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Radiation Field Fundamentals 1 

•  Specific	intensity		

• Mean	specific	intensity	
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FIGURE 1 Intensity Iλ.

Although the energy Eλ dλ in the numerator is vanishingly small, the differentials in the
denominator are also vanishingly small, so the ratio approaches a limiting value of Iλ. The
specific intensity is usually referred to simply as the intensity. Thus, in spherical coordinates,

Eλ dλ = Iλ dλ dt dA cos θ d# = Iλ dλ dt dA cos θ sin θ dθ dφ (2)

is the amount of electromagnetic radiation energy having a wavelength between λ and
λ+ dλ that passes in time dt through the area dA into a solid angle d# = sin θ dθ dφ. The

Imagine a light ray of intensity Iλ as it propagates through a vacuum. Because Iλ is
defined in the limit d# → 0, the energy of the ray does not spread out (or diverge). The
intensity is therefore constant along any ray traveling through empty space.

In general, the specific intensity Iλ does vary with direction, however.The mean intensity
of the radiation is found by integrating the specific intensity over all directions and dividing
the result by 4π sr, the solid angle enclosed by a sphere, to obtain an average value of Iλ.
In spherical coordinates, this average value is3

⟨Iλ⟩ ≡ 1
4π

∫

Iλ d# = 1
4π

∫ 2π

φ=0

∫ π

θ=0
Iλ sin θ dθ dφ. (3)

For an isotropic radiation field (one with the same intensity in all directions), ⟨Iλ⟩ = Iλ.
Blackbody radiation is isotropic and has ⟨Iλ⟩ = Bλ.

W m− 3 indicates an energy per second per unit area per unit wavelength interval,
W m− 2m− 1, not an energy per second per unit volume.
3Many texts refer to the average intensity as Jλ instead of ⟨Iλ⟩. However, in this text the notation ⟨Iλ⟩ has been
selected to explicitly illustrate the average nature of the quantity.
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specific intensity therefore has units of W m−3 sr −1.2 The Planck function Bl is an example 
of the specific intensity for the special case of blackbody radiation. In general, however, 
the energy of the light need not vary with wavelength in the same way as it does for black-
body radiation. Later we will see under what circumstances we may set Il = Bl.
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specific intensity therefore has units of W m−3 sr −1.2 The Planck function Bl is an example 
of the specific intensity for the special case of blackbody radiation. In general, however, 
the energy of the light need not vary with wavelength in the same way as it does for black-
body radiation. Later we will see under what circumstances we may set Il = Bl.

���

For	isotropic	radiation	field:	

x

y

z

dA

I!(T )

dW = sin " d" d#

d##

" d"

FIGURE 1 Intensity Iλ.

Although the energy Eλ dλ in the numerator is vanishingly small, the differentials in the
denominator are also vanishingly small, so the ratio approaches a limiting value of Iλ. The
specific intensity is usually referred to simply as the intensity. Thus, in spherical coordinates,

Eλ dλ = Iλ dλ dt dA cos θ d# = Iλ dλ dt dA cos θ sin θ dθ dφ (2)

is the amount of electromagnetic radiation energy having a wavelength between λ and
λ+ dλ that passes in time dt through the area dA into a solid angle d# = sin θ dθ dφ. The

Imagine a light ray of intensity Iλ as it propagates through a vacuum. Because Iλ is
defined in the limit d# → 0, the energy of the ray does not spread out (or diverge). The
intensity is therefore constant along any ray traveling through empty space.

In general, the specific intensity Iλ does vary with direction, however.The mean intensity
of the radiation is found by integrating the specific intensity over all directions and dividing
the result by 4π sr, the solid angle enclosed by a sphere, to obtain an average value of Iλ.
In spherical coordinates, this average value is3

⟨Iλ⟩ ≡ 1
4π

∫

Iλ d# = 1
4π

∫ 2π

φ=0

∫ π

θ=0
Iλ sin θ dθ dφ. (3)

For an isotropic radiation field (one with the same intensity in all directions), ⟨Iλ⟩ = Iλ.
Blackbody radiation is isotropic and has ⟨Iλ⟩ = Bλ.

