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Prof. Bin Chen, Tiernan Hall 101, bin.chen@njit.edu

Stellar Remnants



Evolution of a low-mass star
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FIGURE 4 A schematic diagram of the evolution of a low-mass star of 1 M⊙ from the zero-age
main sequence to the formation of a white dwarf star. The dotted phase of evolution
represents rapid evolution following the helium core flash. The various phases of evolution are labeled
as follows: Zero-Age-Main-Sequence (ZAMS), Sub-Giant Branch (SGB), Red Giant Branch (RGB),
Early Asymptotic Giant Branch (E-AGB), Thermal Pulse Asymptotic Giant Branch (TP-AGB), Post-
Asymptotic Giant Branch (Post-AGB), Planetary Nebula formation (PN formation), and Pre-white
dwarf phase leading to white dwarf phase.

and becomes nearly isothermal. At points 4 in Fig. 1, the Schönberg–Chandrasekhar
limit is reached and the core begins to contract rapidly, causing the evolution to proceed
on the much faster Kelvin–Helmholtz timescale. The gravitational energy released by the
rapidly contracting core again causes the envelope of the star to expand and the effec-
tive temperature cools, resulting in redward evolution on the H–R diagram. This phase of
evolution is known as the subgiant branch (SGB).

As the core contracts, a nonzero temperature gradient is soon re-established because
of the release of gravitational potential energy. At the same time, the temperature and
density of the hydrogen-burning shell increase, and, although the shell begins to narrow
significantly, the rate at which energy is generated by the shell increases rapidly. Once
again the stellar envelope expands, absorbing some of the energy produced by the shell
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Death of low-mass stars

• Crash course by Phil Plait

https://www.youtube.com/watch?v=Mj06h8BeeOA&list=PL8dPuuaLjXtPAJr1ysd5yGIyiSFuh0mIL&index=30


The discovery of Sirius B

Sirius B

Sirius A
• In 1844, Friedrich Bessel found the 

brightest star in the night sky, Sirius, 
has a companion, using precise 
parallax observations for ten years

• In 1862, Alvan G. Clark discovered 
the “Pup” at its predicted position 
using his father’s new 18-inch 
refractor

• The Pup is very faint (~0.03 Lsun)
so, probably cool and red?

• In 1915, Walter Adams discovered 
that, however, the surface 
temperature is ~27,000 K! A hot, 
blue-white star!

Chandra X-ray image



Estimating radius of Sirius B
• Luminosity of Sirius B is 0.03 Lsun

• Effective temperature is 27,000 K

• Mass is ~1.05 solar mass
• What is its radius?

APPENDIX

Astronomical and Physical Constants

Astronomical Constants
Solar mass 1 M⊙ = 1.9891 × 1030 kg
Solar irradiance S = 1.365(2) × 103 W m−2

Solar luminosity 1 L⊙ = 3.839(5) × 1026 W
Solar radius 1 R⊙ = 6.95508(26) × 108 m
Solar effective temperature Te,⊙ ≡ L⊙/(4πσR2

⊙)1/4

= 5777(2) K

Solar absolute bolometric magnitdue Mbol = 4.74
Solar apparent bolometric magnitude mbol = −26.83
Solar apparent ultraviolet magnitude U = −25.91
Solar apparent blue magnitude B = −26.10
Solar apparent visual magnitude V = −26.75
Solar bolometric correction BC = −0.08

Earth mass 1 M⊕ = 5.9736 × 1024 kg
Earth radius (equatorial) 1 R⊕ = 6.378136 × 106 m

Astronomical unit 1 AU = 1.4959787066 × 1011 m
Light (Julian) year 1 ly = 9.460730472 × 1015 m
Parsec 1 pc = 206264.806 AU

= 3.0856776 × 1016 m
= 3.2615638 ly (Julian)

Sidereal day = 23h56m04.0905309s

Solar day = 86400 s
Sidereal year = 3.15581450 × 107 s

= 365.256308 d
Tropical year = 3.155692519 × 107 s

= 365.2421897 d
Julian year ≡ 3.1557600 × 107 s

≡ 365.25 d
Gregorian year ≡ 3.1556952 × 107 s

≡ 365.2425 d
Note: Uncertainties in the last digits are indicated in parentheses. For instance,
the solar radius, 1 R⊙, has an uncertainty of ±0.00026 × 108 m.
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Physical Constants
Gravitational constant G = 6.673(10) × 10−11 N m2 kg−2

Speed of light (exact) c ≡ 2.99792458 × 108 m s−1

Permeability of free space µ0 ≡ 4π × 10−7 N A−2

Permittivity of free space ϵ0 ≡ 1/µ0c
2

= 8.854187817 . . . × 10−12 F m−1

Electric charge e = 1.602176462(63) × 10−19 C
Electron volt 1 eV = 1.602176462(63) × 10−19 J
Planck’s constant h = 6.62606876(52) × 10−34 J s

= 4.13566727(16) × 10−15 eV s
! ≡ h/2π

= 1.054571596(82) × 10−34 J s
= 6.58211889(26) × 10−16 eV s

Planck’s constant × speed of light hc = 1.23984186(16) × 103 eV nm
≃ 1240 eV nm

Boltzmann’s constant k = 1.3806503(24) × 10−23 J K−1

= 8.6173423(153) × 10−5 eV K−1

Stefan–Boltzmann constant σ ≡ 2π5k4/(15c2h3)

= 5.670400(40) × 10−8 W m−2 K−4

Radiation constant a = 4σ/c

= 7.565767(54) × 10−16 J m−3 K−4

Atomic mass unit 1 u = 1.66053873(13) × 10−27 kg
= 931.494013(37) MeV/c2

Electron mass me = 9.10938188(72) × 10−31 kg
= 5.485799110(12) × 10−4 u

Proton mass mp = 1.67262158(13) × 10−27 kg
= 1.00727646688(13) u

Neutron mass mn = 1.67492716(13) × 10−27 kg
= 1.00866491578(55) u

Hydrogen mass mH = 1.673532499(13) × 10−27 kg
= 1.00782503214(35) u

Avogadro’s number NA = 6.02214199(47) × 1023 mol−1

Gas constant R = 8.314472(15) J mol−1 K−1

Bohr radius a0,∞ ≡ 4πϵ0!2/mee
2

= 5.291772083(19) × 10−11 m
a0,H ≡ (me/µ)a0,∞

= 5.294654075(20) × 10−11 m
Rydberg constant R∞ ≡ mee

4/64π3ϵ2
0!3c

= 1.0973731568549(83) × 107 m−1

RH ≡ (µ/me)R∞
= 1.09677583(13) × 107 m−1

Note: Uncertainties in the last digits are indicated in parentheses. For instance, the universal
gravitational constant, G, has an uncertainty of ±0.010 × 10−11 N m2 kg−2.
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Astronomical Constants
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≡ 365.25 d
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≡ 365.2425 d
Note: Uncertainties in the last digits are indicated in parentheses. For instance,
the solar radius, 1 R⊙, has an uncertainty of ±0.00026 × 108 m.
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Astronomical Constants
Solar mass 1 M⊙ = 1.9891 × 1030 kg
Solar irradiance S = 1.365(2) × 103 W m−2
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Solar Radius:

Earth Radius:

L = 4πR2σT 4Using Stefan-Boltzman’s Law:

We have RWD ~ 5.5 x 106 m This means compressing the mass of the 
entire Sun within a volume < Earth! 



