is measured to
be 656.251 nm at a ground-based telescope. Equation ( 1) shows that the radial velocity
of Vega is

vr = c (λobs − λrest)

λrest
= −13.9 km s−1;

the minus sign means that Vega is approaching the Sun. stars also have a
proper motion, µ, perpendicular to the line of sight. Vega’s angular position in the sky
changes by µ = 0.35077′′ yr−1. At a distance of r = 7.76 pc, this proper motion is related
to the star’s transverse velocity, vθ Expressing r in meters and µ in radians per second
results in

vθ = rµ = 12.9 km s−1.

1In the first of Kirchhoff’s laws, “hot” actually means any temperature above 0 K. However, according to Wien’s
displacement law a temperature of several thousand degrees K is required for λmax to fall in the visible
portion of the electromagnetic spectrum. t is the opacity or optical depth of the gas that is responsible for the
continuous blackbody spectrum.
2The name helium comes from Helios, a Greek Sun god.

However,

.

I

,
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λobs > λrest :	Redshi:ed	->	Object	moving	away	from	observer	

λobs < λrest :	Blueshifted	->	Object	moving	towards	observer	

vr is	the	radial	component	of	the	objects	velocity	rela;ve	
to	the	observer.	Posi2ve	means	the	object	is	moving	
away	and	vice	versa.	



Radial Velocity of Vega 


•  The	rest	wavelength	of	Hα	is	656.281	nm	as	
measured	in	the	lab.	From	a	ground-based	
telescope,	the	Hα	line	from	star	Vega	in	
constella;on	Lyra	is	measured	at	656.251	nm.	
What	is	its	radial	velocity?	

• A hot, dense gas or hot solid object produces a continuous spectrum with no dark
spectral lines.1

• A hot, diffuse gas produces bright spectral lines (emission lines).

• Acool, diffuse gas in front of a source of a continuous spectrum produces dark spectral
lines (absorption lines) in the continuous spectrum.

Applications of Stellar Spectra Data

An immediate application of these results was the identification of elements found in the
Sun and other stars. A new element previously unknown on Earth, helium,2 was discovered
spectroscopically on the Sun in 1868; it was not found on Earth until 1895. Figure 1
shows the visible portion of the solar spectrum, and Table 1 lists some of the elements
responsible for producing the dark absorption
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second.
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(known as Hα) is 656.281 nm when measured in air. However, the wavelength of the
Hα absorption line in the spectrum of the star Vega in the constellation Lyra is measured to
be 656.251 nm at a ground-based telescope. Equation ( 1) shows that the radial velocity
of Vega is
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λrest
= −13.9 km s−1;

the minus sign means that Vega is approaching the Sun. stars also have a
proper motion, µ, perpendicular to the line of sight. Vega’s angular position in the sky
changes by µ = 0.35077′′ yr−1. At a distance of r = 7.76 pc, this proper motion is related
to the star’s transverse velocity, vθ Expressing r in meters and µ in radians per second
results in

vθ = rµ = 12.9 km s−1.

1In the first of Kirchhoff’s laws, “hot” actually means any temperature above 0 K. However, according to Wien’s
displacement law a temperature of several thousand degrees K is required for λmax to fall in the visible
portion of the electromagnetic spectrum. t is the opacity or optical depth of the gas that is responsible for the
continuous blackbody spectrum.
2The name helium comes from Helios, a Greek Sun god.
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Back	to	nature	of	light	discussion…	

Light	=	Waves	

Young’s	double-slit	experiment	

Maxwell’s	Equa2ons	

Ultraviolet	Catastrophe	of	
blackbody	radia2on	 Something	is	wrong!	

Discrete	emission/absorp2on	lines		



(Link	to	a	Youtube	video)	



Ephoton > φ•  Condi;on	for	producing	an	electron:	

•  A	single	photon	has	energy:	

•  Whether	or	not	an	electron	is	produced	depends	only	
on	the	frequency	of	the	light,	not	the	flux	of	the	light	

Planck’s	quan;zed	
energy	of	light	waves!	

Photoelectric	Effect	

Ephoton = hν





Atomic Structure


Most	of	the	space	
within	an	atom	is	
empty!	

The	radius	the	of	nucleus	
was	10,000	;mes	smaller	
than	the	radius	of	the	atom	



Hydrogen Spectral Lines


•  In	1885,	a	Swiss	teacher,	Johann	Balmer	found	an	
empirical	formula	to	reproduce	the	wavelengths	of	
hydrogen	lines	(in	visible	wavelengths),	today	
known	as	the	Balmer	series		

	

to the nucleus. Rutherford coined the term proton to refer to the nucleus of the hydrogen
atom (Z = 1), 1836 times more massive than the electron. But how were these charges
arranged?

The Wavelengths of Hydrogen

The experimental data were abundant. The wavelengths of 14 spectral lines of hydrogen
had been precisely determined. Those in the visible region of the electromagnetic spectrum
are 656.3 nm (red, Hα), 486.1 nm (turquoise, Hβ), 434.0 nm (blue, Hγ ), and 410.2 nm
(violet, Hδ). In 1885 a Swiss school teacher, Johann Balmer (1825–1898), had found, by
trial and error, a formula to reproduce the wavelengths of these spectral lines of hydrogen,
today called the Balmer series or Balmer lines:

1
λ

= RH

(

1
4

− 1
n2

)

, (7)

where n = 3, 4, 5, . . . , and RH = 1.09677583 × 107 ± 1.3 m−1 is the experimentally de-
termined Rydberg constant for hydrogen.7 Balmer’s formula was very accurate, to within
a fraction of a percent. Inserting n = 3 gives the wavelength of the Hα Balmer line, n = 4
gives Hβ, and so on. Furthermore, Balmer realized that since 22 = 4, his formula could be
generalized to

1
λ

= RH

(

1
m2

− 1
n2

)

, (8)

with m < n (both integers). Many nonvisible spectral lines of hydrogen were found later,
just as Balmer had predicted. Today, the lines corresponding to m = 1 are called Lyman
lines. The Lyman series of lines is found in the ultraviolet region of the electromagnetic
spectrum. Similarly, inserting m = 3 into Eq. ( 8) produces the wavelengths of the Paschen
series of lines, which lie entirely in the infrared portion of the spectrum. The wavelengths
of important selected hydrogen lines are given in Table 2.