W m− 3 indicates an energy per second per unit area per unit wavelength interval,
W m− 2m− 1, not an energy per second per unit volume.
3Many texts refer to the average intensity as Jλ instead of ⟨Iλ⟩. However, in this text the notation ⟨Iλ⟩ has been
selected to explicitly illustrate the average nature of the quantity.

2

Stellar Atmospheres

specific intensity therefore has units of W m−3 sr −1.2 The Planck function Bl is an example 
of the specific intensity for the special case of blackbody radiation. In general, however, 
the energy of the light need not vary with wavelength in the same way as it does for black-
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specific intensity therefore has units of W m−3 sr −1.2 The Planck function Bl is an example 
of the specific intensity for the special case of blackbody radiation. In general, however, 
the energy of the light need not vary with wavelength in the same way as it does for black-
body radiation. Later we will see under what circumstances we may set Il = Bl.
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Iλ Energy	per	unit	area	per	unit	time	per	
unit	solid	angle	per	unit	wavelength	



Radiation Field Fundamentals 2 

•  Specific	radiative	flux,	or	flux	density	

For an isotropic radiation field, uλ dλ = (4π/c)Iλ dλ, and for blackbody radiation,

uλ dλ = 4π
c

Bλ dλ = 8πhc/λ5

ehc/λkT − 1
dλ. (5)

At times it may be more useful to express the blackbody energy density in terms of the
frequency, ν, of the light by employing

uν d ν = 4π
c

Bν d ν = 8πhν3/c3

ehν/kT − 1
d ν. (6)

Thus uν d ν is the energy per unit volume with a frequency between ν and ν + d ν.
The total energy density, u, is found by integrating over all wavelengths or over all

frequencies:

u =
∫ ∞

0
uλ dλ =

∫ ∞

0
uν d ν.

For blackbody radiation (Iλ = Bλ), the equation shows that

u = 4π
c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

c
= aT 4, (7)

where a ≡4σ/c is known as the radiation constant and has the value

a = 7.565767 × 10−16 J m−3K−4.

The Specific Radiative Flux

Another quantity of interest is Fλ, the specific radiative flux. Fλ dλ is the net energy
having a wavelength between λ and λ+ dλ that passes each second through a unit area in
the direction of the z-axis:

Fλ dλ =
∫

Iλ dλ cos θ d& =
∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos θ sin θ d θ dφ. (8)

The factor of cos θ determines the z-component of a light ray and allows the cancelation of
oppositely directed rays. For an isotropic radiation field there is no net transport of energy,
and so Fλ = 0.

Both the radiative flux and the specific intensity describe the light received from a
celestial source, and you may wonder which of these quantities is actually measured by a
telescope’s photometer, pointed at the source of light. The answer depends on whether the
source is resolved by the telescope. Figure 3(a) shows a source of light, uniform over
its entire surface,4 that is resolved by the telescope; the angle θ subtended by the source
as a whole is much larger than θmin, the smallest angle resolvable according to Rayleigh’s

4The assumption of a uniform light source precludes dimming effects such as limb darkening.

:
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FIGURE 3 The measurement of (a) the specific intensity for a resolved source and (b) the radiative
flux for an unresolved source. Note that any object with an angular resolution smaller than θmin on
the surface of the resolved source (such as a surface feature on a planet) remains unresolved.

criterion. In this case, what is being measured is the specific intensity, the amount of energy
per second passing through the aperture area into the solid angle defined by θmin. For
example, at a wavelength of 501 nm, the measured value of the specific intensity at the
center of the Sun’s disk is

I501 = 4.03 × 1013 W m−3sr−1.

4, resulting in the same amount of energy reaching each square meter of the detector. The
specific intensity of light rays from the source is thus measured to be constant.5

However, it is the radiative flux that is measured for an unresolved source. As the source
recedes farther and farther, it will eventually subtend an angle θ smaller than θmin, and
it can no longer be resolved by the telescope. When θ < θmin, the energy received from

decreases as 1/r2, as expected.

5 he image and object intensities of a resolved
object are the same.

