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Stellar	Spectra	and	HR	Diagram	



Stellar	Spectra	



Spectral Type of Stars 

•  Earlier	the	spectra	were	
classified	based	on	the	Balmer	
lines	(A,	B)	

•  Later	the	spectra	are	re-
ordered	in	surface	temperature	
using	the	continuum	as	the	
guide	(Annie	J.	Cannon)	 Annie Jump Cannon

Who classified over 200,000 
stellar spectra included in the 
Henry Draper CatalogueO, B, A, F, G, K, M        (Oh Be A Fine Girl/Guy Kiss Me) �

(early)         (late) 
 
...B7, B8, B9, A0, A1, A2, A3, ..., A7, A8, A9, F0, F1... etc. �
                       (early A)                  (late A) 





Physics behind different spectral types 
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Lines	appear/disappear	Strong/weak	lines	

Temperature	

Difference	in	
atomic	structure	



Questions 

As	a	function	of	temperature	
•  In	what	orbitals	are	electrons	most	likely	to	be	
found?	

• What	are	the	relative	numbers	of	atoms	in	various	
stages	of	ionization?	

Statistical	Mechanics	



Maxwell-Boltzmann velocity distribution 

FIGURE 2 Stellar spectra for main-sequence classes O9–F5. Note that these spectra are displayed
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from Abt,
et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucson,
AZ, 1968.)

equilibrium (the gas is not rapidly increasing or decreasing in temperature, for instance), the
Maxwell–Boltzmann velocity distribution function5 describes the fraction of particles
having a given range of speeds. The number of gas particles per unit volume having speeds
between v and v + dv is given by

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv, (1)

5This name honors James Clerk Maxwell and Ludwig Boltzmann (1844–1906), the latter of whom is considered
the founder of statistical mechanics.
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Maxwell-Boltzmann velocity distribution 
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FIGURE 6 Maxwell–Boltzmann distribution function, nv/n, for hydrogen atoms at a temperature
of 10,000 K. The fraction of hydrogen atoms in the gas having velocities between 2 × 104 m s−1 and
2.5 × 104 m s−1 is the shaded area under the curve between those two velocities; see Example 1.1.

Example 1.2. The ground state of the hydrogen atom is twofold degenerate. In fact,
although “ground state” is the standard terminology, the plural “ground states” would be
more precise because these are two quantum states that have the same energy of −13.6 eV
(for ms = ±1/2).8 In the same manner, the “first excited state” actually consists of eight
degenerate quantum states with the same energy of −3.40 eV.

Table 2 shows the set of quantum numbers {n, ℓ, mℓ, ms} that identifies each state; it
also shows each state’s energy. Notice that there are g1 = 2 ground states with the energy
E1 = −13.6 eV, and g2 = 8 first excited states with the energy E2 = −3.40 eV.

The ratio of the probabilityP(Eb) that the system will be found in any of thegb degenerate
states with energy Eb to the probability P(Ea) that the system is in any of the ga degenerate
states with energy Ea is given by

P(Eb)

P (Ea)
= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT .

Stellar atmospheres contain a vast number of atoms, so the ratio of probabilities is indis-
tinguishable from the ratio of the number of atoms. Thus, for the atoms of a given element
in a specified state of ionization, the ratio of the number of atoms Nb with energy Eb to

8In reality, the two “ground states” of the hydrogen atom are not precisely degenerate.

important signature of hydrogen gas in interstellar space.
wo states actually have slightly different energies, enabling the hydrogen atom to emit 21-cm radio waves,
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FIGURE 3 Stellar spectra for main-sequence classes F5–M5. Note that these spectra are displayed
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from Abt,
et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucson,
AZ, 1968.)

where n is the total number density (number of particles per unit volume), nv ≡ ∂n/∂v,
m is a particle’s mass, k is Boltzmann’s constant, and T is the temperature of the gas in
kelvins. Figure 6 shows the Maxwell–Boltzmann distribution of molecular speeds in terms
of the fraction of molecules having a speed between v and v + dv. The exponent of the
distribution function is the ratio of a gas particle’s kinetic energy, 1

2mv2, to the characteristic
thermal energy, kT . It is difficult for a significant number of particles to have an energy
much greater or less than the thermal energy; the distribution peaks when these energies
are equal, at a most probable speed of

vmp =
√

2kT

m
. (2)
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FIGURE 4 Digitized spectra of main sequence classes O5–F0 displayed in terms of relative flux
as a function of wavelength. Modern spectra obtained by digital detectors (as opposed to photographic
plates) are generally displayed graphically. (Data from Silva and Cornell, Ap. J. Suppl., 81, 865, 1992.)

The high-speed exponential “tail” of the distribution function results in a somewhat higher
(average) root-mean-square speed6 of

vrms =
√

3kT

m
. (3)

Example 1.1. The area under the curve between two speeds is equal to the fraction of gas
particles in that range of speeds. In order to determine the fraction of hydrogen atoms in a gas
of T = 10,000 K having speeds between v1 = 2 × 104 m s−1 and v2 = 2.5 × 104 m s−1,
it is necessary to integrate the Maxwell–Boltzmann distribution between these two limits,

6The root-mean-square speed is the square root of the average (mean) value of v2: vrms =
√

v2 .
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The Boltzmann Equation 

• Orbitals	of	higher	energy	are	less	likely	to	be	
occupied	by	electrons	

or

N/Ntotal = 1
n

∫ v2

v1

nv dv

=
( m

2πkT

)3/2
∫ v2

v1

e−mv2/2kT 4πv2 dv. (4)

Although Eq. ( 4) has a closed-form solution when v1 = 0 and v2 → ∞, it must be eval-
uated numerically in other cases. This can be accomplished crudely by evaluating the
integrand using an average value of the velocity over the interval, multiplied by the width
of the interval, or

N/Ntotal = 1
n

∫ v2

v1

nv(v) dv ≃ 1
n
nv(v) (v2 − v1),

where v ≡(v1 + v2)/2. Substituting, we find

N/Ntotal ≃
( m

2πkT

)3/2
e−mv2/2kT 4πv2 (v2 − v1)

≃0.125.

Approximately 12.5% of the hydrogen atoms in a gas at 10,000 K have speeds between
2 × 104 m s−1 and 2.5 × 104 m s−1. A more careful numerical integration over the range
gives 12.76%.