Yet all of this was sheer numerology, with no foundation in the physics of the day. Physi-
cists were frustrated by their inability to construct a model of even this simplest of atoms. A
planetary model of the hydrogen atom, consisting of a central proton and one electron held
together by their mutual electrical attraction, should have been most amenable to analysis.
However, a model consisting of a single electron and proton moving around their common
center of mass suffers from a basic instability. According to Maxwell’s equations of elec-
tricity and magnetism, an accelerating electric charge emits electromagnetic radiation. The
orbiting electron should thus lose energy by emitting light with a continuously increasing
frequency (the orbital frequency) as it spirals down into the nucleus. This theoretical predic-
tion of a continuous spectrum disagreed with the discrete emission lines actually observed.
Even worse was the calculated timescale: The electron should plunge into the nucleus in
only 10−8 s. Obviously, matter is stable over much longer periods of time!

7RH is named in honor of Johannes Rydberg (1854–1919), a Swedish spectroscopist.
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atom (Z = 1), 1836 times more massive than the electron. But how were these charges
arranged?

The Wavelengths of Hydrogen

The experimental data were abundant. The wavelengths of 14 spectral lines of hydrogen
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with m < n (both integers). Many nonvisible spectral lines of hydrogen were found later,
just as Balmer had predicted. Today, the lines corresponding to m = 1 are called Lyman
lines. The Lyman series of lines is found in the ultraviolet region of the electromagnetic
spectrum. Similarly, inserting m = 3 into Eq. ( 8) produces the wavelengths of the Paschen
series of lines, which lie entirely in the infrared portion of the spectrum. The wavelengths
of important selected hydrogen lines are given in Table 2.

Yet all of this was sheer numerology, with no foundation in the physics of the day. Physi-
cists were frustrated by their inability to construct a model of even this simplest of atoms. A
planetary model of the hydrogen atom, consisting of a central proton and one electron held
together by their mutual electrical attraction, should have been most amenable to analysis.
However, a model consisting of a single electron and proton moving around their common
center of mass suffers from a basic instability. According to Maxwell’s equations of elec-
tricity and magnetism, an accelerating electric charge emits electromagnetic radiation. The
orbiting electron should thus lose energy by emitting light with a continuously increasing
frequency (the orbital frequency) as it spirals down into the nucleus. This theoretical predic-
tion of a continuous spectrum disagreed with the discrete emission lines actually observed.
Even worse was the calculated timescale: The electron should plunge into the nucleus in
only 10−8 s. Obviously, matter is stable over much longer periods of time!

7RH is named in honor of Johannes Rydberg (1854–1919), a Swedish spectroscopist.
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is	the	experimentally	determined	Rydberg	constant	for	hydrogen	



Hydrogen Spectral Lines


•  Lyman	series:	m	=	1	
•  Balmer	series:	m	=	2	
•  Paschen	series:	m	=	3	

to the nucleus. Rutherford coined the term proton to refer to the nucleus of the hydrogen
atom (Z = 1), 1836 times more massive than the electron. But how were these charges
arranged?

The Wavelengths of Hydrogen

The experimental data were abundant. The wavelengths of 14 spectral lines of hydrogen
had been precisely determined. Those in the visible region of the electromagnetic spectrum
are 656.3 nm (red, Hα), 486.1 nm (turquoise, Hβ), 434.0 nm (blue, Hγ ), and 410.2 nm
(violet, Hδ). In 1885 a Swiss school teacher, Johann Balmer (1825–1898), had found, by
trial and error, a formula to reproduce the wavelengths of these spectral lines of hydrogen,
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where n = 3, 4, 5, . . . , and RH = 1.09677583 × 107 ± 1.3 m−1 is the experimentally de-
termined Rydberg constant for hydrogen.7 Balmer’s formula was very accurate, to within
a fraction of a percent. Inserting n = 3 gives the wavelength of the Hα Balmer line, n = 4
gives Hβ, and so on. Furthermore, Balmer realized that since 22 = 4, his formula could be
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1
λ

= RH

(

1
m2

− 1
n2

)

, (8)

with m < n (both integers). Many nonvisible spectral lines of hydrogen were found later,
just as Balmer had predicted. Today, the lines corresponding to m = 1 are called Lyman
lines. The Lyman series of lines is found in the ultraviolet region of the electromagnetic
spectrum. Similarly, inserting m = 3 into Eq. ( 8) produces the wavelengths of the Paschen
series of lines, which lie entirely in the infrared portion of the spectrum. The wavelengths
of important selected hydrogen lines are given in Table 2.

Yet all of this was sheer numerology, with no foundation in the physics of the day. Physi-
cists were frustrated by their inability to construct a model of even this simplest of atoms. A
planetary model of the hydrogen atom, consisting of a central proton and one electron held
together by their mutual electrical attraction, should have been most amenable to analysis.
However, a model consisting of a single electron and proton moving around their common
center of mass suffers from a basic instability. According to Maxwell’s equations of elec-
tricity and magnetism, an accelerating electric charge emits electromagnetic radiation. The
orbiting electron should thus lose energy by emitting light with a continuously increasing
frequency (the orbital frequency) as it spirals down into the nucleus. This theoretical predic-
tion of a continuous spectrum disagreed with the discrete emission lines actually observed.
Even worse was the calculated timescale: The electron should plunge into the nucleus in
only 10−8 s. Obviously, matter is stable over much longer periods of time!

