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Phys 321: Lecture 3
Stellar Spectra and HR Diagram
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Stellar Spectra

Wavelength (nm)



Spectral Type of Stars

* Earlier the spectra were
classified based on the Balmer
lines (A, B)

* Later the spectra are re-
ordered in surface temperature
using the continuum as the

guide (Annie J. Cannon) Annie Jump Cannon
Who classified over 200,000

stellar spectra included in the

O,B,A FG K M (Oh Be A Fine Girl/Guy Kiss Me) Henry Draper Catalogue

(early) (late)

...B7, B8, B9, A0, A1, A2, A3, ..., A7, A8, A9, FO, F1... etc.
(early A) (late A)




Spectral Type

Characteristics

0O

Hottest blue-white stars with few lines
Strong He I absorption (sometimes emission) lines.
He I absorption lines becoming stronger.

Hot blue-white
He I absorption lines strongest at B2.
H I (Balmer) absorption lines becoming stronger.

White
Balmer absorption lines strongest at A0, becoming weaker later.
Ca IT absorption lines becoming stronger.

Yellow-white

Ca II lines continue to strengthen as Balmer lines continue to weaken.

Neutral metal absorption lines (Fe I, Cr I).

Yellow

Solar-type spectra.

Ca Il lines continue becoming stronger.

Fe I, other neutral metal lines becoming stronger.

Cool orange
Ca Il H and K lines strongest at KO, becoming weaker later.
Spectra dominated by metal absorption lines.

Cool red

Spectra dominated by molecular absorption bands,
especially titanium oxide (TiO) and vanadium oxide (VO).

Neutral metal absorption lines remain strong.

Very cool, dark red
Stronger in infrared than visible.

Strong molecular absorption bands of metal hydrides (CrH, FeH), water

(H»,0), carbon monoxide (CO), and alkali metals (Na, K, Rb, Cs).
TiO and VO are weakening.

Coolest, Infrared
Strong methane (CH,4) bands but weakening CO bands.
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Physics behind different spectral types
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Questions

As a function of temperature

* In what orbitals are electrons most likely to be
found?

* What are the relative numbers of atoms in various
stages of ionization?

Statistical Mechanics



Maxwell-Boltzmann velocity distribution
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Maxwell-Boltzmann velocity distribution
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The Boltzmann Equation

e Orbitals of higher energy are less likely to be
occupied by electrons

Probability of the system in state S, Energy in state S,

\ / Temperature
P(sp) e B/HT _ e—(Eb—Ea)//@/

P(sy) e Ea/kT

/ N

Probability of the system in state S, Energy in state S,




The Boltzmann Equation

e Often more than one state can have the same
energy — the energy levels may be degenerate

e E.g., in a hydrogen atom
* n=1(-13.6 eV) state is two fold degenerate ->g =2
* n=2(-3.40 eV) state is eight fold degenerate ->g =8

Probability of the system in Energy E, o _
\ Statistical weight of E, state(s)

/ Temperature
P(Eb) B 9 e—Eb/kT B &e_(Eb—Ea)//@/
a

P(E,) gue EJ T — ¢

Probability of the system in energy E, Statistical weight of E, state(s)



The Boltzmann Equation

* For a large number of atoms (as in stellar
atmosphere), the ratio of probabilities is
indistinguishable from the ratio of numbers of
atoms:

—E,/kT
No _ goe™™ 8o r,rgpi

N, gge EJkT — g,




Example

* Degeneracy of hydrogen atoms of energy level n is
g=2n?

* At what temperature (in K) will equal numbers of H
| atoms have electrons in the ground state (n=1, g
=2, E=-13.6 eV) and in the first excited state (n =
2,8=8,E=-3.40eV)?

Ny, _ &b e_Eb/kT _ & e_(Eb_Ea)/kT k=1.38x1023 J/K,
N,  goe EkT ~ g "] 1eV=1.602x107)
| — 2(2)° o [(~13.6 V/22)—(~13.6 eV /1) |/kT
2(1)2 ’
10.2 eV
or :> T = —8.54 x 10*K
k1n (4) :

10.2 eV
kT

— In (4).



Strength of Hydrogen Balmer lines

Balmer series:n=2->n=2, 3,4, ... AT s
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-> more tre ons from n =2 level
. Balmer lines strongest at A0 (~9520
->istronger Balmer lines? 3,19 K). Weaker for later and earlier
y: spectral types.




Strength of Hydrogen Balmer lines

* Higher T
-> more electrons populate n = 2 level
-> stronger Balmer lines

e Even higher T, atoms become ionized!