The Boltzmann Equation

The atoms of a gas gain and lose energy as they collide. As a result, the distribution in
the speeds of the impacting atoms, given by Eq. ( 1), produces a definite distribution of
the electrons among the atomic orbitals. This distribution of electrons is governed by a
fundamental result of statistical mechanics: Orbitals of higher energy are less likely to be
occupied by electrons.

Let sa stand for the specific set of quantum numbers that identifies a state of energy Ea

for a system of particles. Similarly, let sb stand for the set of quantum numbers that identifies
a state of energy Eb. For example, Ea = −13.6 eV for the lowest orbit of the hydrogen
atom, with sa = {n = 1, ℓ = 0, mℓ = 0, ms = +1/2} identifying a specific state with
that energy (recall Section 5.4 for a discussion of quantum numbers). Then the ratio of the
probability P(sb) that the system is in state sb to the probability P(sa) that the system is in
state sa is given by

P(sb)

P (sa)
= e−Eb/kT

e−Ea/kT
= e−(Eb−Ea)/kT , (5)

where T is the common temperature of the two systems. The term e−E/kT is called the
Boltzmann factor.7

7The energies encountered in this context are usually given in units of electron volts (eV), so it is useful to
remember that at a room temperature of 300 K, the product kT is approximately 1/40 eV.
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The Boltzmann Equation 

• Often	more	than	one	state	can	have	the	same	
energy	–	the	energy	levels	may	be	degenerate	

•  E.g.,	in	a	hydrogen	atom	
•  n	=	1	(-13.6	eV)	state	is	two	fold	degenerate	->	g	=	2	
•  n	=	2	(-3.40	eV)	state	is	eight	fold	degenerate	->	g	=	8	

Probability	of	the	system	in	Energy	Eb	

Probability	of	the	system	in	energy	Ea	

Temperature	
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FIGURE 6 Maxwell–Boltzmann distribution function, nv/n, for hydrogen atoms at a temperature
of 10,000 K. The fraction of hydrogen atoms in the gas having velocities between 2 × 104 m s−1 and
2.5 × 104 m s−1 is the shaded area under the curve between those two velocities; see Example 1.1.

Example 1.2. The ground state of the hydrogen atom is twofold degenerate. In fact,
although “ground state” is the standard terminology, the plural “ground states” would be
more precise because these are two quantum states that have the same energy of −13.6 eV
(for ms = ±1/2).8 In the same manner, the “first excited state” actually consists of eight
degenerate quantum states with the same energy of −3.40 eV.

Table 2 shows the set of quantum numbers {n, ℓ, mℓ, ms} that identifies each state; it
also shows each state’s energy. Notice that there are g1 = 2 ground states with the energy
E1 = −13.6 eV, and g2 = 8 first excited states with the energy E2 = −3.40 eV.

The ratio of the probabilityP(Eb) that the system will be found in any of thegb degenerate
states with energy Eb to the probability P(Ea) that the system is in any of the ga degenerate
states with energy Ea is given by

P(Eb)

P (Ea)
= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT .

Stellar atmospheres contain a vast number of atoms, so the ratio of probabilities is indis-
tinguishable from the ratio of the number of atoms. Thus, for the atoms of a given element
in a specified state of ionization, the ratio of the number of atoms Nb with energy Eb to

8In reality, the two “ground states” of the hydrogen atom are not precisely degenerate.

important signature of hydrogen gas in interstellar space.
wo states actually have slightly different energies, enabling the hydrogen atom to emit 21-cm radio waves,
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•  For	a	large	number	of	atoms	(as	in	stellar	
atmosphere),	the	ratio	of	probabilities	is	
indistinguishable	from	the	ratio	of	numbers	of	
atoms:	

The Boltzmann Equation 

TABLE 2 Quantum Numbers and Energies for the Hydrogen Atom.

Ground States s1 Energy E1

n ℓ mℓ ms (eV)
1 0 0 +1/2 −13.6
1 0 0 −1/2 −13.6

First Excited States s2 Energy E2

n ℓ mℓ ms (eV)
2 0 0 +1/2 −3.40
2 0 0 −1/2 −3.40
2 1 1 +1/2 −3.40
2 1 1 −1/2 −3.40
2 1 0 +1/2 −3.40
2 1 0 −1/2 −3.40
2 1 −1 +1/2 −3.40
2 1 −1 −1/2 −3.40

the number of atoms Na with energy Ea in different states of excitation is given by the
Boltzmann equation,

Nb

Na

= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT . (6)

Example 1.3. For a gas of neutral hydrogen atoms, at what temperature will equal
numbers of atoms have electrons in the ground state (n = 1) and in the first excited state
(n = 2)?9 Recall from Example 1.2 that the degeneracy of the nth energy level of the
hydrogen atom is gn = 2n2. Associating state a with the ground state and state b with the
first excited state, setting N2 = N1 on the left-hand sideof Eq. (6), and using the equation
for the energy levels lead to

1 = 2(2)2

2(1)2
e−[(−13.6 eV/22)−(−13.6 eV/12)]/kT ,

or

10.2 eV
kT

= ln (4).

9We have reverted to the standard practice of referring to the two degenerate states of lowest energy as the “ground
state” and to the eight degenerate states of next-lowest energy as the “first excited state.”
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Example 
• Degeneracy	of	hydrogen	atoms	of	energy	level	n	is	
g=2n2	

• At	what	temperature	(in	K)	will	equal	numbers	of	H	
I	atoms	have	electrons	in	the	ground	state	(n	=	1,	g	
=	2,	E	=	-13.6	eV)	and	in	the	first	excited	state	(n	=	
2,	g	=	8,	E	=	-3.40	eV)?	

TABLE 2 Quantum Numbers and Energies for the Hydrogen Atom.