7RH is named in honor of Johannes Rydberg (1854–1919), a Swedish spectroscopist.
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More	generally,	TABLE 2 The wavelengths of selected hydrogen spectral lines in air. (Based on Cox, (ed.),
Allen’s Astrophysical Quantities, Fourth Edition, Springer, New York, 2000.)

Series Name Symbol Transition Wavelength (nm)
Lyman Lyα 2 ↔ 1 121.567

Lyβ 3 ↔ 1 102.572
Lyγ 4 ↔ 1 79.254
Lylimit ∞ ↔ 1 91.18

Balmer Hα 3 ↔ 2 656.281
Hβ 4 ↔ 2 486.134
Hγ 5 ↔ 2 434.048
Hδ 6 ↔ 2 410.175
Hϵ 7 ↔ 2 397.007
H8 8 ↔ 2 388.905
Hlimit ∞ ↔ 3 364.6

Paschen Paα 4 ↔ 3 1875.10
Paβ 5 ↔ 3 1281.81
Paγ 6 ↔ 3 1093.81
Palimit ∞ ↔ 3 820.4

Bohr’s Semiclassical Atom

Theoretical physicists hoped that the answer might be found among the new ideas of pho-
tons and quantized energy. A Danish physicist, Niels Bohr (1885–1962; see Fig. 4) came
to the rescue in 1913 with a daring proposal. The dimensions of Planck’s constant, J × s,
are equivalent to kg × m s−1 × m, the units of angular momentum. Perhaps the angular
momentum of the orbiting electron was quantized. This quantization had been previously
introduced into atomic models by the British astronomer J. W. Nicholson. Although Bohr
knew that Nicholson’s models were flawed, he recognized the possible significance of the
quantization of angular momentum. Just as an electromagnetic wave of frequency ν could
have the energy of only an integral number of quanta, E = nhν, suppose that the value
of the angular momentum of the hydrogen atom could assume only integral multiples of
Planck’s constant divided by 2π : L = nh/2π = n!.8 Bohr hypothesized that in orbits with
precisely these allowed values of the angular momentum, the electron would be stable and
would not radiate in spite of its centripetal acceleration. What would be the result of such
a bold departure from classical physics?

To analyze the mechanical motion of the atomic electron–proton system, we start with
the mathematical description of their electrical attraction given by Coulomb’s law. For two
charges q1 and q2 separated by a distance r , the electric force on charge 2 due to charge 1
has the familiar form

F = 1
4πϵ0

q1q2

r2
r̂, (9)

8The quantity ! ≡ h/2π = 1.054571596 × 10−34 J s and is pronounced “h-bar.”
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Bohr’s Semiclassical Atomic Model

Model:	
•  Nucleus	is	a	point	mass	sipng	at	the	
center	of	the	atom	

•  Electrons	move	in	circular	orbits	
Bohr’s	Postula2ons:	
•  Only	a	discrete	number	of	orbits	of	
the	electrons	(those	with	angular	
momentum	that	is	an	integral	
mul;ple	of	ħ	=	h/2π)	is	allowed	

•  Radia;on	of	a	discrete	quantum	of	
energy	is	emi?ed/absorbed	only	
when	the	electrons	jumps	from	one	
orbit	to	another	

•  The	radiated	energy	equals	to	the	
energy	difference	between	the	orbits	



The unit of Planck’s constant


Solutions for An Introduction to Modern Astrophysics 25

can be used to replace Ee in the preceding equation,

m2
ec4 C E2

i ! 2EiEf cos ! C E2
f D .Ei ! Ef C mec2/2:

This simplifies to
1

Ef
! 1

Ei
D 1

mec2
.1 ! cos !/:

Using Eq. (5.5) for the photon energy, E D hc=", results in

#" D "f ! "i D h

mec
.1 ! cos !/:

5.6 The change of wavelength is given by the Compton scattering formula, Eq. (5.6), but with the electron mass
replaced by the proton mass,

#" D "f ! "i D h

mpc
.1 ! cos !/:

The characteristic change in wavelength is h=mpc D 1:32 " 10!6 nm. This is smaller than the value of the
Compton wavelength, "C D h=mec D 0:00243 nm, by a factor of me=mp D 5:4 " 10!4.

5.7 Planck’s constant has units of
J s D [kg m2 s!2] s D kg [m s!1] m;

which are the units of angular momentum (mvr ).

5.8 (a) For an atom with Z protons in the nucleus (charge Ze) and one electron (charge !e), Coulomb’s law
(Eq. 5.9) becomes

F D ! 1

4$%0

Ze2

r 2
Or;

and the electrical potential energy becomes

U D ! 1

4$%0

Ze2

r
:

This means that the quantity “e2” should be replaced by “Ze2” wherever it appears in an expression for
the hydrogen atom. Similarly, “e4” should be replaced by “Z2e4.” The result will be the corresponding
expression for a one-electron atom with Z protons. From Eq. (5.13), the orbital radii are therefore

rn D 4$%0!2

&Ze2
n2 D a0

Z
n2;

where a0 D 0:0529 nm. The energies are

En D ! &Z2e4

32$2%2
0!2

1

n2
D !13:6 eV

Z2

n2

from Eq. (5.14).

(b) Z D 2 for singly ionized helium (He II), and so for the ground state (n D 1),

r1 D a0

2
.12/ D 0:0265 nm

and

E1 D !13:6 eV
22

12
D !54:4 eV:

The ionization energy is 54:4 eV.