T
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Now imagine that the source is moved twice as far away. According to the inverse 
square law for light, there will be only (1/2)2 = 1/4 as much energy received from each 
square meter of the source. If the source is still resolved, however, then the amount of 
source area that contributes energy to the solid angle  has increased by a factor of

the entire source will disperse throughout the diffraction pattern (the Airy disk and 
rings) determined by the telescope’s aperture. Because the light arriving at the detec-
tor leaves the surface of the source at all angles [see Fig.  3(b)], the detector is effec-
tively integrating the specific intensity over all directions. This is just the definition of 
the radiative flux, Eq. (  8). As the distance r to the source increases further, the amount 
of energy falling within the Airy disk (and consequently the value of the radiative flux)

"min

"min

���

Which	quantity	do	we	measure	using	a	telescope?	

Resolved	source:	specific	intensity	

Unresolved	source:	radiative	flux	

Energy	per	unit	area	per	unit	time	per	unit	wavelength	



Radiation Field Fundamentals 3 

•  Specific	energy	density	 uλ

The Specific Energy Density

To determine how much energy is contained within the radiation field, we can use a “trap”
consisting of a small cylinder of length dL, open at both ends, with perfectly reflecting
walls inside; see Fig. 2. Light entering the trap at one end travels and (possibly) bounces
back and forth until it exits the other end of the trap. The energy inside the trap is the same
as what would be present at that location if the trap were removed. The radiation that enters
the trap at an angle θ travels through the trap in a time dt = dL/(c cos θ). Thus the amount
of energy inside the trap with a wavelength between λ and λ+ dλ that is due to the radiation
that enters at angle θ is

Eλ dλ = Iλ dλ dt dA cos θ d# = Iλ dλ dA d#
dL

c
.

The quantity dA dL is just the volume of the trap, so the specific energy density (energy
per unit volume having a wavelength between λ and λ+ dλ) is found by dividing Eλ dλ

by dL dA, integrating over all solid angles, and using Eq. (3):

uλ dλ = 1
c

∫

Iλ dλ d#

= 1
c

∫ 2π

φ=0

∫ π

θ=0
Iλ dλ sin θ dθ dφ

= 4π
c

⟨Iλ⟩ dλ. (4)
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FIGURE 2 Cylindrical “trap” for measuring energy density uλ.
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Energy	within	trap	of	size	dL	and	dA:	

The Specific Energy Density
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uλdλ = Eλdλ / dV = Eλdλ / dLdA

Energy	per	unit	volume	
per	unit	wavelength	



Radiation Field Fundamentals 3 

•  Specific	energy	density	

•  Total	energy	density	

uλ

For	blackbody	(isotropic):		

For an isotropic radiation field, uλ dλ = (4π/c)Iλ dλ, and for blackbody radiation,

uλ dλ = 4π
c

Bλ dλ = 8πhc/λ5

ehc/λkT − 1
dλ. (5)

At times it may be more useful to express the blackbody energy density in terms of the
frequency, ν, of the light by employing

uν d ν = 4π
c

Bν d ν = 8πhν3/c3

ehν/kT − 1
d ν. (6)

Thus uν d ν is the energy per unit volume with a frequency between ν and ν + d ν.
The total energy density, u, is found by integrating over all wavelengths or over all

frequencies:

u =
∫ ∞

0
uλ dλ =

∫ ∞

0
uν d ν.

For blackbody radiation (Iλ = Bλ), the equation shows that

u = 4π
c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

c
= aT 4, (7)

where a ≡4σ/c is known as the radiation constant and has the value

a = 7.565767 × 10−16 J m−3K−4.

The Specific Radiative Flux

Another quantity of interest is Fλ, the specific radiative flux. Fλ dλ is the net energy
having a wavelength between λ and λ+ dλ that passes each second through a unit area in
the direction of the z-axis:

Fλ dλ =
∫

Iλ dλ cos θ d& =
∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos θ sin θ d θ dφ. (8)

The factor of cos θ determines the z-component of a light ray and allows the cancelation of
oppositely directed rays. For an isotropic radiation field there is no net transport of energy,
and so Fλ = 0.