Ground States s1 Energy E1

n ℓ mℓ ms (eV)
1 0 0 +1/2 −13.6
1 0 0 −1/2 −13.6

First Excited States s2 Energy E2

n ℓ mℓ ms (eV)
2 0 0 +1/2 −3.40
2 0 0 −1/2 −3.40
2 1 1 +1/2 −3.40
2 1 1 −1/2 −3.40
2 1 0 +1/2 −3.40
2 1 0 −1/2 −3.40
2 1 −1 +1/2 −3.40
2 1 −1 −1/2 −3.40

the number of atoms Na with energy Ea in different states of excitation is given by the
Boltzmann equation,

Nb

Na

= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT . (6)

Example 1.3. For a gas of neutral hydrogen atoms, at what temperature will equal
numbers of atoms have electrons in the ground state (n = 1) and in the first excited state
(n = 2)?9 Recall from Example 1.2 that the degeneracy of the nth energy level of the
hydrogen atom is gn = 2n2. Associating state a with the ground state and state b with the
first excited state, setting N2 = N1 on the left-hand sideof Eq. (6), and using the equation
for the energy levels lead to

1 = 2(2)2

2(1)2
e−[(−13.6 eV/22)−(−13.6 eV/12)]/kT ,

or

10.2 eV
kT

= ln (4).

9We have reverted to the standard practice of referring to the two degenerate states of lowest energy as the “ground
state” and to the eight degenerate states of next-lowest energy as the “first excited state.”
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k	=	1.38	x	10-23	J/K,		
1	eV	=	1.602	x	10-19	J	

TABLE 2 Quantum Numbers and Energies for the Hydrogen Atom.

Ground States s1 Energy E1

n ℓ mℓ ms (eV)
1 0 0 +1/2 −13.6
1 0 0 −1/2 −13.6

First Excited States s2 Energy E2

n ℓ mℓ ms (eV)
2 0 0 +1/2 −3.40
2 0 0 −1/2 −3.40
2 1 1 +1/2 −3.40
2 1 1 −1/2 −3.40
2 1 0 +1/2 −3.40
2 1 0 −1/2 −3.40
2 1 −1 +1/2 −3.40
2 1 −1 −1/2 −3.40

the number of atoms Na with energy Ea in different states of excitation is given by the
Boltzmann equation,

Nb

Na

= gb e−Eb/kT

ga e−Ea/kT
= gb

ga

e−(Eb−Ea)/kT . (6)

Example 1.3. For a gas of neutral hydrogen atoms, at what temperature will equal
numbers of atoms have electrons in the ground state (n = 1) and in the first excited state
(n = 2)?9 Recall from Example 1.2 that the degeneracy of the nth energy level of the
hydrogen atom is gn = 2n2. Associating state a with the ground state and state b with the
first excited state, setting N2 = N1 on the left-hand sideof Eq. (6), and using the equation
for the energy levels lead to

1 = 2(2)2

2(1)2
e−[(−13.6 eV/22)−(−13.6 eV/12)]/kT ,

or

10.2 eV
kT

= ln (4).

9We have reverted to the standard practice of referring to the two degenerate states of lowest energy as the “ground
state” and to the eight degenerate states of next-lowest energy as the “first excited state.”
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Solving for the temperature yields10

T = 10.2 eV
k ln (4)

= 8.54 × 104 K.

High temperatures are required for a significant number of hydrogen atoms to have elec-
trons in the first excited state. Figure 7 shows the relative occupancy of the ground and
first excited states, N2/(N1 + N2), as a function of temperature.11 This result is somewhat
puzzling, however. Recall that the Balmer absorption lines are produced by electrons in
hydrogen atoms making an upward transition from the n = 2 orbital. If, as shown in Exam-
ple 1.3, temperatures on the order of 85,000 K are needed to provide electrons in the first
excited state, then why do the Balmer lines reach their maximum intensity at a much lower
temperature of 9520 K? Clearly, according to Eq. ( 6), at temperatures higher than 9520 K
an even greater proportion of the electrons will be in the first excited state rather than in the
ground state. If this is the case, then what is responsible for the diminishing strength of the
Balmer lines at higher temperatures?

The Saha Equation

The answer lies in also considering the relative number of atoms in different stages of
ionization. Let χi be the ionization energy needed to remove an electron from an atom (or
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FIGURE 7 N2/(N1 + N2) for the hydrogen atom obtained via the Boltzmann equation.

10When we are working with electron volts, the Boltzmann constant can be expressed in the convenient form
k = 8.6173423 × 10−5 eV K−1.
11For the remainder of this section, we will use a = 1 for the ground state energy and b = 2 for the energy of the
first excited state.
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Strength of Hydrogen Balmer lines 

Higher	T		
->	more	electrons	populate	n	=	2	level	
->	more	transitions	from	n	=	2	level	
->	stronger	Balmer	lines?	

Balmer	series:	n	=	2	->	n	=	2,	3,	4,	…	

Why?	
Balmer	lines	strongest	at	A0	(~9520	
K).	Weaker	for	later	and	earlier	
spectral	types.	
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Strength of Hydrogen Balmer lines 
•  Higher	T		
								->	more	electrons	populate	n	=	2	level		
								->	stronger	Balmer	lines	
•  Even	higher	T,	atoms	become	ionized!		
								->	less	atoms	have	any	electrons	at	all	
								->	weaker	Balmer	lines	

Ionization	Stages:			
H	I					=	neutral	hydrogen	
H	II				=	ionized	hydrogen		
He	I			=	neutral	helium		
He	II		=	singly-ionized	helium		
He	III	=	doubly-ionized	helium	



Ionization	of	hydrogen	from	the	ground	n=1	state	
requires	photons	with	wavelength	less	than	91	nm.	
What	is	the	minimum	wavelength	to	ionize	from	the	
n=2	level?	
	
A.  45.5	nm	
B.  125	nm	
C.  182	nm	
D.  364	nm	



The Saha Equation 

•  To	get	a	hydrogen	atom’s	electron	from	n	=	1	to	n	=	2,	it	
needs	10.2	eV	of	energy	

•  To	get	the	same	electron	to	n	=	∞	(and	becomes	a	H	II	
atom),	it	only	needs	3.4	eV	more	energy!		

•  Let						be	the	energy	needed	to	remove	an	electron	from	an	
atom	(or	ion)	in	the	ground	state,	taking	it	from	ionization	
stage	i	to	stage	i	+	1.	For	hydrogen	atoms,	it	is	13.6	eV.	