Bohr’s Model of Hydrogen Atom


Electric	force	provides	centrifugal	accelera;on	

Kine;c	energy	

Electrical	poten;al	energy	
	
	
Total	energy	

FIGURE 4 Niels Bohr (1885–1962). (Courtesy of The Niels Bohr Archive, Copenhagen.)

where ϵ0 = 8.854187817 . . . × 10−12 F m−1 is the permittivity of free space9 and r̂ is a unit
vector directed from charge 1 toward charge 2.

Consider an electron of mass me and charge −e and a proton of mass mp and charge +e

in circular orbits around their common center of mass, under the influence of their mutual
electrical attraction, e being the fundamental charge, e = 1.602176462 × 10−19 C.

problem by using the reduced mass

µ = memp

me + mp

= (me)(1836.15266 me)

me + 1836.15266 me

= 0.999455679 me

and the total mass

M = me + mp = me + 1836.15266 me = 1837.15266 me = 1.0005446 mp

of the system. Since M ≃ mp and µ ≃ me, the hydrogen atom may be thought of as being
composed of a proton of mass M that is at rest and an electron of mass µ that follows a
circular orbit of radius r around the proton; see Fig. 5. The electrical attraction between the
electron and the proton produces the electron’s centripetal acceleration v2/r , as described
by Newton’s second law:

F = µa,

implying

1
4πϵ0

q1q2

r2
r̂ = −µ

v2

r
r̂,

9Formally, ϵ0 is defined as ϵ0 ≡ 1/µ0c
2, where µ0 ≡ 4π × 10−7 N A−2 is the permeability of free space and

c ≡ 2.99792458 × 108 m s−1 is the defined speed of light.

This two-body problem may be treated as an equivalent one-body
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FIGURE 5 The Bohr model of the hydrogen atom.

or

− 1
4πϵ0

e2

r2
r̂ = −µ

v2

r
r̂.

Canceling the minus sign and the unit vector r̂, this expression can be solved for the kinetic
energy, 1

2µv2:

K = 1
2
µv2 = 1

8πϵ0

e2

r
. (10)

Now the electrical potential energy U of the Bohr atom is10

U = − 1
4πϵ0

e2

r
= −2K.

Thus the total energy E = K + U of the atom is

E = K + U = K − 2K = −K = − 1
8πϵ0

e2

r
. (11)

Note that the relation between the kinetic, potential, and total energies is in accordance
with the virial theorem for an inverse-square force,
E = 1

2U = −K . Because the kinetic energy must be positive, the total energy E is negative.
This merely indicates that the electron and the proton are bound. To ionize the atom (that
is, to remove the proton and electron to an infinite separation), an amount of energy of
magnitude |E| (or more) must be added to the atom.

Thus far the derivation has been completely classical in nature. At this point, however,
we can use Bohr’s quantization of angular momentum,

L = µvr = n!, (12)

10 This is found from a derivation analogous to the one leading to the gravitational result The zero of potential
energy is taken to be zero at r = ∞.

.
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Note that the relation between the kinetic, potential, and total energies is in accordance
with the virial theorem for an inverse-square force,
E = 1

2U = −K . Because the kinetic energy must be positive, the total energy E is negative.
This merely indicates that the electron and the proton are bound. To ionize the atom (that
is, to remove the proton and electron to an infinite separation), an amount of energy of
magnitude |E| (or more) must be added to the atom.

Thus far the derivation has been completely classical in nature. At this point, however,
we can use Bohr’s quantization of angular momentum,

L = µvr = n!, (12)

10 This is found from a derivation analogous to the one leading to the gravitational result The zero of potential
energy is taken to be zero at r = ∞.
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to rewrite the kinetic energy, Eq. (10).
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e2
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µv2 = 1

2
(µvr)2

µr2
= 1

2
(n!)2

µr2
.

Solving this equation for the radius r shows that the only values allowed by Bohr’s quan-
tization condition are

rn = 4πϵ0!
2

µe2
n2 = a0n

2, (13)

where a0 = 5.291772083 × 10−11 m = 0.0529 nm is known as the Bohr radius. Thus the
electron can orbit at a distance of a0, 4a0, 9a0, . . . from the proton, but no other separations
are allowed. According to Bohr’s hypothesis, when the electron is in one of these orbits,
the atom is stable and emits no radiation.

Inserting this expression for r into Eq. ( 11) reveals that the allowed energies of the
Bohr atom are

En = − µe4

32π2ϵ2
0!2

1
n2

= −13.6 eV
1
n2

. (14)

The integer n, known as the principal quantum number, completely determines the char-
acteristics of each orbit of the Bohr atom. Thus, when the electron is in the lowest orbit (the
ground state), with n = 1 and r1 = a0, its energy is E1 = −13.6 eV. With the electron in
the ground state, it would take at least 13.6 eV to ionize the atom. When the electron is in
the first excited state, with n = 2 and r2 = 4a0, its energy is greater than it is in the ground
state: E2 = −13.6/4 eV = −3.40 eV.

If the electron does not radiate in any of its allowed orbits, then what is the origin of the
spectral lines observed for hydrogen? Bohr proposed that a photon is emitted or absorbed
when an electron makes a transition from one orbit to another. Consider an electron as it
“falls” from a higher orbit, nhigh, to a lower orbit, nlow, without stopping at any intermediate
orbit. (This is not a fall in the classical sense; the electron is never observed between the
two orbits.) The electron loses energy#E = Ehigh − Elow, and this energy is carried away
from the atom by a single photon. Equation ( 14) leads to an expression for the wavelength
of the emitted photon,

Ephoton = Ehigh − Elow

or

hc

λ
=
(

− µe4

32π2ϵ2
0!2

1
n2

high

)

−
(

− µe4

32π2ϵ2
0!2

1
n2

low

)

,
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which gives

1
λ

= µe4

64π3ϵ2
0!3c

(

1
n2

low

− 1
n2

high

)

. (15)

Comparing this with Eqs. ( 7) and ( 8) reveals that Eq. ( 15) is just the generalized
Balmer formula for the spectral lines of hydrogen, with nlow = 2 for the Balmer series.
Inserting values into the combination of constants in front of the parentheses shows that
this term is exactly the Rydberg constant for hydrogen:

RH = µe4

64π3ϵ2
0!3c

= 10967758.3 m−1.