Properties of white dwarfs

Surface gravity:

g =G M
R2

~ 4.6 x 106 m s-2

Phil said 100,000x that of the Earth’s gravity

Density
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RWD ~ 5.5 x 106 m

ρ ~ 3 x 109 kg m-3

Physical Constants
Gravitational constant G = 6.673(10) × 10−11 N m2 kg−2

Speed of light (exact) c ≡ 2.99792458 × 108 m s−1

Permeability of free space µ0 ≡ 4π × 10−7 N A−2

Permittivity of free space ϵ0 ≡ 1/µ0c
2

= 8.854187817 . . . × 10−12 F m−1

Electric charge e = 1.602176462(63) × 10−19 C
Electron volt 1 eV = 1.602176462(63) × 10−19 J
Planck’s constant h = 6.62606876(52) × 10−34 J s

= 4.13566727(16) × 10−15 eV s
! ≡ h/2π

= 1.054571596(82) × 10−34 J s
= 6.58211889(26) × 10−16 eV s

Planck’s constant × speed of light hc = 1.23984186(16) × 103 eV nm
≃ 1240 eV nm

Boltzmann’s constant k = 1.3806503(24) × 10−23 J K−1

= 8.6173423(153) × 10−5 eV K−1

Stefan–Boltzmann constant σ ≡ 2π5k4/(15c2h3)

= 5.670400(40) × 10−8 W m−2 K−4

Radiation constant a = 4σ/c

= 7.565767(54) × 10−16 J m−3 K−4

Atomic mass unit 1 u = 1.66053873(13) × 10−27 kg
= 931.494013(37) MeV/c2

Electron mass me = 9.10938188(72) × 10−31 kg
= 5.485799110(12) × 10−4 u

Proton mass mp = 1.67262158(13) × 10−27 kg
= 1.00727646688(13) u

Neutron mass mn = 1.67492716(13) × 10−27 kg
= 1.00866491578(55) u

Hydrogen mass mH = 1.673532499(13) × 10−27 kg
= 1.00782503214(35) u

Avogadro’s number NA = 6.02214199(47) × 1023 mol−1

Gas constant R = 8.314472(15) J mol−1 K−1

Bohr radius a0,∞ ≡ 4πϵ0!2/mee
2

= 5.291772083(19) × 10−11 m
a0,H ≡ (me/µ)a0,∞

= 5.294654075(20) × 10−11 m
Rydberg constant R∞ ≡ mee

4/64π3ϵ2
0!3c

= 1.0973731568549(83) × 107 m−1

RH ≡ (µ/me)R∞
= 1.09677583(13) × 107 m−1

Note: Uncertainties in the last digits are indicated in parentheses. For instance, the universal
gravitational constant, G, has an uncertainty of ±0.010 × 10−11 N m2 kg−2.
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Sirius B



Central conditions of WDs

• Using the temperature gradient equation due to radiative

energy transfer (p. 160 of textbook), the central 

temperature of WDs is ~ several times 107 K

• Hot enough for H fusion, sometimes also He

• Not enough for triggering carbon and oxygen fusion

• WDs consist primarily of completely ionized 

helium/carbon/oxygen/neon/magnesium nuclei

Initial mass of the star: 

(< 0.5 Msun)   => He white dwarf

(0.5 - 5 Msun)  => Carbon/Oxygen white dwarf

(5 -7 Msun) => Oxygen/Neon/Magnesium white dwarf



Central pressure of WDs
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From hydrostatic equilibrium, assuming a constant density (which is unrealistic)
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The central pressure is 

ATION DUE TO GRAVITY AT ITS SURFACE IS ABOUT �.� × ��� M S−�� /N %ARTH� THE PULL OF GRAVITY
ON A TEASPOON OF WHITE
DWARF MATERIAL WOULD BE �.�� × ��� . �OVER �� TONS	� AND ON THE
SURFACE OF THE WHITE DWARF IT WOULD WEIGH ������� TIMES MORE� 4HIS lERCE GRAVITY REVEALS
ITSELF IN THE SPECTRUM OF 3IRIUS "� IT PRODUCES AN IMMENSE PRESSURE NEAR THE SURFACE THAT
RESULTS IN VERY BROAD HYDROGEN ABSORPTION LINES� !PART FROM THESE LINES� ITS SPECTRUM IS A
FEATURELESS CONTINUUM�

!STRONOMERS lRST REACTED TO THE DISCOVERY OF 3IRIUS " BY DISMISSING THE RESULTS� CALLING
THEM hABSURD�v (OWEVER� THE CALCULATIONS ARE SO SIMPLE AND STRAIGHTFORWARD THAT THIS ATTITUDE
SOON CHANGED TO THE ONE EXPRESSED BY %DDINGTON IN ����� h3TRANGE OBJECTS� WHICH PERSIST
IN SHOWING A TYPE OF SPECTRUM ENTIRELY OUT OF KEEPING WITH THEIR LUMINOSITY� MAY ULTIMATELY
TEACH US MORE THAN A HOST WHICH RADIATE ACCORDING TO RULE�v ,IKE ALL SCIENCES� ASTRONOMY
ADVANCES MOST RAPIDLY WHEN CONFRONTED WITH EXCEPTIONS TO ITS THEORIES�

2 WHITE DWARFS

/BVIOUSLY 3IRIUS " IS NOT A NORMAL STAR� )T IS A white dwarf� A CLASS OF STARS THAT HAVE
APPROXIMATELY THE MASS OF THE 3UN AND THE SIZE OF %ARTH� !LTHOUGH AS MANY AS ONE
QUARTER
OF THE STARS IN THE VICINITY OF THE 3UN MAY BE WHITE DWARFS� THE AVERAGE CHARACTERISTICS
OF THESE FAINT STARS HAVE BEEN DIFlCULT TO DETERMINE BECAUSE A COMPLETE SAMPLE HAS BEEN
OBTAINED ONLY WITHIN �� PC OF THE 3UN�

Classes of White Dwarf Stars

HE WHITE DWARFS OCCUPY A NARROW SLIVER OF THE (n2
DIAGRAM THAT IS ROUGHLY PARALLEL TO AND BELOW THE MAIN SEQUENCE� !LTHOUGH WHITE DWARFS
ARE TYPICALLY WHITER THAN NORMAL STARS� THE NAME ITSELF IS SOMETHING OF A MISNOMER SINCE
THEY COME IN ALL COLORS� WITH SURFACE TEMPERATURES RANGING FROM LESS THAN ���� + TO MORE
THAN ������ +� 4HEIR SPECTRAL TYPE� $ �FOR hDWARFv	� HAS SEVERAL SUBDIVISIONS� 4HE LARGEST
GROUP �ABOUT TWO
THIRDS OF THE TOTAL NUMBER� INCLUDING 3IRIUS "	� CALLED DA white dwarfs�
DISPLAY ONLY PRESSURE
BROADENED HYDROGEN ABSORPTION LINES IN THEIR SPECTRA� (YDROGEN LINES
ARE ABSENT FROM THE DB white dwarfs ���	� WHICH SHOW ONLY HELIUM ABSORPTION LINES� AND
THE DC white dwarfs ����	 SHOW NO LINES AT ALL�ONLY A CONTINUUM DEVOID OF FEATURES� 4HE
REMAINING TYPES INCLUDE DQ white dwarfs� WHICH EXHIBIT CARBON FEATURES IN THEIR SPECTRA�
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Central Conditions in White Dwarfs
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Pc ≈ �
�
πGρ�R�

WD ≈ �.� × ���� . M−�, ��	

4

4HE�EQUATION
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About 1.5 million times larger than the pressure at the center of the Sun



The physics of degenerate matter

• The Pauli Exclusion Principle allows at most one 
fermion to occupy each quantum state
• Everyday gas at room temperature and pressure, 1 

of every 107 quantum states is occupied by a gas 
particle 
• Degeneracy is insignificant
• Pressure is dominated by thermal pressure

• When all the electrons (fermions) are squeezed 
together due to high density and pressure, electron 
degeneracy pressure becomes important



Fermi Energy
• Fermi energy     : the maximum energy of any 

electron in a completely degenerate gas at T = 0
εF
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FIGURE 5 &RACTION OF STATES OF ENERGY ε OCCUPIED BY FERMIONS� &OR T = �� ALL FERMIONS HAVE
ε ≤ εF � BUT FOR T > �� SOME FERMIONS HAVE ENERGIES IN EXCESS OF THE &ERMI ENERGY�

WAVES IN THE BOX� WE NOTE THAT THEIR WAVELENGTHS IN EACH DIMENSION ARE GIVEN BY

λx = �L

Nx

, λy = �L

Ny

, λz = �L

Nz

,

WHERE Nx � Ny � AND Nz ARE INTEGER QUANTUM NUMBERS ASSOCIATED WITH EACH DIMENSION� 2E

CALLING THAT THE DE "ROGLIE WAVELENGTH IS RELATED TO MOMENTUM�

px = hNx

�L
, py = hNy

�L
, py = hNx

�L
.

.OW� THE TOTAL KINETIC ENERGY OF A PARTICLE CAN BE WRITTEN AS

ε = p�

�m
,

WHERE p� = p�
x + p�

y + p�
z � 4HUS�

ε = h�

�mL�
(N�

x + N�
y + N�

z ) = h�N�

�mL�
, ��	

WHERE N� ≡ N�
x + N�

y + N�
z � ANALOGOUS TO THE hDISTANCEv FROM THE ORIGIN IN hN 
SPACEv TO

THE POINT (Nx , Ny , Nz)�
4HE TOTAL NUMBER OF ELECTRONS IN THE GAS CORRESPONDS TO THE TOTAL NUMBER OF UNIQUE QUAN


TUM NUMBERS� Nx � Ny � AND Nz TIMES TWO� 4HE FACTOR OF TWO ARISES FROM THE FACT THAT ELECTRONS
ARE SPIN �

� PARTICLES� SO ms = ±�/� IMPLIES THAT TWO ELECTRONS CAN HAVE THE SAME COMBINA

TION OF Nx � Ny � AND Nz AND STILL POSSES A UNIQUE SET OF four QUANTUM NUMBERS �INCLUDING
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SPIN	� .OW� EACH INTEGER COORDINATE IN N 
SPACE �E�G�� Nx = �� Ny = �� Nz = �	 CORRESPONDS
TO THE QUANTUM STATE OF TWO ELECTRONS� 7ITH A LARGE ENOUGH SAMPLE OF ELECTRONS� THEY CAN BE
THOUGHT OF AS OCCUPYING EACH INTEGER COORDINATE OUT TO A RADIUS OF N =

√

N�
x + N�

y + N�
z �

BUT ONLY FOR THE POSITIVE OCTANT OF N 
SPACE WHERE Nx > �� Ny > �� AND Nz > �� 4HIS MEANS
THAT THE TOTAL NUMBER OF ELECTRONS WILL BE

Ne = �
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�
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)(

�
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πN�
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.

3OLVING FOR N YIELDS

N =
(

�Ne

π

)�/�

.

3UBSTITUTING INTO %Q� � �	 AND SIMPLIFYING� WE lND THAT THE &ERMI ENERGY IS GIVEN BY

εF = !�

�m

(

�π�n
)�/�

, ��	

WHERE m IS THE MASS OF THE ELECTRON AND n ≡ Ne/L
� IS THE NUMBER OF ELECTRONS PER UNIT VOL


UME� 4HE AVERAGE ENERGY PER ELECTRON AT ZERO TEMPERATURE IS �
�εF � �/F COURSE THE DERIVATION

ABOVE APPLIES FOR ANY FERMION� NOT JUST ELECTRONS�	

The Condition for Degeneracy

!T ANY TEMPERATURE ABOVE ABSOLUTE ZERO� SOME OF THE STATES WITH AN ENERGY LESS THAN εF WILL
BECOME VACANT AS FERMIONS USE THEIR THERMAL ENERGY TO OCCUPY OTHER� MORE ENERGETIC STATES�
!LTHOUGH THE DEGENERACY WILL NOT BE PRECISELY COMPLETE WHEN T > � +� THE ASSUMPTION OF
COMPLETE DEGENERACY IS A GOOD APPROXIMATION AT THE DENSITIES ENCOUNTERED IN THE INTERIOR OF
A WHITE DWARF� !LL BUT THE MOST ENERGETIC PARTICLES WILL HAVE AN ENERGY LESS THAN THE &ERMI
ENERGY� 4O UNDERSTAND HOW THE DEGREE OF DEGENERACY DEPENDS ON BOTH THE TEMPERATURE AND
THE DENSITY OF THE WHITE DWARF� WE lRST EXPRESS THE &ERMI ENERGY IN TERMS OF THE DENSITY OF
THE ELECTRON GAS� &OR FULL IONIZATION� THE NUMBER OF ELECTRONS PER UNIT VOLUME IS

ne =
(

� ELECTRONS
NUCLEON

) (

� NUCLEONS
VOLUME
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=
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Z

A

)

ρ

mH
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WHERE Z AND A ARE THE NUMBER OF PROTONS AND NUCLEONS� RESPECTIVELY� IN THE WHITE DWARF�S
NUCLEI� AND mH IS THE MASS OF A HYDROGEN ATOM� 4HUS THE &ERMI ENERGY IS PROPORTIONAL TO
THE �/� POWER OF THE DENSITY�
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�me

[

�π�
(

Z

A

)

ρ

mH

] �/�

. ��	

4HE HYDROGEN MASS IS ADOPTED AS A REPRESENTATIVE MASS OF THE PROTON AND NEUTRON�

�

�
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Mass of electron Number density of electron

If expressed in mass density ρ of fully 
ionized gas
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# of protons per nuclei

# of nucleons per nuclei
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Condition for degeneracy

3
2
kT < εF

If the average thermal energy of an electron 3/2kT, is smaller than the 
Fermi Energy

An average electron is unable to make a transition to an unoccupied 
quantum state to “break” the degeneracy, and the electron gas will stay 
degenerate

.OW COMPARE THE &ERMI ENERGY WITH THE AVERAGE THERMAL ENERGY OF AN ELECTRON� �
�kT �WHERE

k IS "OLTZMANN�S CONSTANT	� )N ROUGH TERMS� IF �
�kT < εF � THEN AN AVERAGE ELECTRON WILL

BE UNABLE TO MAKE A TRANSITION TO AN UNOCCUPIED STATE� AND THE ELECTRON GAS WILL BE
DEGENERATE� 4HAT IS� FOR A DEGENERATE GAS�

�
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�me

[

�π�
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ρ

mH
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,

OR

T

ρ�/�
<
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�mek

[

�π�

mH

(

Z

A

)]�/�

= ���� + M� KG−�/�

FOR Z/A = �.�� $ElNING

D ≡ ���� + M� KG−�/�,

THE CONDITION FOR DEGENERACY MAY BE WRITTEN AS

T

ρ�/�
< D. ��	

4HE SMALLER THE VALUE OF T/ρ�/�� THE MORE DEGENERATE THE GAS�

Example 3.1. (OW IMPORTANT IS ELECTRON DEGENERACY AT THE CENTERS OF THE 3UN AND
3IRIUS "� !T THE CENTER OF THE STANDARD SOLAR MODEL� Tc = �.��� × ��� + AND ρc = �.���×
��� KG M−�� 4HEN

Tc

ρ
�/�
c

= ���� + M� KG−�/� > D.