χ i

Ni+1

N i

~ Zi+1
Zi
exp(−χ i / kT )

Ni:	Number	of	atoms	in	ionization	stage	i	

ion) in the ground state, thus taking it from ionization stage i to stage (i + 1). For example,
the ionization energy of hydrogen, the energy needed to convert it from H I to H II, is
χI = 13.6 eV. However, it may be that the initial and final ions are not in the ground state.
An average must be taken over the orbital energies to allow for the possible partitioning of
the atom’s electrons among its orbitals. This procedure involves calculating the partition
functions, Z, for the initial and final atoms. The partition function is simply the weighted
sum of the number of ways the atom can arrange its electrons with the same energy, with
more energetic (and therefore less likely) configurations receiving less weight from the
Boltzmann factor when the sum is taken. If Ej is the energy of the j th energy level and gj

is the degeneracy of that level, then the partition function Z is defined as

Z =
∞
∑

j=1

gj e−(Ej −E1)/kT . (7)

If we use the partition functions Zi and Zi+1 for the atom in its initial and final stages of
ionization, the ratio of the number of atoms in stage (i + 1) to the number of atoms in stage
i is

Ni+1

Ni

= 2Zi+1

neZi

(

2πmekT

h2

)3/2

e−χi /kT . (8)

This equation is known as the Saha equation, after the Indian astrophysicist Meghnad
Saha (1894–1956), who first derived it in 1920. Because a free electron is produced in the
ionization process, it is not surprising to find the number density of free electrons (number
of free electrons per unit volume), ne, on the right-hand side of the Saha equation. Note that
as the number density of free electrons increases, the number of atoms in the higher stage
of ionization decreases, since there are more electrons with which the ion may recombine.
The factor of 2 in front of the partition function Zi+1 reflects the two possible spins of the
free electron, with ms = ±1/2. The term in parentheses is also related to the free electron,
with me being the electron mass.12 Sometimes the pressure of the free electrons, Pe, is used
in place of the electron number density; the two are related by the ideal gas law written in
the form

Pe = nekT .

Then the Saha equation takes the alternative form

Ni+1

Ni

= 2kT Zi+1

PeZi

(

2πmekT

h2

)3/2

e−χi /kT . (9)

12The term in parentheses is the number density of electrons for which the quantum energy is roughly equal to the
characteristic thermal energy kT . For the classical conditions encountered in stellar atmospheres, this term is much
greater than ne .
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Zi:	partition	function	for	ionization	stage	i	



The Saha Equation 

•  Extra	contribution	from	free	electrons:	
			->	more	free	electrons,	more	chance	for	the	Ni+1	
stage	to	recombine	to	Ni	stage	
•  Full	Saha	Equation:	

ion) in the ground state, thus taking it from ionization stage i to stage (i + 1). For example,
the ionization energy of hydrogen, the energy needed to convert it from H I to H II, is
χI = 13.6 eV. However, it may be that the initial and final ions are not in the ground state.
An average must be taken over the orbital energies to allow for the possible partitioning of
the atom’s electrons among its orbitals. This procedure involves calculating the partition
functions, Z, for the initial and final atoms. The partition function is simply the weighted
sum of the number of ways the atom can arrange its electrons with the same energy, with
more energetic (and therefore less likely) configurations receiving less weight from the
Boltzmann factor when the sum is taken. If Ej is the energy of the j th energy level and gj

is the degeneracy of that level, then the partition function Z is defined as

Z =
∞
∑

j=1

gj e−(Ej −E1)/kT . (7)

If we use the partition functions Zi and Zi+1 for the atom in its initial and final stages of
ionization, the ratio of the number of atoms in stage (i + 1) to the number of atoms in stage
i is

Ni+1

Ni

= 2Zi+1

neZi

(

2πmekT

h2

)3/2

e−χi /kT . (8)

This equation is known as the Saha equation, after the Indian astrophysicist Meghnad
Saha (1894–1956), who first derived it in 1920. Because a free electron is produced in the
ionization process, it is not surprising to find the number density of free electrons (number
of free electrons per unit volume), ne, on the right-hand side of the Saha equation. Note that
as the number density of free electrons increases, the number of atoms in the higher stage
of ionization decreases, since there are more electrons with which the ion may recombine.
The factor of 2 in front of the partition function Zi+1 reflects the two possible spins of the
free electron, with ms = ±1/2. The term in parentheses is also related to the free electron,
with me being the electron mass.12 Sometimes the pressure of the free electrons, Pe, is used
in place of the electron number density; the two are related by the ideal gas law written in
the form

Pe = nekT .

Then the Saha equation takes the alternative form

Ni+1

Ni

= 2kT Zi+1

PeZi

(

2πmekT

h2

)3/2

e−χi /kT . (9)

12The term in parentheses is the number density of electrons for which the quantum energy is roughly equal to the
characteristic thermal energy kT . For the classical conditions encountered in stellar atmospheres, this term is much
greater than ne .
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Example: H between 5,000 and 25,000 K 

• Partition	function	for	H	II	is	ZII	=	1,	since	there	is	no	
degeneracy	for	a	bare	proton	

• Partition	function	for	H	I:	

ion) in the ground state, thus taking it from ionization stage i to stage (i + 1). For example,
the ionization energy of hydrogen, the energy needed to convert it from H I to H II, is
χI = 13.6 eV. However, it may be that the initial and final ions are not in the ground state.
An average must be taken over the orbital energies to allow for the possible partitioning of
the atom’s electrons among its orbitals. This procedure involves calculating the partition
functions, Z, for the initial and final atoms. The partition function is simply the weighted
sum of the number of ways the atom can arrange its electrons with the same energy, with
more energetic (and therefore less likely) configurations receiving less weight from the
Boltzmann factor when the sum is taken. If Ej is the energy of the j th energy level and gj

is the degeneracy of that level, then the partition function Z is defined as

Z =
∞
∑

j=1

gj e−(Ej −E1)/kT . (7)

If we use the partition functions Zi and Zi+1 for the atom in its initial and final stages of
ionization, the ratio of the number of atoms in stage (i + 1) to the number of atoms in stage
i is

Ni+1

Ni

= 2Zi+1

neZi

(

2πmekT

h2

)3/2

e−χi /kT . (8)

This equation is known as the Saha equation, after the Indian astrophysicist Meghnad
Saha (1894–1956), who first derived it in 1920. Because a free electron is produced in the
ionization process, it is not surprising to find the number density of free electrons (number
of free electrons per unit volume), ne, on the right-hand side of the Saha equation. Note that
as the number density of free electrons increases, the number of atoms in the higher stage
of ionization decreases, since there are more electrons with which the ion may recombine.
The factor of 2 in front of the partition function Zi+1 reflects the two possible spins of the
free electron, with ms = ±1/2. The term in parentheses is also related to the free electron,
with me being the electron mass.12 Sometimes the pressure of the free electrons, Pe, is used
in place of the electron number density; the two are related by the ideal gas law written in
the form

Pe = nekT .