-> less atoms have any electrons at all

-> weaker Balmer lines n=3
lonization Stages: =LA
H1 =neutral hydrogen - 13 W
HIl =ionized hydrogen +Ze |
He | = neutral helium
He Il =singly-ionized helium

He Il = doubly-ionized helium




lonization of hydrogen from the ground n=1 state
requires photons with wavelength less than 91 nm.
What is the minimum wavelength to ionize from the

n=2 level?

A. 455 nm
B. 125 nm
C. 182 nm

Q 364 nm



The Saha Equation

* To get a hydrogen atom’s electron fromn=1ton=2, it
needs 10.2 eV of energy

* To get the same electron to n = oo (and becomes a H |l
atom), it only needs 3.4 eV more energy!

* Let X; be the energy needed to remove an electron from an
atom (or ion) in the ground state, taking it from ionization
stage i to stage i + 1. For hydrogen atoms, it is 13.6 eV.

N.: Number of atoms in ionization stage i

N. /. Z.: partition function for ionization stage i
i+1 ~ i+1 eXp(_X,- /kT) i- P g

N. Z

l l

©.8)
7 — ng o—(Ej—ED/KT
j=1




The Saha Equation

e Extra contribution from free electrons:

-> more free electrons, more chance for the N,
stage to recombine to N, stage

* Full Saha Equation:

Nl‘ neZi

3/2
Nivi 27 (anekT> / o~ Xi/ KT
)

_ >

|

Electron number density



Example: H between 5,000 and 25,000 K

* Partition function for H Il is Z,, = 1, since there is no
degeneracy for a bare proton

e Partition function for H I:

0.
7 — Zgj o~ (E;=ED/KT
j=1

Let’s just take the first two terms (Why?)

Z, =2+8exp(—[(-3.4eV)—(-13.6eV)]/kT)=2+8exp(—10.2eV /KT)

The thermal energy kT for 5,000 to 25,000 K is
from ~0.5eVto 2.5eV, so Z =2



Example: H between 5,000 and 25,000 K

* Inserting the values we get N,/N,
No  No N/
Ntotal NI ‘|‘NII 1‘|‘]\’H/ZVI

e Sometimes we want

1.0
0.9 _—
0.8 _—
07
oor Above T~ 9,600 K, more
than 50% of hydrogen

atoms are ionized!

05fF——————-

N II/ N, total

For P.=n_kT=20Nm=2 ]
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Temperature (K)




Combining Boltzmann and Saha Equations

e Let’s evaluate what fraction of atoms are in the HI
n = 2 state responsible for Balmer lines N,/N,,.,

* Nearly all the neutral hydrogen atoms are either in
n=1orn=2state N; + N, = N

o~ Goew) i)
N total N 1+ N 2 N, total

- 1NNi\;N1 1@
(B
\

Boltzmann Equation Saha Equation
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Combining Boltzmann and Saha Equations
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Strength of Different Spectral Lines

Question: For each calcium atom, there are 500,000 hydrogen atoms! But why in
the solar spectrum, the Ca Il (H & K) lines are more profound than the Balmer lines?

Temperature (K)
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Temperature

Wien’s Law

500nm

T = 6000K

peak

Color index

B-V

Spectral type

OBAFGKWM
T

Luminosity

Stefan-Boltzmann Law
L=4xR’0oT’

Flux-distance relation

L

b= 2
dmd

Absolute magnitude

m—M=5b&O—i—
10 pc



Hertzprung-Russell Diagram

Hertzprung-Russell Diagram

e X axis: B-V color index or
spectral type

Y axis: absolute magnitude

Henry N. Russell’s first diagram (1914)



Hertzprung-Russell Diagram
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Which star is the hottest?
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Which star is the most luminous?
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Which star has the largest radius?
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Theorist’s HR Diagram
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luminosity (solar units)
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Luminosity Class

* For a given spectral type (or color index/temperature),
there are stars with different luminosities and hence, sizes
- dwarf, giant, supergiant

e Correspond to the Luminosity Class, categorized by subtle
differences in the spectra with the same spectral class

H8 3889 Till 3901 Fell 4173 Fe Il 4385
Sill 5856,63 Till 3913 Sill 4128,31 Fell 4179 Fell 4352 Fe ll-Till 4417
H9 3835 Ll Call 3934 He | 4026 Fell 4233 Mgl 4481  Till 4572 He | 4922-Fe Il

h

iR 1040e -
. - Wldth o speCtraI Ilnes — k"
o § more | orTarger] stars

o eAOV

' - =
|
He 3970 C.Lhg 84102 Hy 4340 C.L.Hg Hg 4861



Luminosity Class

Class Type of Star
[a-O  Extreme, luminous supergiants
Ia Luminous supergiants
Ib Less luminous supergiants
11 Bright giants
M1 Normal giants
IV Subgiants
\% Main-sequence (dwarf) stars
VI, sd Subdwarfs
D White dwarfs

Luminosity (solar units)
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