Both the radiative flux and the specific intensity describe the light received from a
celestial source, and you may wonder which of these quantities is actually measured by a
telescope’s photometer, pointed at the source of light. The answer depends on whether the
source is resolved by the telescope. Figure 3(a) shows a source of light, uniform over
its entire surface,4 that is resolved by the telescope; the angle θ subtended by the source
as a whole is much larger than θmin, the smallest angle resolvable according to Rayleigh’s

4The assumption of a uniform light source precludes dimming effects such as limb darkening.

:
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∫ π
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The factor of cos θ determines the z-component of a light ray and allows the cancelation of
oppositely directed rays. For an isotropic radiation field there is no net transport of energy,
and so Fλ = 0.

Both the radiative flux and the specific intensity describe the light received from a
celestial source, and you may wonder which of these quantities is actually measured by a
telescope’s photometer, pointed at the source of light. The answer depends on whether the
source is resolved by the telescope. Figure 3(a) shows a source of light, uniform over
its entire surface,4 that is resolved by the telescope; the angle θ subtended by the source
as a whole is much larger than θmin, the smallest angle resolvable according to Rayleigh’s

4The assumption of a uniform light source precludes dimming effects such as limb darkening.
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For	blackbody	(isotropic):		

For an isotropic radiation field, uλ dλ = (4π/c)Iλ dλ, and for blackbody radiation,

uλ dλ = 4π
c

Bλ dλ = 8πhc/λ5

ehc/λkT − 1
dλ. (5)

At times it may be more useful to express the blackbody energy density in terms of the
frequency, ν, of the light by employing

uν d ν = 4π
c

Bν d ν = 8πhν3/c3

ehν/kT − 1
d ν. (6)

Thus uν d ν is the energy per unit volume with a frequency between ν and ν + d ν.
The total energy density, u, is found by integrating over all wavelengths or over all

frequencies:

u =
∫ ∞

0
uλ dλ =

∫ ∞

0
uν d ν.

For blackbody radiation (Iλ = Bλ), the equation shows that

u = 4π
c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

c
= aT 4, (7)

where a ≡4σ/c is known as the radiation constant and has the value

a = 7.565767 × 10−16 J m−3K−4.

The Specific Radiative Flux

Another quantity of interest is Fλ, the specific radiative flux. Fλ dλ is the net energy
having a wavelength between λ and λ+ dλ that passes each second through a unit area in
the direction of the z-axis:

Fλ dλ =
∫

Iλ dλ cos θ d& =
∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos θ sin θ d θ dφ. (8)

The factor of cos θ determines the z-component of a light ray and allows the cancelation of
oppositely directed rays. For an isotropic radiation field there is no net transport of energy,
and so Fλ = 0.

Both the radiative flux and the specific intensity describe the light received from a
celestial source, and you may wonder which of these quantities is actually measured by a
telescope’s photometer, pointed at the source of light. The answer depends on whether the
source is resolved by the telescope. Figure 3(a) shows a source of light, uniform over
its entire surface,4 that is resolved by the telescope; the angle θ subtended by the source
as a whole is much larger than θmin, the smallest angle resolvable according to Rayleigh’s

4The assumption of a uniform light source precludes dimming effects such as limb darkening.
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Radiation Field Fundamentals 4 
• Radiation	pressure	

those photons having a wavelength between λ and λ+ dλ:

Prad,λ dλ = 2
c

∫

hemisphere
Iλ dλ cos2 θ d# (reflection)

= 2
c

∫ 2π

φ=0

∫ π/2

θ=0
Iλ dλ cos2 θ sin θ dθ dφ.

Just as the pressure of a gas exists throughout the volume of the gas and not just at the
container walls, the radiation pressure of a “photon gas” exists everywhere in the radia-
tion field. Imagine removing the reflecting surface dA in Fig. 4 and replacing it with a
mathematical surface. The incident photons will now keep on going through dA; instead of
reflected photons, photons will be streaming through dA from the other side. Thus, for an
isotropic radiation field, there will be no change in the expression for the radiation pressure
if the leading factor of 2 (which originated in the change in momentum upon reflection of
the photons) is removed and the angular integration is extended over all solid angles:

Prad,λ dλ = 1
c

∫

sphere
Iλ dλ cos2 θ d# (transmission) (9)

= 1
c

∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos2 θ sin θ dθ dφ

= 4π
3c

Iλ dλ (isotropic radiation field). (10)

However, it may be that the radiation field is not isotropic. In that case, Eq. ( 9) for the ra-
diation pressure is still valid but the pressure depends on the orientation of the mathematical
surface dA.