)N THE 3UN� ELECTRON DEGENERACY IS QUITE WEAK AND PLAYS A VERY MINOR ROLE� SUPPLYING
ONLY A FEW TENTHS OF A PERCENT OF THE CENTRAL PRESSURE� (OWEVER� AS THE 3UN CONTINUES TO

&OR 3IRIUS "� THE VALUES OF THE DENSITY AND CENTRAL TEMPERATURE ESTIMATED ABOVE LEAD TO

Tc

ρ
�/�
c

= �� + M� KG−�/� ≪ D,

SO COMPLETE DEGENERACY IS A VALID ASSUMPTION FOR 3IRIUS "�

The Degenerate Remnants of Stars

evolve, electron degeneracy will become increasingly important (Fig. 6). The Sun will 
develop a degenerate helium core while on the red giant branch of the H–R diagram, 
leading eventually to a core helium flash. Later, on the asymptotic giant branch, the 
progenitor of a carbon–oxygen white dwarf will form in the core to be revealed when 
the Sun’s surface layers are ejected as a planetary nebula. 
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Electron Degeneracy Pressure

7E NOW ESTIMATE THE ELECTRON DEGENERACY PRESSURE BY COMBINING TWO KEY IDEAS OF QUANTUM
MECHANICS�

�� 4HE 0AULI EXCLUSION PRINCIPLE� WHICH ALLOWS AT MOST ONE ELECTRON IN EACH QUANTUM
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WHICH REQUIRES THAT AN ELECTRON CONlNED TO A SMALL VOLUME OF SPACE HAVE A CORRE
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7HEN WE MAKE THE UNREALISTIC ASSUMPTION THAT ALL OF THE ELECTRONS HAVE THE SAME MOMENTUM�
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For Sirius B:

Degeneracy in the Sun’s 
center as it evolves
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Pressure in a gas associated 
with particle’s momentum

ABOUT n
−�/�
e � (OWEVER� TO SATISFY THE 0AULI EXCLUSION PRINCIPLE� THE ELECTRONS MUST MAINTAIN

THEIR IDENTITIES AS DIFFERENT PARTICLES� 4HAT IS� THE UNCERTAINTY IN THEIR POSITIONS CANNOT BE LARGER
THAN THEIR PHYSICAL SEPARATION� )DENTIFYING !x ≈ n

−�/�
e FOR THE LIMITING CASE OF COMPLETE

DEGENERACY� WE CAN USE (EISENBERG�S UNCERTAINTY RELATION TO ESTIMATE THE MOMENTUM OF AN
ELECTRON� )N ONE COORDINATE DIRECTION�

px ≈ !px ≈ !

!x
≈ !n�/�

e ��	

(OWEVER� IN A THREE
DIMENSIONAL GAS EACH OF THE DIRECTIONS IS EQUALLY
LIKELY� IMPLYING THAT

p�
x = p�

y = p�
z ,

WHICH IS JUST A STATEMENT OF THE EQUIPARTITION OF ENERGY AMONG ALL THE COORDINATE DIRECTIONS�
4HEREFORE�

p� = p�
x + p�

y + p�
z = �p�

x ,

OR

p =
√

�px.

5SING %Q� ��	 FOR THE ELECTRON NUMBER DENSITY WITH FULL IONIZATION GIVES

p ≈
√
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ρ
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]�/�

.

&OR NONRELATIVISTIC ELECTRONS� THE SPEED IS
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)NSERTING %QS� � �	� � �	� AND � ��	 INTO %Q� � �	 FOR THE ELECTRON DEGENERACY PRESSURE
RESULTS IN
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me
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ρ
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4HIS IS ROUGHLY A FACTOR OF TWO SMALLER THAN THE EXACT EXPRESSION FOR THE PRESSURE DUE TO A
COMPLETELY DEGENERATE� NONRELATIVISTIC ELECTRON GAS P �

P =
(

�π�
)�/�

�
!�

me

n�/�
e ,
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SPIN	� .OW� EACH INTEGER COORDINATE IN N 
SPACE �E�G�� Nx = �� Ny = �� Nz = �	 CORRESPONDS
TO THE QUANTUM STATE OF TWO ELECTRONS� 7ITH A LARGE ENOUGH SAMPLE OF ELECTRONS� THEY CAN BE
THOUGHT OF AS OCCUPYING EACH INTEGER COORDINATE OUT TO A RADIUS OF N =

√

N�
x + N�

y + N�
z �

BUT ONLY FOR THE POSITIVE OCTANT OF N 
SPACE WHERE Nx > �� Ny > �� AND Nz > �� 4HIS MEANS
THAT THE TOTAL NUMBER OF ELECTRONS WILL BE

Ne = �
(

�
�

)(

�
�
πN�

)

.

3OLVING FOR N YIELDS

N =
(

�Ne

π

)�/�

.

3UBSTITUTING INTO %Q� � �	 AND SIMPLIFYING� WE lND THAT THE &ERMI ENERGY IS GIVEN BY

εF = !�

�m

(

�π�n
)�/�

, ��	

WHERE m IS THE MASS OF THE ELECTRON AND n ≡ Ne/L
� IS THE NUMBER OF ELECTRONS PER UNIT VOL


UME� 4HE AVERAGE ENERGY PER ELECTRON AT ZERO TEMPERATURE IS �
�εF � �/F COURSE THE DERIVATION

ABOVE APPLIES FOR ANY FERMION� NOT JUST ELECTRONS�	

The Condition for Degeneracy

!T ANY TEMPERATURE ABOVE ABSOLUTE ZERO� SOME OF THE STATES WITH AN ENERGY LESS THAN εF WILL
BECOME VACANT AS FERMIONS USE THEIR THERMAL ENERGY TO OCCUPY OTHER� MORE ENERGETIC STATES�
!LTHOUGH THE DEGENERACY WILL NOT BE PRECISELY COMPLETE WHEN T > � +� THE ASSUMPTION OF
COMPLETE DEGENERACY IS A GOOD APPROXIMATION AT THE DENSITIES ENCOUNTERED IN THE INTERIOR OF
A WHITE DWARF� !LL BUT THE MOST ENERGETIC PARTICLES WILL HAVE AN ENERGY LESS THAN THE &ERMI
ENERGY� 4O UNDERSTAND HOW THE DEGREE OF DEGENERACY DEPENDS ON BOTH THE TEMPERATURE AND
THE DENSITY OF THE WHITE DWARF� WE lRST EXPRESS THE &ERMI ENERGY IN TERMS OF THE DENSITY OF
THE ELECTRON GAS� &OR FULL IONIZATION� THE NUMBER OF ELECTRONS PER UNIT VOLUME IS

ne =
(

� ELECTRONS
NUCLEON

) (

� NUCLEONS
VOLUME
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Z

A

)