Then the Saha equation takes the alternative form

Ni+1

Ni

= 2kT Zi+1

PeZi

(

2πmekT

h2

)3/2

e−χi /kT . (9)

12The term in parentheses is the number density of electrons for which the quantum energy is roughly equal to the
characteristic thermal energy kT . For the classical conditions encountered in stellar atmospheres, this term is much
greater than ne .
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		ZI ≈2+8exp(−[(−3.4eV )−(−13.6eV )]/kT)=2+8exp(−10.2eV /KT)
Let’s	just	take	the	first	two	terms	(Why?)	

The	thermal	energy	kT	for	5,000	to	25,000	K	is	
from	~0.5	eV	to	2.5	eV,	so	 		ZI ≈2



•  Inserting	the	values	we	get	NII/NI	

•  Sometimes	we	want	

Example: H between 5,000 and 25,000 K 
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FIGURE 8 NII/Ntotal for hydrogen from the Saha equation when Pe = 20 N m−2. Fifty percent
ionization occurs at T ≃ 9600 K.
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FIGURE 9 N2/Ntotal for hydrogen from the Boltzmann and Saha equations, assuming Pe =
20 N m−2. The peak occurs at approximately 9900 K.

Figure 9 shows that in this example, the hydrogen gas would produce the most intense
Balmer lines at a temperature of 9900 K, in good agreement with the observations. The
diminishing strength of the Balmer lines at higher temperatures is due to the rapid ionization
of hydrogen above 10,000 K. Figure 10 summarizes this situation.
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For	Pe=nekT	=	20	N	m-2	

Above	T	~	9,600	K,	more	
than	50%	of	hydrogen	
atoms	are	ionized!	

The electron pressure ranges from 0.1 N m−2 in the atmospheres of cooler stars to 100 N m−2

for hotter stars.

Combining the Boltzmann and Saha Equations

We are now finally ready to consider the combined effects of the Boltzmann and Saha
equations and how they influence the stellar spectra that we observe.

Example 1.4. Consider the degree of ionization in a stellar atmosphere that is assumed
to be composed of pure hydrogen. Assume for simplicity that the electron pressure is a
constant Pe = 20 N m−2.

The Saha equation ( 9) will be used to calculate the fraction of atoms that are ionized,
NII/Ntotal = NII/(NI + NII), as the temperature T varies between 5000 K and 25,000 K.
However, the partition functions ZI and ZII must be determined first. A hydrogen ion is
just a proton and so has no degeneracy; thus ZII = 1. The energy of the first excited state
of hydrogen is E2 − E1 = 10.2 eV above the ground state energy. Because 10.2 eV ≫ kT

for the temperature regime under consideration, the Boltzmann factor e−(E2−E1)/kT ≪ 1.
Nearly all of the H I atoms are therefore in the ground state (recall the previous example),
so Eq. ( 7) for the partition function simplifies to ZI ≃g1 = 2(1)2 = 2.

Inserting these values into the Saha equation with χI = 13.6 eV gives the ratio of ionized
to neutral hydrogen, NII/NI. This ratio is then used to find the fraction of ionized hydrogen,
NII/Ntotal, by writing

NII

Ntotal
= NII

NI + NII
= NII/NI

1 + NII/NI
;

the results are displayed in Fig. 8. This figure shows that when T = 5000 K, essentially
none of the hydrogen atoms are ionized. At about 8300 K, 5% of the atoms have become
ionized. Half of the hydrogen is ionized at a temperature of 9600 K, and when T has risen to
11,300 K, all but 5% of the hydrogen is in the form of H II. Thus the ionization of hydrogen
takes place within a temperature interval of approximately 3000 K. This range of tempera-
tures is quite limited compared to the temperatures of tens of millions of degrees routinely
encountered inside stars. The narrow region inside a star where hydrogen is partially ion-
ized is called a hydrogen partial ionization zone and has a characteristic temperature of
approximately 10,000 K for a wide range of stellar parameters.

Now we can see why the Balmer lines are observed to attain their maximum intensity at
a temperature of 9520 K, instead of at the much higher characteristic temperatures (on the
order of 85,000 K) required to excite electrons to the n = 2 energy level of hydrogen. The
strength of the Balmer lines depends on N2/Ntotal, the fraction of all hydrogen atoms that
are in the first excited state. This is found by combining the results of the Boltzmann and
Saha equations. Because virtually all of the neutral hydrogen atoms are in either the ground
state or the first excited state, we can employ the approximation N1 + N2 ≃NI and write

N2

Ntotal
=
(

N2

N1 + N2

)(

NI

Ntotal

)

=
(

N2/N1

1 + N2/N1

)(

1
1 + NII/NI

)

.
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Combining Boltzmann and Saha Equations  

•  Let’s	evaluate	what	fraction	of	atoms	are	in	the	HI	
n	=	2	state	responsible	for	Balmer	lines	N2/Ntotal	

• Nearly	all	the	neutral	hydrogen	atoms	are	either	in	
n	=	1	or	n	=	2	state	

The electron pressure ranges from 0.1 N m−2 in the atmospheres of cooler stars to 100 N m−2

for hotter stars.

Combining the Boltzmann and Saha Equations

We are now finally ready to consider the combined effects of the Boltzmann and Saha
equations and how they influence the stellar spectra that we observe.

Example 1.4. Consider the degree of ionization in a stellar atmosphere that is assumed
to be composed of pure hydrogen. Assume for simplicity that the electron pressure is a
constant Pe = 20 N m−2.