The total radiation pressure produced by photons of all wavelengths is found by inte-
grating Eq. (10):

Prad =
∫ ∞

0
Prad,λ dλ.

For blackbody radiation, it is left as a problem to show that

Prad = 4π
3c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

3c
= 1

3
aT 4 = 1

3
u. (11)

Thus the blackbody radiation pressure is one-third of the energy density. (For comparison,
the pressure of an ideal monatomic gas is two-thirds of its energy density.)

Stellar Atmospheres
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Pressure	from	all	photons	in	a	unit	wavelength	

Each	photon	of	energy	E	=	hν	carries	momentum	p	=	E/c	

Change	of	momentum	per	unit	area	->	force	per	unit	area	->	pressure		

Radiation Pressure

reflected at an angle θ from a perfectly reflecting surface of area dA into a solid angle
d". Because the angle of incidence equals the angle of reflection, the solid angles shown
for the incident and reflected photons are the same size and inclined by the same angle
θ on opposing sides of the z-axis. The change in the z-component of the momentum of
photons with wavelengths between λ and λ+ dλ that are reflected from the area dA in a
time interval dt is

dpλ dλ =
[

(pλ)final,z − (pλ)initial,z
]

dλ

=
[

Eλ cos θ
c

−
(

−Eλ cos θ
c

)]

dλ

= 2 Eλ cos θ
c

dλ

= 2
c

Iλ dλ dt dA cos2 θ d",

where the last expression was obtained from Eq. ( 2). Dividing dpλ by dt and dA gives
(dpλ/dt)/dA. But from Newton’s second and third laws, −dpλ/dt is the force exerted by
the photons on the area dA, although we will ignore the minus sign, which merely says
that the force is in the −z-direction. Thus the radiation pressure is the force per unit area,
(dpλ/dt)/dA, produced by the photons within the solid angle d". Integrating over the
hemisphere of all incident directions results in Prad,λ dλ, the radiation pressure exerted by
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Because a photon possesses an energy E, Einstein’s relativistic energy equation tells us 
that even though it is massless, a photon also carries a momentum of p = E /c and thus 
can exert a radiation pressure. This radiation pressure can be derived in the same way 
that gas pressure is found for molecules bouncing off a wall. Figure  4 shows photons
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those photons having a wavelength between λ and λ+ dλ:

Prad,λ dλ = 2
c

∫

hemisphere
Iλ dλ cos2 θ d# (reflection)

= 2
c

∫ 2π

φ=0

∫ π/2

θ=0
Iλ dλ cos2 θ sin θ dθ dφ.

Just as the pressure of a gas exists throughout the volume of the gas and not just at the
container walls, the radiation pressure of a “photon gas” exists everywhere in the radia-
tion field. Imagine removing the reflecting surface dA in Fig. 4 and replacing it with a
mathematical surface. The incident photons will now keep on going through dA; instead of
reflected photons, photons will be streaming through dA from the other side. Thus, for an
isotropic radiation field, there will be no change in the expression for the radiation pressure
if the leading factor of 2 (which originated in the change in momentum upon reflection of
the photons) is removed and the angular integration is extended over all solid angles:

Prad,λ dλ = 1
c

∫

sphere
Iλ dλ cos2 θ d# (transmission) (9)

= 1
c

∫ 2π

φ=0

∫ π

θ=0
Iλ dλ cos2 θ sin θ dθ dφ

= 4π
3c

Iλ dλ (isotropic radiation field). (10)

However, it may be that the radiation field is not isotropic. In that case, Eq. ( 9) for the ra-
diation pressure is still valid but the pressure depends on the orientation of the mathematical
surface dA.