This value is in perfect agreement with the experimental value quoted following Eq. ( 7)
for the hydrogen lines determined by Johann Balmer, and this agreement illustrates the great
success of Bohr’s model of the hydrogen atom.11

Example 3.1. What is the wavelength of the photon emitted when an electron makes a
transition from the n = 3 to the n = 2 orbit of the Bohr hydrogen atom? The energy lost
by the electron is carried away by the photon, so

Ephoton = Ehigh − Elow

hc

λ
= −13.6 eV

1
n2

high

−
(

−13.6 eV
1

n2
low

)

= −13.6 eV
(

1
32

− 1
22

)

.

Solving for the wavelength gives λ = 656.469 nm in a vacuum. This result is within 0.03%
of the measured value of the Hα spectral line, as quoted in Example 1.1 and Table 2.

The discrepancy between the calculated and the observed values is due to the measure-
ments being made in air rather than in vacuum. Near sea level, the speed of light is slower
than in vacuum by a factor of approximately 1.000297. Defining the index of refraction
to be n = c/v, where v is the measured speed of light in the medium, nair = 1.000297.
Given that λν = v for wave propagation, and since ν cannot be altered in moving from one
medium to another without resulting in unphysical discontinuities in the electromagnetic
field of the light wave, the measured wavelength must be proportional to the wave speed.
Thus λair/λvacuum = vair/c = 1/nair . Solving for the measured wavelength of the Hα line
in air yields

λair = λvacuum/nair = 656.469 nm/1.000297 = 656.275 nm.

continued

11The slightly different Rydberg constant, R∞, found in many texts assumes an infinitely heavy nucleus. The
reduced mass, µ, in the expression for RH is replaced by the electron mass, me , in R∞.
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to the nucleus. Rutherford coined the term proton to refer to the nucleus of the hydrogen
atom (Z = 1), 1836 times more massive than the electron. But how were these charges
arranged?

The Wavelengths of Hydrogen

The experimental data were abundant. The wavelengths of 14 spectral lines of hydrogen
had been precisely determined. Those in the visible region of the electromagnetic spectrum
are 656.3 nm (red, Hα), 486.1 nm (turquoise, Hβ), 434.0 nm (blue, Hγ ), and 410.2 nm
(violet, Hδ). In 1885 a Swiss school teacher, Johann Balmer (1825–1898), had found, by
trial and error, a formula to reproduce the wavelengths of these spectral lines of hydrogen,
today called the Balmer series or Balmer lines:

1
λ

= RH

(

1
4

− 1
n2

)

, (7)

where n = 3, 4, 5, . . . , and RH = 1.09677583 × 107 ± 1.3 m−1 is the experimentally de-
termined Rydberg constant for hydrogen.7 Balmer’s formula was very accurate, to within
a fraction of a percent. Inserting n = 3 gives the wavelength of the Hα Balmer line, n = 4
gives Hβ, and so on. Furthermore, Balmer realized that since 22 = 4, his formula could be
generalized to

1
λ

= RH

(

1
m2

− 1
n2

)

, (8)

with m < n (both integers). Many nonvisible spectral lines of hydrogen were found later,
just as Balmer had predicted. Today, the lines corresponding to m = 1 are called Lyman
lines. The Lyman series of lines is found in the ultraviolet region of the electromagnetic
spectrum. Similarly, inserting m = 3 into Eq. ( 8) produces the wavelengths of the Paschen
series of lines, which lie entirely in the infrared portion of the spectrum. The wavelengths
of important selected hydrogen lines are given in Table 2.

Yet all of this was sheer numerology, with no foundation in the physics of the day. Physi-
cists were frustrated by their inability to construct a model of even this simplest of atoms. A
planetary model of the hydrogen atom, consisting of a central proton and one electron held
together by their mutual electrical attraction, should have been most amenable to analysis.
However, a model consisting of a single electron and proton moving around their common
center of mass suffers from a basic instability. According to Maxwell’s equations of elec-
tricity and magnetism, an accelerating electric charge emits electromagnetic radiation. The
orbiting electron should thus lose energy by emitting light with a continuously increasing
frequency (the orbital frequency) as it spirals down into the nucleus. This theoretical predic-
tion of a continuous spectrum disagreed with the discrete emission lines actually observed.
Even worse was the calculated timescale: The electron should plunge into the nucleus in
only 10−8 s. Obviously, matter is stable over much longer periods of time!

7RH is named in honor of Johannes Rydberg (1854–1919), a Swedish spectroscopist.
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continued

11The slightly different Rydberg constant, R∞, found in many texts assumes an infinitely heavy nucleus. The
reduced mass, µ, in the expression for RH is replaced by the electron mass, me , in R∞.
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Example 3.1. What is the wavelength of the photon emitted when an electron makes a
transition from the n = 3 to the n = 2 orbit of the Bohr hydrogen atom? The energy lost
by the electron is carried away by the photon, so

Ephoton = Ehigh − Elow

hc

λ
= −13.6 eV

1
n2

high

−
(

−13.6 eV
1

n2
low

)

= −13.6 eV
(

1
32

− 1
22

)

.

Solving for the wavelength gives λ = 656.469 nm in a vacuum. This result is within 0.03%
of the measured value of the Hα spectral line, as quoted in Example 1.1 and Table 2.