The Saha equation ( 9) will be used to calculate the fraction of atoms that are ionized,
NII/Ntotal = NII/(NI + NII), as the temperature T varies between 5000 K and 25,000 K.
However, the partition functions ZI and ZII must be determined first. A hydrogen ion is
just a proton and so has no degeneracy; thus ZII = 1. The energy of the first excited state
of hydrogen is E2 − E1 = 10.2 eV above the ground state energy. Because 10.2 eV ≫ kT

for the temperature regime under consideration, the Boltzmann factor e−(E2−E1)/kT ≪ 1.
Nearly all of the H I atoms are therefore in the ground state (recall the previous example),
so Eq. ( 7) for the partition function simplifies to ZI ≃g1 = 2(1)2 = 2.

Inserting these values into the Saha equation with χI = 13.6 eV gives the ratio of ionized
to neutral hydrogen, NII/NI. This ratio is then used to find the fraction of ionized hydrogen,
NII/Ntotal, by writing

NII

Ntotal
= NII

NI + NII
= NII/NI

1 + NII/NI
;

the results are displayed in Fig. 8. This figure shows that when T = 5000 K, essentially
none of the hydrogen atoms are ionized. At about 8300 K, 5% of the atoms have become
ionized. Half of the hydrogen is ionized at a temperature of 9600 K, and when T has risen to
11,300 K, all but 5% of the hydrogen is in the form of H II. Thus the ionization of hydrogen
takes place within a temperature interval of approximately 3000 K. This range of tempera-
tures is quite limited compared to the temperatures of tens of millions of degrees routinely
encountered inside stars. The narrow region inside a star where hydrogen is partially ion-
ized is called a hydrogen partial ionization zone and has a characteristic temperature of
approximately 10,000 K for a wide range of stellar parameters.

Now we can see why the Balmer lines are observed to attain their maximum intensity at
a temperature of 9520 K, instead of at the much higher characteristic temperatures (on the
order of 85,000 K) required to excite electrons to the n = 2 energy level of hydrogen. The
strength of the Balmer lines depends on N2/Ntotal, the fraction of all hydrogen atoms that
are in the first excited state. This is found by combining the results of the Boltzmann and
Saha equations. Because virtually all of the neutral hydrogen atoms are in either the ground
state or the first excited state, we can employ the approximation N1 + N2 ≃NI and write

N2

Ntotal
=
(

N2

N1 + N2

)(

NI

Ntotal

)

=
(

N2/N1

1 + N2/N1

)(

1
1 + NII/NI

)

.
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The electron pressure ranges from 0.1 N m−2 in the atmospheres of cooler stars to 100 N m−2

for hotter stars.

Combining the Boltzmann and Saha Equations

We are now finally ready to consider the combined effects of the Boltzmann and Saha
equations and how they influence the stellar spectra that we observe.

Example 1.4. Consider the degree of ionization in a stellar atmosphere that is assumed
to be composed of pure hydrogen. Assume for simplicity that the electron pressure is a
constant Pe = 20 N m−2.

The Saha equation ( 9) will be used to calculate the fraction of atoms that are ionized,
NII/Ntotal = NII/(NI + NII), as the temperature T varies between 5000 K and 25,000 K.
However, the partition functions ZI and ZII must be determined first. A hydrogen ion is
just a proton and so has no degeneracy; thus ZII = 1. The energy of the first excited state
of hydrogen is E2 − E1 = 10.2 eV above the ground state energy. Because 10.2 eV ≫ kT

for the temperature regime under consideration, the Boltzmann factor e−(E2−E1)/kT ≪ 1.
Nearly all of the H I atoms are therefore in the ground state (recall the previous example),
so Eq. ( 7) for the partition function simplifies to ZI ≃g1 = 2(1)2 = 2.

Inserting these values into the Saha equation with χI = 13.6 eV gives the ratio of ionized
to neutral hydrogen, NII/NI. This ratio is then used to find the fraction of ionized hydrogen,
NII/Ntotal, by writing

NII

Ntotal
= NII

NI + NII
= NII/NI

1 + NII/NI
;

the results are displayed in Fig. 8. This figure shows that when T = 5000 K, essentially
none of the hydrogen atoms are ionized. At about 8300 K, 5% of the atoms have become
ionized. Half of the hydrogen is ionized at a temperature of 9600 K, and when T has risen to
11,300 K, all but 5% of the hydrogen is in the form of H II. Thus the ionization of hydrogen
takes place within a temperature interval of approximately 3000 K. This range of tempera-
tures is quite limited compared to the temperatures of tens of millions of degrees routinely
encountered inside stars. The narrow region inside a star where hydrogen is partially ion-
ized is called a hydrogen partial ionization zone and has a characteristic temperature of
approximately 10,000 K for a wide range of stellar parameters.

Now we can see why the Balmer lines are observed to attain their maximum intensity at
a temperature of 9520 K, instead of at the much higher characteristic temperatures (on the
order of 85,000 K) required to excite electrons to the n = 2 energy level of hydrogen. The
strength of the Balmer lines depends on N2/Ntotal, the fraction of all hydrogen atoms that
are in the first excited state. This is found by combining the results of the Boltzmann and
Saha equations. Because virtually all of the neutral hydrogen atoms are in either the ground
state or the first excited state, we can employ the approximation N1 + N2 ≃NI and write

N2

Ntotal
=
(

N2

N1 + N2

)(

NI

Ntotal

)

=
(

N2/N1

1 + N2/N1

)(

1
1 + NII/NI

)

.
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The electron pressure ranges from 0.1 N m−2 in the atmospheres of cooler stars to 100 N m−2

for hotter stars.

Combining the Boltzmann and Saha Equations

We are now finally ready to consider the combined effects of the Boltzmann and Saha
equations and how they influence the stellar spectra that we observe.

Example 1.4. Consider the degree of ionization in a stellar atmosphere that is assumed
to be composed of pure hydrogen. Assume for simplicity that the electron pressure is a
constant Pe = 20 N m−2.

The Saha equation ( 9) will be used to calculate the fraction of atoms that are ionized,
NII/Ntotal = NII/(NI + NII), as the temperature T varies between 5000 K and 25,000 K.
However, the partition functions ZI and ZII must be determined first. A hydrogen ion is
just a proton and so has no degeneracy; thus ZII = 1. The energy of the first excited state
of hydrogen is E2 − E1 = 10.2 eV above the ground state energy. Because 10.2 eV ≫ kT

for the temperature regime under consideration, the Boltzmann factor e−(E2−E1)/kT ≪ 1.
Nearly all of the H I atoms are therefore in the ground state (recall the previous example),
so Eq. ( 7) for the partition function simplifies to ZI ≃g1 = 2(1)2 = 2.