ρ

mH

, ��	

WHERE Z AND A ARE THE NUMBER OF PROTONS AND NUCLEONS� RESPECTIVELY� IN THE WHITE DWARF�S
NUCLEI� AND mH IS THE MASS OF A HYDROGEN ATOM� 4HUS THE &ERMI ENERGY IS PROPORTIONAL TO
THE �/� POWER OF THE DENSITY�
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(

Z

A

)

ρ

mH

] �/�

. ��	

4HE HYDROGEN MASS IS ADOPTED AS A REPRESENTATIVE MASS OF THE PROTON AND NEUTRON�
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For a degeneracy gas, electrons are 
packed as tightly as possible, so the 
separation between  electrons is just 
ne

1/3. Heisenberg’s uncertainty principle 
gives

1D:
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Mass-Volume Relation
By setting the central pressure to equal to electron 
degenerate pressure:

we have a mass-volume relation:
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More massive white dwarfs are smaller!



The Chandrasekhar Limit
• Packing more mass onto the WD will decrease the volume of the WD
• Density increases significantly

• v goes toward the speed of light -> relativistic effect kicks in
• Mass-volume relation in the non-relativistic limit breaks

4HE VOLUME OF A WHITE DWARF IS INVERSELY PROPORTIONAL TO ITS MASS� SO MORE MASSIVE WHITE
DWARFS ARE ACTUALLY smaller� 4HIS mass–volume relation IS A RESULT OF THE STAR DERIVING ITS
SUPPORT FROM ELECTRON DEGENERACY PRESSURE� 4HE ELECTRONS MUST BE MORE CLOSELY CONlNED
TO GENERATE THE LARGER DEGENERACY PRESSURE REQUIRED TO SUPPORT A MORE MASSIVE STAR� )N FACT�
THE MASSnVOLUME RELATION IMPLIES THAT ρ ∝ M�

WD�
!CCORDING TO THE MASSnVOLUME RELATION� PILING MORE AND MORE MASS ONTO A WHITE DWARF

WOULD EVENTUALLY RESULT IN SHRINKING THE STAR DOWN TO ZERO VOLUME AS ITS MASS BECOMES
INlNITE� (OWEVER� IF THE DENSITY EXCEEDS ABOUT ��� KG M−�� THERE IS A DEPARTURE FROM THIS
RELATION� 4O SEE WHY THIS IS SO� USE %Q� � ��	 TO ESTIMATE THE SPEED OF THE ELECTRONS IN
3IRIUS "�
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OVER ONE
THIRD THE SPEED OF LIGHT� )F THE MASSnVOLUME RELATION WERE CORRECT� WHITE DWARFS
A BIT MORE MASSIVE THAN 3IRIUS " WOULD BE SO SMALL AND DENSE THAT THEIR ELECTRONS WOULD
EXCEED THE LIMITING VALUE OF THE SPEED OF LIGHT� 4HIS IMPOSSIBILITY POINTS OUT THE DANGERS
OF IGNORING THE EFFECTS OF RELATIVITY IN OUR EXPRESSIONS FOR THE ELECTRON SPEED �%Q� ��	
AND PRESSURE �%Q� ��	� "ECAUSE THE ELECTRONS ARE MOVING MORE SLOWLY THAN THE NONREL

ATIVISTIC %Q� � ��	 WOULD INDICATE� THERE IS LESS ELECTRON PRESSURE AVAILABLE TO SUPPORT THE
STAR� 4HUS A MASSIVE WHITE DWARF IS smaller THAN PREDICTED BY THE MASSnVOLUME RELATION�
)NDEED� ZERO VOLUME OCCURS FOR A lNITE VALUE OF THE MASS� IN OTHER WORDS� THERE IS A LIMIT TO
THE AMOUNT OF MATTER THAT CAN BE SUPPORTED BY ELECTRON DEGENERACY PRESSURE�

Dynamical Instability

4O APPRECIATE THE EFFECT OF RELATIVITY ON THE STABILITY OF A WHITE DWARF� RECALL THAT %Q� � ��	
�WHICH IS VALID ONLY FOR APPROXIMATELY ρ < ��� KG M−�	 IS OF THE POLYTROPIC FORM P =
Kρ�/�� WHERE K IS A CONSTANT� HE VALUE OF THE RATIO OF SPECIlC HEATS IS γ = �/� IN THE
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)N THIS LIMIT γ = �/�� WHICH CORRESPONDS TO dynamical instability� 4HE SMALLEST DEPARTURE
FROM EQUILIBRIUM WILL CAUSE THE WHITE DWARF TO COLLAPSE AS ELECTRON DEGENERACY

)T IS LEFT AS AN EXERCISE TO SHOW THAT RELATIVISTIC EFFECTS MUST BE INCLUDED FOR DENSITIES GREATER THAN ��� KG M−��
)N FACT� THE STRONG GRAVITY OF THE WHITE DWARF� AS DESCRIBED BY %INSTEIN�S GENERAL THEORY OF RELATIVITY ACTS TO

RAISE THE CRITICAL VALUE OF γ FOR DYNAMICAL INSTABILITY SLIGHTLY ABOVE �/��
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nonrelativistic limit. As we discussed in Section 14.3, this means that the white dwarf 
is dynamically stable. If it suffers a small perturbation, it will return to its equilibrium 
structure instead of collapsing. However, in the extreme relativistic limit, the electron 
speed v = c must be used instead of Eq. (  10) to find the electron degeneracy pressure. 
The result is

LIMITING CASE LEADS TO THE COLLAPSE OF THE DEGENERATE CORE INPRESSURE FAILS� PPROACHING THIS� !

���

Nonrelativistic

Relativistic

WDs collapse to 
zero volume at M 
~ 1.4 Msun

Chandrasekhar Limit

No WDs > 1.4 Msun have 
been found so far



Fate of WDs

• No energy source in WDs
• The luminosity of WDs is from 

their residual internal energy
• In time, WDs cool down, and 

luminosity decreases
• Reaches its “eternal death”: a 

cool, dark, Earth-sized 
crystallized carbon/oxygen
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FIGURE 9 4HEORETICAL COOLING CURVES FOR ��� -⊙ WHITE
DWARF MODELS� ;4HE SOLID LINE IS FROM
%Q� ���	� AND THE DASHED LINE IS FROM 7INGET ET AL�� Ap. J. Lett.� 315� ,��� �����=

OF MORE REALISTIC WHITE
DWARF MODELS� THAT INCLUDE THIN SURFACE LAYERS OF HYDROGEN AND
HELIUM OVERLYING THE CARBON CORE� 4HE INSULATING EFFECT OF THESE LAYERS SLOWS THE COOLING
BY ABOUT ���� !LSO INCLUDED ARE SOME OF THE INTRIGUING PHENOMENA THAT OCCUR AS THE WHITE
DWARF�S INTERNAL TEMPERATURE DROPS�

Crystallization

!S A WHITE DWARF COOLS� IT CRYSTALLIZES IN A GRADUAL PROCESS THAT STARTS AT THE CENTER AND MOVES
OUTWARD� 4HE UPTURNED hKNEEv IN THE DASHED CURVE IN &IG� � AT ABOUT LWD/L⊙ ≈ ��−�

OCCURS WHEN THE COOLING NUCLEI BEGIN SETTLING INTO A CRYSTALLINE LATTICE� 4HE REGULAR CRYSTAL
STRUCTURE IS MAINTAINED BY THE MUTUAL ELECTROSTATIC REPULSION OF THE NUCLEI� IT MINIMIZES
THEIR ENERGY AS THEY VIBRATE ABOUT THEIR AVERAGE POSITION IN THE LATTICE� !S THE NUCLEI UNDERGO
THIS PHASE CHANGE� THEY RELEASE THEIR LATENT HEAT �ABOUT kT PER NUCLEUS	� SLOWING THE STAR�S
COOLING AND PRODUCING THE KNEE IN THE COOLING CURVE� ,ATER� AS THE WHITE DWARF�S TEMPERATURE
CONTINUES TO DROP� THE CRYSTALLINE LATTICE ACTUALLY ACCELERATES THE COOLING AS THE COHERENT
VIBRATION OF THE REGULARLY SPACED NUCLEI PROMOTES FURTHER ENERGY LOSS� 4HIS IS REmECTED IN
THE SUBSEQUENT DOWNTURN IN THE COOLING CURVE� 4HUS THE ULTIMATE MONUMENT TO THE LIVES OF
MOST STARS WILL BE A hDIAMOND IN THE SKY�v A COLD� DARK� %ARTH
SIZE SPHERE OF CRYSTALLIZED
CARBON AND OXYGEN mOATING THROUGH THE DEPTHS OF SPACE��

��9OU ARE REFERRED TO 7INGET ET AL� �����	 FOR DETAILS OF THIS AND OTHER COOLING CURVES�
� 5NLIKE A TERRESTRIAL DIAMOND� THE WHITE DWARF�S NUCLEI ARE ARRAYED IN A BODY
CENTERED CUBIC LATTICE LIKE THAT OF
METALLIC SODIUM�

�

�

�

The Degenerate Remnants of Stars

���

“Diamonds in the sky”



Supernovae and neutron stars

• At the end of the evolution of high mass stars 
(M > 8 Msun), stars will burn their fuel down to 
iron (recall Lecture 7)

• The core’s mass exceeds M > 1.4 Msun
(Chandrasekhar Limit), electron degeneracy is 
no longer enough to keep gravity at bay

• Matter is crushed to form neutrons

• Supernova occurs, left with a bare neutron star

5NDER THE EXTREME CONDITIONS THAT NOW EXIST �E�G�� Tc ∼ � × ��� + ANDρc ∼ ���� KG M−�

FOR A �� -⊙ STAR	� THE FREE ELECTRONS THAT HAD ASSISTED IN SUPPORTING THE STAR THROUGH DEGEN

ERACY PRESSURE ARE CAPTURED BY HEAVY NUCLEI AND BY THE PROTONS THAT WERE PRODUCED THROUGH
PHOTODISINTEGRATION� FOR INSTANCE�

p+ + e− → n + νe. ��	

4HE AMOUNT OF ENERGY THAT ESCAPES THE STAR IN THE FORM OF NEUTRINOS BECOMES ENORMOUS�
DURING SILICON BURNING THE PHOTON LUMINOSITY OF A �� -⊙ STELLAR MODEL IS �.� × ���� 7
WHILE THE NEUTRINO LUMINOSITY IS �.� × ���� 7�

4HROUGH THE PHOTODISINTEGRATION OF IRON� COMBINED WITH ELECTRON CAPTURE BY PROTONS
AND HEAVY NUCLEI� MOST OF THE CORE�S SUPPORT IN THE FORM OF ELECTRON DEGENERACY PRESSURE
IS SUDDENLY GONE AND THE CORE BEGINS TO COLLAPSE EXTREMELY RAPIDLY� )N THE INNER PORTION
OF THE CORE� THE COLLAPSE IS HOMOLOGOUS� AND THE VELOCITY OF THE COLLAPSE IS PROPORTIONAL
TO THE DISTANCE AWAY FROM THE CENTER OF THE STAR

IN FREE
FALL� $URING THE COLLAPSE� SPEEDS CAN REACH ALMOST ������ KM S−� IN THE OUTER CORE�
AND WITHIN ABOUT ONE SECOND A VOLUME THE SIZE OF %ARTH HAS BEEN COMPRESSED DOWN TO A
RADIUS OF �� KM�

Example 3.2. )F A MASS WITH THE RADIUS OF %ARTH �R⊕	 COLLAPSES TO A RADIUS OF ONLY
�� KM� A TREMENDOUS AMOUNT OF GRAVITATIONAL POTENTIAL ENERGY WOULD BE RELEASED� #AN THIS
ENERGY RELEASE BE RESPONSIBLE FOR THE ENERGY OF A CORE
COLLAPSE SUPERNOVA�

!SSUME FOR SIMPLICITY THAT WE CAN USE .EWTONIAN PHYSICS TO ESTIMATE THE AMOUNT OF
ENERGY RELEASED DURING THE COLLAPSE� &ROM THE VIRIAL THEOREM� THE POTENTIAL ENERGY OF A
SPHERICALLY SYMMETRIC STAR OF CONSTANT DENSITY IS

U = − �
��

GM�

R
.

%QUATING THE ENERGY OF A 4YPE )) SUPERNOVA� E)) = ���� *� TO THE GRAVITATIONAL ENERGY RELEASED
DURING THE COLLAPSE� AND GIVEN THAT Rf = �� KM ≪ R⊕� THE AMOUNT OF MASS REQUIRED TO
PRODUCE THE SUPERNOVA WOULD BE

M ≃
√

��
�

E))Rf

G
≃� × ���� KG ≃�.� -⊙.

4HIS VALUE IS CHARACTERISTIC OF THE CORE MASSES MENTIONED EARLIER�

3INCE MECHANICAL INFORMATION WILL PROPAGATE THROUGH THE STAR ONLY AT THE SPEED OF SOUND
AND BECAUSE THE CORE COLLAPSE PROCEEDS SO QUICKLY� THERE IS NOT ENOUGH TIME FOR THE OUTER
LAYERS TO LEARN ABOUT WHAT HAS HAPPENED INSIDE� 4HE OUTER LAYERS� INCLUDING THE OXYGEN�
CARBON� AND HELIUM SHELLS� AS WELL AS THE OUTER ENVELOPE� ARE LEFT IN THE PRECARIOUS POSITION
OF BEING ALMOST SUSPENDED ABOVE THE CATASTROPHICALLY COLLAPSING CORE�

�

The Fate of Massive Stars

!T� THE� RADIUS� WHERE� THE� VELOCITY� EXCEEDS� THE� LOCAL� SOUND� SPEED�� THE�
�COLLAPSE� CAN� NO� LONGER� REMAIN� HOMOLOGOUS� AND� THE� INNER� CORE� DECOU