The discrepancy between the calculated and the observed values is due to the measure-
ments being made in air rather than in vacuum. Near sea level, the speed of light is slower
than in vacuum by a factor of approximately 1.000297. Defining the index of refraction
to be n = c/v, where v is the measured speed of light in the medium, nair = 1.000297.
Given that λν = v for wave propagation, and since ν cannot be altered in moving from one
medium to another without resulting in unphysical discontinuities in the electromagnetic
field of the light wave, the measured wavelength must be proportional to the wave speed.
Thus λair/λvacuum = vair/c = 1/nair . Solving for the measured wavelength of the Hα line
in air yields

λair = λvacuum/nair = 656.469 nm/1.000297 = 656.275 nm.

continued

11The slightly different Rydberg constant, R∞, found in many texts assumes an infinitely heavy nucleus. The
reduced mass, µ, in the expression for RH is replaced by the electron mass, me , in R∞.
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continued

11The slightly different Rydberg constant, R∞, found in many texts assumes an infinitely heavy nucleus. The
reduced mass, µ, in the expression for RH is replaced by the electron mass, me , in R∞.
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continued

11The slightly different Rydberg constant, R∞, found in many texts assumes an infinitely heavy nucleus. The
reduced mass, µ, in the expression for RH is replaced by the electron mass, me , in R∞.
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Comparing	to	the	measured	
wavelength	in	the	air:		

λair = 656.275 nm	

Why?	



Which	of	the	following	transi;ons	of	the	hydrogen	
atom	has	the	shortest	wavelength?	
	
A.  n	=	3	–>	n	=	2	(Hα)	
B.  n	=	4	->	n	=	2	(Hβ)	
C.  n	=	2	->	n	=	1	(Lyman	α)	
D.  n	=	5	->	n	=	3	(Paschen	γ)	
E.  n	=	4	->	n	=	3	(Paschen	α)	



Hydrogen spectral lines and Kirchhoff’s Law


This result differs from the quoted value by only 0.0009%. The remainder of the discrepancy
is due to the fact that the index of refraction is wavelength dependent. The index of refraction
also depends on environmental conditions such as temperature, pressure, and humidity.12

Unless otherwise noted, throughout the remainder of this text, wavelengths will be as-
sumed to be measured in air (from the ground).

The reverse process may also occur. If a photon has an energy equal to the difference
in energy between two orbits (with the electron in the lower orbit), the photon may be
absorbed by the atom. The electron uses the photon’s energy to make an upward transition
from the lower orbit to the higher orbit. The relation between the photon’s wavelength and
the quantum numbers of the two orbits is again given by Eq. (15).

After the quantum revolution, the physical processes responsible for Kirchhoff’s laws
(discussed in Section 1) finally became clear.

• A hot, dense gas or hot solid object produces a continuous spectrum with no dark
spectral lines. This is the continuous spectrum of blackbody radiation emitted at any
temperature above absolute zero and described by the Planck functions Bλ(T ) and
Bν(T ). The wavelengthλmax at which the Planck function Bλ(T ) obtains its maximum
value is given by Wien’s displacement law

• A hot, diffuse gas produces bright emission lines. Emission lines are produced when
an electron makes a downward transition from a higher orbit to a lower orbit. The
energy lost by the electron is carried away by a single photon. For example, the
hydrogen Balmer emission lines are produced by electrons “falling” from higher
orbits down to the n = 2 orbit; see Fig. 6(a).

• A cool, diffuse gas in front of a source of a continuous spectrum produces dark
absorption lines in the continuous spectrum. Absorption lines are produced when
an electron makes a transition from a lower orbit to a higher orbit. If an incident
photon in the continuous spectrum has exactly the right amount of energy, equal to

H!

H"
n = 1

n = 2

n = 3

n = 4

H!

H"
n = 1

n = 2

n = 3

n = 4
(a) (b)

FIGURE 6 Balmer lines produced by the Bohr hydrogen atom. (a) Emission lines. (b) Absorption
lines.

12See, for example, Lang, Astrophysical Formulae, 1999, page 185 for a fitting formula for n(λ).
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FIGURE 7 Energy level diagram for the hydrogen atom showing Lyman, Balmer, and Paschen
lines (downward arrows indicate emission lines; upward arrow indicates absorption lines).

the difference in energy between a higher orbit and the electron’s initial orbit, the
photon is absorbed by the atom and the electron makes an upward transition to that
higher orbit. For example, the hydrogen Balmer absorption lines are produced by
atoms absorbing photons that cause electrons to make transitions from the n = 2
orbit to higher orbits; see Figs. 6(b) and 7.

Despite the spectacular successes of Bohr’s model of the hydrogen atom, it is not quite
correct. Although angular momentum is quantized, it does not have the values assigned
by Bohr.13 Bohr painted a semiclassical picture of the hydrogen atom, a miniature Solar
System with an electron circling the proton in a classical circular orbit. In fact, the electron
orbits are not circular. They are not even orbits at all, in the classical sense of an electron
at a precise location moving with a precise velocity. Instead, on an atomic level, nature is
“fuzzy,” with an attendant uncertainty that cannot be avoided. It was fortunate that Bohr’s
model, with all of its faults, led to the correct values for the energies of the orbits and to
a correct interpretation of the formation of spectral lines. This intuitive, easily imagined
model of the atom is what most physicists and astronomers have in mind when they visualize
atomic processes.

4 QUANTUM MECHANICS AND WAVE–PARTICLE DUALITY

The last act of the quantum revolution began with the musings of a French prince, Louis de
Broglie (1892–1987; see Fig. 8). Wondering about the recently discovered wave–particle
duality for light, he posed a profound question: If light (classically thought to be a wave)

13As we will see in the next section, instead of L = n!, the actual values of the orbital angular momentum are
L = √

ℓ(ℓ+ 1) !, where ℓ, an integer, is a new quantum number.
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1.  A	hot,	dense	gas	or	hot	solid	object	
produces	a	con2nuous	spectrum	

2.  A	hot,	diffuse	gas	produces	bright	
spectral	lines	(emission	lines)	

3.  A	cool,	diffuse	gas	in	front	of	a	source	
of	a	con;nuous	spectrum	produces	
dark	spectral	lines	(absorp2on	lines)	
in	the	con;nuous	spectrum	



More	quantum	physics…	
Useful	for	later	lectures	



Wave-parAcle duality of all parAcles


•  In	his	1927	Ph.D.	thesis,	de	
Broglie’s	extended	the	wave-
par;cle	duality	to	all	par;cles	
• de	Broglie	wavelength	

•  Everything	exhibits	wave	
proper;es!	