Inserting these values into the Saha equation with χI = 13.6 eV gives the ratio of ionized
to neutral hydrogen, NII/NI. This ratio is then used to find the fraction of ionized hydrogen,
NII/Ntotal, by writing

NII

Ntotal
= NII

NI + NII
= NII/NI

1 + NII/NI
;

the results are displayed in Fig. 8. This figure shows that when T = 5000 K, essentially
none of the hydrogen atoms are ionized. At about 8300 K, 5% of the atoms have become
ionized. Half of the hydrogen is ionized at a temperature of 9600 K, and when T has risen to
11,300 K, all but 5% of the hydrogen is in the form of H II. Thus the ionization of hydrogen
takes place within a temperature interval of approximately 3000 K. This range of tempera-
tures is quite limited compared to the temperatures of tens of millions of degrees routinely
encountered inside stars. The narrow region inside a star where hydrogen is partially ion-
ized is called a hydrogen partial ionization zone and has a characteristic temperature of
approximately 10,000 K for a wide range of stellar parameters.

Now we can see why the Balmer lines are observed to attain their maximum intensity at
a temperature of 9520 K, instead of at the much higher characteristic temperatures (on the
order of 85,000 K) required to excite electrons to the n = 2 energy level of hydrogen. The
strength of the Balmer lines depends on N2/Ntotal, the fraction of all hydrogen atoms that
are in the first excited state. This is found by combining the results of the Boltzmann and
Saha equations. Because virtually all of the neutral hydrogen atoms are in either the ground
state or the first excited state, we can employ the approximation N1 + N2 ≃NI and write

N2

Ntotal
=
(

N2

N1 + N2

)(

NI

Ntotal

)

=
(

N2/N1

1 + N2/N1

)(

1
1 + NII/NI

)
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Combining Boltzmann and Saha Equations  5000 10,000 15,000 20,000 25,000
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FIGURE 8 NII/Ntotal for hydrogen from the Saha equation when Pe = 20 N m−2. Fifty percent
ionization occurs at T ≃ 9600 K.
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FIGURE 9 N2/Ntotal for hydrogen from the Boltzmann and Saha equations, assuming Pe =
20 N m−2. The peak occurs at approximately 9900 K.

Figure 9 shows that in this example, the hydrogen gas would produce the most intense
Balmer lines at a temperature of 9900 K, in good agreement with the observations. The
diminishing strength of the Balmer lines at higher temperatures is due to the rapid ionization
of hydrogen above 10,000 K. Figure 10 summarizes this situation.
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FIGURE 8 NII/Ntotal for hydrogen from the Saha equation when Pe = 20 N m−2. Fifty percent
ionization occurs at T ≃ 9600 K.
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FIGURE 9 N2/Ntotal for hydrogen from the Boltzmann and Saha equations, assuming Pe =
20 N m−2. The peak occurs at approximately 9900 K.

Figure 9 shows that in this example, the hydrogen gas would produce the most intense
Balmer lines at a temperature of 9900 K, in good agreement with the observations. The
diminishing strength of the Balmer lines at higher temperatures is due to the rapid ionization
of hydrogen above 10,000 K. Figure 10 summarizes this situation.
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NII/Ntotal	

Solving for the temperature yields10

T = 10.2 eV
k ln (4)

= 8.54 × 104 K.

High temperatures are required for a significant number of hydrogen atoms to have elec-
trons in the first excited state. Figure 7 shows the relative occupancy of the ground and
first excited states, N2/(N1 + N2), as a function of temperature.11 This result is somewhat
puzzling, however. Recall that the Balmer absorption lines are produced by electrons in
hydrogen atoms making an upward transition from the n = 2 orbital. If, as shown in Exam-
ple 1.3, temperatures on the order of 85,000 K are needed to provide electrons in the first
excited state, then why do the Balmer lines reach their maximum intensity at a much lower
temperature of 9520 K? Clearly, according to Eq. ( 6), at temperatures higher than 9520 K
an even greater proportion of the electrons will be in the first excited state rather than in the
ground state. If this is the case, then what is responsible for the diminishing strength of the
Balmer lines at higher temperatures?

The Saha Equation

The answer lies in also considering the relative number of atoms in different stages of
ionization. Let χi be the ionization energy needed to remove an electron from an atom (or
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FIGURE 7 N2/(N1 + N2) for the hydrogen atom obtained via the Boltzmann equation.

10When we are working with electron volts, the Boltzmann constant can be expressed in the convenient form
k = 8.6173423 × 10−5 eV K−1.
11For the remainder of this section, we will use a = 1 for the ground state energy and b = 2 for the energy of the
first excited state.
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N2/(N1+N2)	

The electron pressure ranges from 0.1 N m−2 in the atmospheres of cooler stars to 100 N m−2

for hotter stars.

Combining the Boltzmann and Saha Equations

We are now finally ready to consider the combined effects of the Boltzmann and Saha
equations and how they influence the stellar spectra that we observe.

Example 1.4. Consider the degree of ionization in a stellar atmosphere that is assumed
to be composed of pure hydrogen. Assume for simplicity that the electron pressure is a
constant Pe = 20 N m−2.

The Saha equation ( 9) will be used to calculate the fraction of atoms that are ionized,
NII/Ntotal = NII/(NI + NII), as the temperature T varies between 5000 K and 25,000 K.
However, the partition functions ZI and ZII must be determined first. A hydrogen ion is
just a proton and so has no degeneracy; thus ZII = 1. The energy of the first excited state
of hydrogen is E2 − E1 = 10.2 eV above the ground state energy. Because 10.2 eV ≫ kT

for the temperature regime under consideration, the Boltzmann factor e−(E2−E1)/kT ≪ 1.
Nearly all of the H I atoms are therefore in the ground state (recall the previous example),
so Eq. ( 7) for the partition function simplifies to ZI ≃g1 = 2(1)2 = 2.