PLES� FROM� THE� NOW� SUPERSONIC� OUTER� CORE�� WHICH� IS� LEFT� BEHIND� AND� NEARLY
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FIGURE 10 4HE ONION
LIKE INTERIOR OF A MASSIVE STAR THAT HAS EVOLVED THROUGH CORE SILICON
BURNING� )NERT REGIONS OF PROCESSED MATERIAL ARE SANDWICHED BETWEEN THE NUCLEAR BURNING SHELLS� 4HE
INERT REGIONS EXIST BECAUSE THE TEMPERATURE AND DENSITY ARE NOT SUFlCIENT TO CAUSE NUCLEAR REACTIONS TO
OCCUR WITH THAT COMPOSITION� �4HIS DRAWING IS NOT TO SCALE�	

AND CANNOT CONTRIBUTE TO THE LUMINOSITY OF THE STAR� 'ROUPING ALL OF THE PRODUCTS TOGETHER�
SILICON BURNING IS SAID TO PRODUCE AN iron core� ! SKETCH OF THE ONION
LIKE INTERIOR STRUCTURE
OF A MASSIVE STAR FOLLOWING SILICON BURNING IS GIVEN IN &IG� ���

"ECAUSE CARBON� OXYGEN� AND SILICON BURNING PRODUCE NUCLEI WITH MASSES PROGRESSIVELY
NEARER THE iron peak OF THE BINDING ENERGY CURVE� LESS AND LESS ENERGY IS GENERATED PER UNIT

CARBON BURNING LASTS ��� YEARS� OXYGEN BURNING TAKES ROUGHLY ��� DAYS� AND SILICON BURNING
IS COMPLETED IN ONLY TWO DAYS�

!T THE VERY HIGH TEMPERATURES NOW PRESENT IN THE CORE� THE PHOTONS POSSESS ENOUGH ENERGY
TO DESTROY HEAVY NUCLEI �NOTE THE REVERSE ARROWS IN THE SILICON
BURNING SEQUENCE	� A PROCESS
KNOWN AS photodisintegration� 0ARTICULARLY IMPORTANT ARE THE PHOTODISINTEGRATION OF ��

��&E
AND �

�(E�

��
��&E + γ → �� �

�(E + �n ��	

�
�(E + γ → �p+ + �n. ��	

7HEN THE MASS OF THE CONTRACTING IRON CORE HAS BECOME LARGE ENOUGH AND THE TEMPERATURE
SUFlCIENTLY HIGH� PHOTODISINTEGRATION CAN� IN A VERY SHORT PERIOD OF TIME� UNDO WHAT THE STAR
HAS BEEN TRYING TO DO ITS ENTIRE LIFE� NAMELY PRODUCE ELEMENTS MORE MASSIVE THAN HYDROGEN
AND HELIUM� /F COURSE� THIS PROCESS OF STRIPPING IRON DOWN TO INDIVIDUAL PROTONS AND NEUTRONS
IS HIGHLY ENDOTHERMIC� AS SUGGESTED IN %XAMPLE ���� THERMAL ENERGY IS REMOVED FROM THE
GAS THAT WOULD OTHERWISE HAVE RESULTED IN THE PRESSURE NECESSARY TO SUPPORT THE CORE OF THE
STAR� 4HE CORE MASSES FOR WHICH THIS PROCESS OCCURS VARY FROM �.� -⊙ FOR A �� -⊙ :!-3
STAR TO �.� -⊙ FOR A �� -⊙ STAR�
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MASS� OF� FUEL�� !S� A� RESULT�� THE� TIMESCALE� FOR� EACH� SUCCEEDING� REACTION� SEQUENCE��
BECOMES� SHORTER�� &OR� EXAMPLE�� FOR� A� ��� - � STAR�� THE� MAIN
SEQUENCE� LIFETIME� �CORE�
HYDROGEN� BURNING	� IS� ROUGHLY� ���� YEARS�� CORE� HELIUM� BURNING� REQUIRES� ���� YEARS�
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LIKE INTERIOR OF A MASSIVE STAR THAT HAS EVOLVED THROUGH CORE SILICON
BURNING� )NERT REGIONS OF PROCESSED MATERIAL ARE SANDWICHED BETWEEN THE NUCLEAR BURNING SHELLS� 4HE
INERT REGIONS EXIST BECAUSE THE TEMPERATURE AND DENSITY ARE NOT SUFlCIENT TO CAUSE NUCLEAR REACTIONS TO
OCCUR WITH THAT COMPOSITION� �4HIS DRAWING IS NOT TO SCALE�	

AND CANNOT CONTRIBUTE TO THE LUMINOSITY OF THE STAR� 'ROUPING ALL OF THE PRODUCTS TOGETHER�
SILICON BURNING IS SAID TO PRODUCE AN iron core� ! SKETCH OF THE ONION
LIKE INTERIOR STRUCTURE
OF A MASSIVE STAR FOLLOWING SILICON BURNING IS GIVEN IN &IG� ���

"ECAUSE CARBON� OXYGEN� AND SILICON BURNING PRODUCE NUCLEI WITH MASSES PROGRESSIVELY
NEARER THE iron peak OF THE BINDING ENERGY CURVE� LESS AND LESS ENERGY IS GENERATED PER UNIT

CARBON BURNING LASTS ��� YEARS� OXYGEN BURNING TAKES ROUGHLY ��� DAYS� AND SILICON BURNING
IS COMPLETED IN ONLY TWO DAYS�

!T THE VERY HIGH TEMPERATURES NOW PRESENT IN THE CORE� THE PHOTONS POSSESS ENOUGH ENERGY
TO DESTROY HEAVY NUCLEI �NOTE THE REVERSE ARROWS IN THE SILICON
BURNING SEQUENCE	� A PROCESS
KNOWN AS photodisintegration� 0ARTICULARLY IMPORTANT ARE THE PHOTODISINTEGRATION OF ��
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AND �

�(E�

��
��&E + γ → �� �

�(E + �n ��	

�
�(E + γ → �p+ + �n. ��	

7HEN THE MASS OF THE CONTRACTING IRON CORE HAS BECOME LARGE ENOUGH AND THE TEMPERATURE
SUFlCIENTLY HIGH� PHOTODISINTEGRATION CAN� IN A VERY SHORT PERIOD OF TIME� UNDO WHAT THE STAR
HAS BEEN TRYING TO DO ITS ENTIRE LIFE� NAMELY PRODUCE ELEMENTS MORE MASSIVE THAN HYDROGEN
AND HELIUM� /F COURSE� THIS PROCESS OF STRIPPING IRON DOWN TO INDIVIDUAL PROTONS AND NEUTRONS
IS HIGHLY ENDOTHERMIC� AS SUGGESTED IN %XAMPLE ���� THERMAL ENERGY IS REMOVED FROM THE
GAS THAT WOULD OTHERWISE HAVE RESULTED IN THE PRESSURE NECESSARY TO SUPPORT THE CORE OF THE
STAR� 4HE CORE MASSES FOR WHICH THIS PROCESS OCCURS VARY FROM �.� -⊙ FOR A �� -⊙ :!-3
STAR TO �.� -⊙ FOR A �� -⊙ STAR�
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MASS� OF� FUEL�� !S� A� RESULT�� THE� TIMESCALE� FOR� EACH� SUCCEEDING� REACTION� SEQUENCE��
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Neutron Stars

• A 1.4 solar-mass neutron star consists of 1057 

neutrons packed together by gravity and supported 
by the neutron degeneracy pressure
• It is literally a giant nucleus with a mass number A ~ 

1057!
• Uranium is a pretty heavy element, right?
• A = 235 for U 235 and A = 238 for U 238

• Radius of neutron stars

Homework problem

For a 1.4 solar-mass neutron star, this yields 4.4 km. The actual radius is ~10 km



Neutron stars

• For a 1.4 solar-mass neutron star with 10-km radius:
• Average density: 6.65 x 1017 kg m-3

• Comparing to typical density of an atomic nucleus, 2.3 x 1017

kg m-3

• Even denser than the atomic nucleus!
• All neutrons are “touching” each other, bounded by gravity

• Surface gravity is g ~ 1.86 x 1012 m s-2, 190 billion times 
stronger than Earth’s surface gravity

For white dwarfs
How much does it weigh on 
neutrons stars (in tons)?