	
FIGURE 8 Louis de Broglie (1892–1987). (Courtesy of AIP Niels Bohr Library.)

could exhibit the characteristics of particles, might not particles sometimes manifest the
properties of waves?

de Broglie’s Wavelength and Frequency

In his 1927 Ph.D. thesis, de Broglie extended the wave–particle duality to all of nature.
Photons carry both energy E and momentum p, and these quantities are related to the
frequency ν and wavelength λ of the light wave by Eq. (5):

ν = E

h

λ = h

p
.

(16)

(17)

de Broglie proposed that these equations be used to define a frequency and a wavelength
for all particles. The de Broglie wavelength and frequency describe not only massless pho-
tons but massive electrons, protons, neutrons, atoms, molecules, people, planets, stars, and
galaxies as well. This seemingly outrageous proposal of matter waves has been confirmed
in countless experiments. Figure 9 shows the interference pattern produced by electrons
in a double-slit experiment. Just as Thomas Young’s double-slit experiment established the
wave properties of light, the electron double-slit experiment can be explained only by the
wave-like behavior of electrons, with each electron propagating through both slits.14 The
wave–particle duality applies to everything in the physical world; everything exhibits its
wave properties in its propagation and manifests its particle nature in its interactions.

14See Chapter 6 of Feynman (1965) for a fascinating description of the details and profound implications of the
electron double-slit experiment.
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If	a	light-wave	could	also	act	
like	a	par;cle,	why	shouldn’t	
ma?er-par;cles	also	act	like	
waves?	

FIGURE 8 Louis de Broglie (1892–1987). (Courtesy of AIP Niels Bohr Library.)

could exhibit the characteristics of particles, might not particles sometimes manifest the
properties of waves?
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Photons carry both energy E and momentum p, and these quantities are related to the
frequency ν and wavelength λ of the light wave by Eq. (5):
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p
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(17)

de Broglie proposed that these equations be used to define a frequency and a wavelength
for all particles. The de Broglie wavelength and frequency describe not only massless pho-
tons but massive electrons, protons, neutrons, atoms, molecules, people, planets, stars, and
galaxies as well. This seemingly outrageous proposal of matter waves has been confirmed
in countless experiments. Figure 9 shows the interference pattern produced by electrons
in a double-slit experiment. Just as Thomas Young’s double-slit experiment established the
wave properties of light, the electron double-slit experiment can be explained only by the
wave-like behavior of electrons, with each electron propagating through both slits.14 The
wave–particle duality applies to everything in the physical world; everything exhibits its
wave properties in its propagation and manifests its particle nature in its interactions.

14See Chapter 6 of Feynman (1965) for a fascinating description of the details and profound implications of the
electron double-slit experiment.
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Electron double-slit experiment


Electrons	exhibit	wave-par;cle	duality	
	
Each	electron	passes	both	slit	





Example: Wavelength of a jogger


• What	is	the	wavelength	of	a	70-kg	man	jogging	at	3	
m/s?	

FIGURE 9 Interference pattern from an electron double-slit experiment. (Figure from Jönsson,
Zeitschrift für Physik, 161, 454, 1961.)

Example 4.1. Compare the wavelengths of a free electron moving at 3 × 106 m s−1 and
a 70-kg man jogging at 3 m s−1. For the electron,

λ = h

p
= h

mev
= 0.242 nm,

which is about the size of an atom and much shorter than the wavelength of visible light.
Electron microscopes utilize electrons with wavelengths one million times shorter than
visible wavelengths to obtain a much higher resolution than is possible with optical micro-
scopes.

The wavelength of the jogging man is

λ = h

p
= h

mmanv
= 3.16 × 10−36 m,

which is completely negligible on the scale of the everyday world, and even on atomic or
nuclear scales. Thus the jogging gentleman need not worry about diffracting when returning
home through his doorway!

Just what are the waves that are involved in the wave–particle duality of nature? In
a double-slit experiment, each photon or electron must pass through both slits, since the
interference pattern is produced by the constructive and destructive interference of the two
waves. Thus the wave cannot convey information about where the photon or electron is,
but only about where it may be. The wave is one of probability, and its amplitude is denoted
by the Greek letter " (psi). The square of the wave amplitude, |"|2, at a certain location
describes the probability of finding the photon or electron at that location. In the double-slit
experiment, photons or electrons are never found where the waves from slits 1 and 2 have
destructively interfered—that is, where |"1 +"2|2 = 0.
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Heisenberg’s Uncertainty Principle


Forms	oxen	used:		