Inserting these values into the Saha equation with χI = 13.6 eV gives the ratio of ionized
to neutral hydrogen, NII/NI. This ratio is then used to find the fraction of ionized hydrogen,
NII/Ntotal, by writing

NII

Ntotal
= NII

NI + NII
= NII/NI

1 + NII/NI
;

the results are displayed in Fig. 8. This figure shows that when T = 5000 K, essentially
none of the hydrogen atoms are ionized. At about 8300 K, 5% of the atoms have become
ionized. Half of the hydrogen is ionized at a temperature of 9600 K, and when T has risen to
11,300 K, all but 5% of the hydrogen is in the form of H II. Thus the ionization of hydrogen
takes place within a temperature interval of approximately 3000 K. This range of tempera-
tures is quite limited compared to the temperatures of tens of millions of degrees routinely
encountered inside stars. The narrow region inside a star where hydrogen is partially ion-
ized is called a hydrogen partial ionization zone and has a characteristic temperature of
approximately 10,000 K for a wide range of stellar parameters.

Now we can see why the Balmer lines are observed to attain their maximum intensity at
a temperature of 9520 K, instead of at the much higher characteristic temperatures (on the
order of 85,000 K) required to excite electrons to the n = 2 energy level of hydrogen. The
strength of the Balmer lines depends on N2/Ntotal, the fraction of all hydrogen atoms that
are in the first excited state. This is found by combining the results of the Boltzmann and
Saha equations. Because virtually all of the neutral hydrogen atoms are in either the ground
state or the first excited state, we can employ the approximation N1 + N2 ≃NI and write

N2

Ntotal
=
(

N2

N1 + N2

)(

NI

Ntotal

)

=
(

N2/N1

1 + N2/N1

)(

1
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)
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Strength of Different Spectral Lines 
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FIGURE 11 The dependence of spectral line strengths on temperature.

An Enormous Range in Stellar Radii

If this idea of stellar cooling were correct, then there should be a relation between a star’s
absolute magnitude and its spectral type. A Danish engineer and amateur astronomer, Ejnar
Hertzsprung (1873–1967), analyzed stars whose absolute magnitudes and spectral types
had been accurately determined. In 1905 he published a paper confirming the expected
correlation between these quantities. However, he was puzzled by his discovery that stars
of type G or later had a range of magnitudes, despite having the same spectral classification.
Hertzsprung termed the brighter stars giants. This nomenclature was natural, since the
Stefan–Boltzmann law shows that

R = 1
T 2

e

√

L

4πσ
. (10)

If two stars have the same temperature (as inferred for stars having the same spectral type),
then the more luminous star must be larger.

1 Stellar evolution describes the change in the structure and composition of an individual star as it ages. This
usage of the term evolution differs from that in biology, where it describes the changes that occur over generations,
rather than during the lifetime of a single individual.
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hotter than the M stars at the other end. In addition, the empirical mass–luminosity rela-
tion, deduced from the study of binary stars, showed that O stars are more massive than 
M stars. These regularities led to a theory of stellar evolution16 that described how stars 
might cool off as they age. This theory (no longer accepted) held that stars begin their 
lives as young, hot, bright blue O stars. It was suggested that as they age, stars become 
less massive as they exhaust more and more of their “fuel” and that they then gradually 
become cooler and fainter until they fade away as old, dim red M stars. Although incorrect, 
a vestige of this idea remains in the terms early and late spectral types.
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Question:	For	each	calcium	atom,	there	are	500,000	hydrogen	atoms!	But	why	in	
the	solar	spectrum,	the	Ca	II	(H	&	K)	lines	are	more	profound	than	the	Balmer	lines?	
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Hertzprung-Russell Diagram 

Hertzprung-Russell	Diagram	
• X	axis:	B-V	color	index	or	
spectral	type	

•  Y	axis:	absolute	magnitude	

FIGURE 12 Henry Norris Russell’s first diagram, with spectral types listed along the top and
absolute magnitudes on the left-hand side. (Figure from Russell, Nature, 93, 252, 1914.)

radius of the more luminous star is
√

100 = 10 times larger. On a logarithmically plotted
H–R diagram, the locations of stars having the same radii fall along diagonal lines that run
roughly parallel to the main sequence (lines of constant radius are also shown in Fig. 14).
The main-sequence stars show some variation in their sizes, ranging from roughly 20 R⊙
at the extreme upper left end of the main sequence down to 0.1 R⊙ at the lower right end.
The giant stars fall between roughly 10 R⊙ and 100 R⊙. For example, Aldebaran (α Tauri),
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Henry	N.	Russell’s	first	diagram	(1914)	



Hertzprung-Russell Diagram 
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FIGURE 13 An observer’s H–R diagram. The data are from the Hipparcos catalog. More than
3700 stars are included here with parallax measurements determined to better than 20%. (Data courtesy
of the European Space Agency.)
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Which star is the hottest? 
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FIGURE 13 An observer’s H–R diagram. The data are from the Hipparcos catalog. More than
3700 stars are included here with parallax measurements determined to better than 20%. (Data courtesy
of the European Space Agency.)
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Which star is the most luminous? 
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Which star has the largest radius? 
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FIGURE 13 An observer’s H–R diagram. The data are from the Hipparcos catalog. More than
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Theorist’s HR Diagram 
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FIGURE 13 An observer’s H–R diagram. The data are from the Hipparcos catalog. More than
3700 stars are included here with parallax measurements determined to better than 20%. (Data courtesy
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A	theorist’s	HR	diagram:	
•  X	axis:	Temperature	
•  Y	axis:	Luminosity	
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Luminosity Class 
•  For	a	given	spectral	type	(or	color	index/temperature),	
there	are	stars	with	different	luminosities	and	hence,	sizes	
–	dwarf,	giant,	supergiant	

•  Correspond	to	the	Luminosity	Class,	categorized	by	subtle	
differences	in	the	spectra	with	the	same	spectral	class	
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Width	of	spectral	lines	gets	narrower	for	
more	luminous	(or	larger)	stars	



Luminosity Class 
TABLE 3 Morgan–Keenan Luminosity Classes.

Class Type of Star
Ia-O Extreme, luminous supergiants

Ia Luminous supergiants
Ib Less luminous supergiants
II Bright giants
III Normal giants
IV Subgiants
V Main-sequence (dwarf) stars

VI, sd Subdwarfs
D White dwarfs
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