Comparing it to the weight of Mt. Everest ~ 1 billion tons



Chandrasekhar Limit for neutron stars

• Like white dwarfs, neutron stars also 
obey a mass-volume relation

• However, it fails for more massive 
neutrons stars as there is a point 
beyond which neutron degeneracy 
pressure can no longer support the 
star
• Mns < ~2.2 Msun for static neutron star
• Mns < ~2.9 Msun for rapidly-rotating 

neutron star
• More massive neutron stars would 

collapse and become black holes

Most massive neutron star found 
to date is ~2 solar mass



Discovery of Pulsars

The first pulsar discovered by Jocelyn Bell

When first discovered, Bell dubbed it “Little 
Green Man 1” 

Jocelyn Bell Burnell



Pulsar characteristics

• Short periods: ~0.25–2 s
• Pulse periods are extremely well defined. 

Some has the accuracy that challenges 
the best atomic clocks
• Pulse period increase very gradually in 

time (slow down), typically dP/dt ~ 10-15. 
The characteristic “spin-down” time 
P/(dP/dt) ~ a few x 107 years
• Possible pulsar models:

• Binary stars
• Pulsating stars
• Rotating stars

Was the world’s first all-
electronic digital watch (1970)



Pulsars as rotating neutron stars
Maximum angular velocity a fast spinning star can achieve

Centripetal 
acceleration

Gravitational 
acceleration

If ω > ωmax, the star 
would fly apart!

Shortest period is

• Pmin ~ 7 s for Sirius B – too long to account for the observed pulsar periods!
-> white dwarfs would be torn apart simply from this rapid rotation!

• Pmin ~ 5 x 10-4 s for 1.4 solar-mass neutron stars -> neutron stars are safe!

Question: Why a rotating neutron star can account for the extremely precise periods?



Pulsar and Crab Nebula 
• Crab Nebula is known as a supernova remnant (recall the AD 1054 

Chinese record on “Guest Star”)
• A neutron star (or none) is expected as the remnant of the 

supernova
• A pulsar was discovered in 1968 in the Crab Nebula (PSR 0531-21) 

with P ~ 0.0333 s
• No other stars can survive at this rotation period other than neutron 

stars
• Pulsar in the Crab Nebula is a neutron star



Powering the Crab Nebula
• The Crab Nebula is bright in radio, infrared, optical, to X-rays
• Initial energy released in the supernova is not enough to account 

for its current emission
• The Crab Nebula needs a replenishment of magnetic field and 

relativistic electrons
• The total power needed for accounting for the current nebula 

emission is ~105 Lsun



Powering the Crab Nebula

• Crab pulsar rotation period is P = 0.0333 s, its spin-
down rate is dP/dt ~ 4 x 10-13 s/s, or 10-5 s/yr
• It is losing its rotational kinetic energy!
• This lost energy goes into powering the Crab 

Nebula
Rotational kinetic energy

Energy loss rate

For Crab, assuming a uniform sphere 
with 1.4 solar mass and 10 km

Inserting                                                             , dK/dt ~ 5 x 1031 W ~ 105 Lsun!



Pulsar model



Black Holes

• Crash course by Phil Plait on black holes

If a collapsing stellar core exceeds 3 solar mass, nothing, 
even the neutron degeneracy pressure, cannot stop the 
core from collapsing, and it becomes a black hole!

https://www.youtube.com/watch?v=qZWPBKULkdQ&index=33&list=PL8dPuuaLjXtPAJr1ysd5yGIyiSFuh0mIL


Escape Velocity

Total mechanical energy of a particle 

Initial state:

If the particle can escape to infinitely large distance

Final state: v > 0 r = ∞ Gravitational potential energy is zero

Ei =
1
2
mvi

2 −G Mm
r

= Ef > 0

Ei =
1
2
mvi

2 −G Mm
r

Ef =
1
2
mvf

2 −G Mm
r∞

= 1
2
mvf

2 > 0

From energy conservation

So in order for the particle to escape vi > vesc =
2GM
r



Escape Velocity on different objects



What if, the escape velocity = c?

vesc =
2GM
r

= c

That means only light can barely escape!

 r = Rs = 2GM / c2 = 3km(M /M⊙ ) Schwarzschild Radius

If an one solar-mass star packs all its material under the 
Schwarzschild Radius (3 km), even light cannot escape from its 
surface! This is smaller than the radius of a neutron star.

For this reason, a star that has collapsed down below      is called a black hole  Rs

It is enclosed by the event horizon, the spherical surface at          , 
within which nothing can escape, and is completely out of reach

r = Rs

Wrong derivation, but correct result



Schwarzschild radius



The curvature of spacetime

Curved space by massive objects

The shortest path connecting two points 
is not necessarily a straight line

Space is stretched under the 
influence of a massive object



The Principle of Equivalence

All local, freely falling, nonrotating 
laboratories are fully equivalent for the 
performance of all physical experiments

In other words, one cannot tell the 
difference between a free-falling 
reference frame from one “at rest”



Space is curved under gravity

A free-falling elevatorAn elevator at rest

• Light likes to take quickest path possible
• Light path is curved according to the 

observer on the ground
• Space(time) is curved!

The spacetime near Earth is only slightly curved, but 
not the case near black holes!



Proofs that the spacetime is curved

Apparent shift of star’s 
position during solar 
eclipse (experiment led by 
Arthur Eddington in 1919)

Gravitational Lensing This is a simulation



Time is also “messed up”! 



Gravitational redshift and time dilation

A free-falling elevatorAn elevator at rest

• The observer on the ground thinks the 
meter should measure a blueshifted light  

• Yet the equivalence principle says the 
meter should measure exactly the light 
with the same frequency

• So from the point of view of the ground-
based observer, the light should be 
redshifted on its journey to the meter

• This is the gravitational redshift: any 
photon escaping from the gravitational 
potential well would be redshifted and 
lose its energy

Very small for small gh, but huge near the holes



Gravitational redshift and time dilation
If a light beam escapes from an initial 
position of r0 outside a massive object to 
infinity, the light gets redshifted
continuously

The light observed by a distant 
observer would have a frequency

Note time is just an inversion of frequency, 
so clock also slows down



At the Schwarzschild radius

RS = 2GM / c2 Δt0
Δt∞

= 0 Time is frozen!

ν∞

ν0
= 0 Light is infinitely redshifted

Nothing escapes from within the event horizon



Falling into a black hole



Black holes: Observational evidence
Supermassive black holes

Cygnus A

The 
Galactic 
Center

Mass and size estimates 

Stellar-mass black holes

Dynamic mass in binary systems