Heisenberg’s Uncertainty Principle

The wave attributes of matter lead to some unexpected conclusions of paramount importance
for the science of astronomy. For example, consider Fig. 10(a). The probability wave,
!, is a sine wave, with a precise wavelength λ. Thus the momentum p = h/λ of the
particle described by this wave is known exactly. However, because |!|2 consists of a
number of equally high peaks extending out to x = ±∞, the particle’s location is perfectly
uncertain. The particle’s position can be narrowed down if several sine waves with different
wavelengths are added together, so they destructively interfere with one another nearly
everywhere. Figure 10(b) shows the resulting combination of waves,!, is approximately
zero everywhere except at one location. Now the particle’s position may be determined
with a greater certainty because |!|2 is large only for a narrow range of values of x.
However, the value of the particle’s momentum has become more uncertain because ! is
now a combination of waves of various wavelengths. This is nature’s intrinsic trade-off:
The uncertainty in a particle’s position, #x, and the uncertainty in its momentum, #p, are
inversely related. As one decreases, the other must increase. This fundamental inability of a
particle to simultaneously have a well-defined position and a well-defined momentum is a
direct result of the wave–particle duality of nature. A German physicist, Werner Heisenberg
(1901–1976), placed this inherent “fuzziness” of the physical world in a firm theoretical
framework. He demonstrated that the uncertainty in a particle’s position multiplied by the
uncertainty in its momentum must be at least as large as !/2:

#x#p ≥ 1
2

!. (18)

Today this is known as Heisenberg’s uncertainty principle. The equality is rarely realized
in nature, and the form often employed for making estimates is

#x#p ≈ !. (19)

A similar statement relates the uncertainty of an energy measurement, #E, and the time
interval, #t , over which the energy measurement is taken:

#E#t ≈ !. (20)

(a) (b)

FIGURE 10 Two examples of a probability wave, !: (a) a single sine wave and (b) a pulse
composed of many sine waves.
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More quantum numbers

• Heisenberg’s	uncertainty	principle	implies	that	
electrons	cannot	have	well-defined	circular	orbits	
and	angular	momentum	at	the	same	;me		

										Bohr’s	model	must	be	updated!	
•  Electron	orbits	are	“fuzzy”	
• More	than	one	quantum	number	
•  Principle	quantum	number	n:	n	=	1,	2,	3	…		

Ø Energy	and	Size	of	the	orbital	
•  Angular	momentum	quantum	number	l:	l	=	0,	…,	n-1	

Ø Shape	of	the	orbital	
•  Magne;c	quantum	number	ml:		ml=	-l,	…,	0,	… +l	

Ø Orienta;on	of	the	orbital	
•  Spin	quantum	number	ms:	ms	=	+	½	or	-	½ 			

Ø Orienta;on	of	the	spin	axis	of	the	electron	



Atomic Orbitals: Probability Map


n	=	1		

n	=	2		

n	=	3		

n	=	4		

l	=	0		 l	=	1		 l	=	2		 l	=	3		 l	=	4		

Comparing	with	
experimental	results	



Zeeman Effect

•  Energy	states	correspond	to	the	magne;c	quantum	
number	ml	(which	describes	the	orienta;on	of	the	
electron’s	mo;on)	are	separated	under	the	
presence	of	external	magne2c	field	

DE

DE

m, = +1

m, = 0

m, = –1

2p

1s

Field off Field on

FIGURE 13 Splitting of absorption lines by the Zeeman effect.

However, the atom’s surroundings may single out one spatial direction as being different
from another. For example, an electron in an atom will feel the effect of an external magnetic
field. The magnitude of this effect will depend on the 2ℓ+ 1 possible orientations of the
electron’s motion, as given by mℓ, and the magnetic field strength, B, where the units
of B are teslas (T).15 As the electron moves through the magnetic field, the normally
degenerate orbitals acquire slightly different energies. Electrons making a transition between
these formerly degenerate orbitals will thus produce spectral lines with slightly different
frequencies. The splitting of spectral lines in a weak magnetic field is called the Zeeman
effect and is shown in Fig. 13. The three frequencies of the split lines in the simplest case
(called the normal Zeeman effect) are

ν = ν0 and ν0 ± eB

4πµ
, (22)

where ν0 is the frequency of the spectral line in the absence of a magnetic field and µ is the
reduced mass. Although the energy levels are split into 2ℓ+ 1 components, electron transi-
tions involving these levels produce just three spectral lines with different polarizations.16

Viewed from different directions, it may happen that not all three lines will be visible. For
example, when looking parallel to the magnetic field (as when looking down on a sunspot),
the unshifted line of frequency ν0 is absent.

Thus the Zeeman effect gives astronomers a probe of the magnetic fields observed
around sunspots and on other stars. Even if the splitting of the spectral line is too small to
be directly detected, the different polarizations across the closely spaced components can
still be measured and the magnetic field strength deduced.

Example 4.3. Interstellar clouds may contain very weak magnetic fields, as small as
B ≈ 2 × 10−10 T. Nevertheless, astronomers have been able to measure this magnetic
field. Using radio telescopes, they detect the variation in polarization that occurs across the

15Another commonly used unit of magnetic field strength is gauss, where 1 G = 10−4 T. Earth’s magnetic field is
roughly 0.5 G, or 5 × 10−5 T.
16See the ection,  The Complex Spectra of Atoms ,  concerning selection rules.,,,,S
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Zeeman Effect and the Sun’s magneAc field




The Complex Spectra of Atoms
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FIGURE 14 Some of the electronic energy levels of the helium atom. A small number of possible
allowed transitions are also indicated. (Data courtesy of the National Institute of Standards and
Technology.)

of stars. (It is beyond the scope of this text to discuss the detailed physics that underlies the
existence of selection rules.)

The revolution in physics started by Max Planck culminated in the quantum atom and
gave astronomers their most powerful tool: a theory that would enable them to analyze the
spectral lines observed for stars, galaxies, and nebulae.21 Different atoms, and combina-
tions of atoms in molecules, have orbitals of distinctly different energies; thus they can be
identified by their spectral line “fingerprints.” The specific spectral lines produced by an
atom or molecule depend on which orbitals are occupied by electrons. This, in turn, depends
on its surroundings: the temperature, density, and pressure of its environment. These and
other factors, such as the strength of a surrounding magnetic field, may be determined by
a careful examination of spectral lines.
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Some	of	the	electronic	energy	levels	of	the	helium	atom	and	possible	allowed	transi;ons	