The total radiation pressure produced by photons of all wavelengths is found by inte-
grating Eq. (10):

Prad =
∫ ∞

0
Prad,λ dλ.

For blackbody radiation, it is left as a problem to show that

Prad = 4π
3c

∫ ∞

0
Bλ(T ) dλ = 4σT 4

3c
= 1

3
aT 4 = 1

3
u. (11)

Thus the blackbody radiation pressure is one-third of the energy density. (For comparison,
the pressure of an ideal monatomic gas is two-thirds of its energy density.)
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Integrating	over	the	hemisphere:	
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those photons having a wavelength between λ and λ+ dλ:
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Just as the pressure of a gas exists throughout the volume of the gas and not just at the
container walls, the radiation pressure of a “photon gas” exists everywhere in the radia-
tion field. Imagine removing the reflecting surface dA in Fig. 4 and replacing it with a
mathematical surface. The incident photons will now keep on going through dA; instead of
reflected photons, photons will be streaming through dA from the other side. Thus, for an
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if the leading factor of 2 (which originated in the change in momentum upon reflection of
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However, it may be that the radiation field is not isotropic. In that case, Eq. ( 9) for the ra-
diation pressure is still valid but the pressure depends on the orientation of the mathematical
surface dA.

The total radiation pressure produced by photons of all wavelengths is found by inte-
grating Eq. (10):
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∫ ∞
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For blackbody radiation, it is left as a problem to show that

Prad = 4π
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∫ ∞

0
Bλ(T ) dλ = 4σT 4
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= 1

3
aT 4 = 1

3
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Thus the blackbody radiation pressure is one-third of the energy density. (For comparison,
the pressure of an ideal monatomic gas is two-thirds of its energy density.)
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For	an	isotropic	“photon	gas”	without	an	actual	
“wall”,	factor	2	is	removed,	and	we	have	to	
integrate	over	all	solid	angle	
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Pressure	from	all	photons	
in	a	unit	wavelength	
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Pressure	from	all	photons	
in	a	unit	wavelength	

To	obtain	the	total	radiation	pressure,	we	integrate	over	all	wavelengths	
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Iλ dλ (isotropic radiation field). (10)

However, it may be that the radiation field is not isotropic. In that case, Eq. ( 9) for the ra-
diation pressure is still valid but the pressure depends on the orientation of the mathematical
surface dA.

The total radiation pressure produced by photons of all wavelengths is found by inte-
grating Eq. (10):
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∫ ∞
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For blackbody radiation, it is left as a problem to show that
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3c
= 1

3
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Thus the blackbody radiation pressure is one-third of the energy density. (For comparison,
the pressure of an ideal monatomic gas is two-thirds of its energy density.)
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For	blackbody	radiation	

those photons having a wavelength between λ and λ+ dλ:

Prad,λ dλ = 2
c

∫
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Iλ dλ cos2 θ d# (reflection)

= 2
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∫ 2π

φ=0
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θ=0
Iλ dλ cos2 θ sin θ dθ dφ.

Just as the pressure of a gas exists throughout the volume of the gas and not just at the
container walls, the radiation pressure of a “photon gas” exists everywhere in the radia-
tion field. Imagine removing the reflecting surface dA in Fig. 4 and replacing it with a
mathematical surface. The incident photons will now keep on going through dA; instead of
reflected photons, photons will be streaming through dA from the other side. Thus, for an
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diation pressure is still valid but the pressure depends on the orientation of the mathematical
surface dA.

The total radiation pressure produced by photons of all wavelengths is found by inte-
grating Eq. (10):
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For blackbody radiation, it is left as a problem to show that

Prad = 4π
3c

∫ ∞

0
Bλ(T ) dλ = 4σT 4
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= 1

3
aT 4 = 1

3
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Thus the blackbody radiation pressure is one-third of the energy density. (For comparison,
the pressure of an ideal monatomic gas is two-thirds of its energy density.)

Stellar Atmospheres

���

Blackbody	radiation	pressure	is	one-third	of	the	photon	energy	density	
	
						Compare	to	
	
Pressure	of	an	ideal,	monatomic	gas	is	two-thirds	of	its	energy	density	
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atoms per cubic meter is roughly

n = ρ

mH

= 1.25 × 1023 m−3,

where mH is the mass of a hydrogen atom. In an approximate sense, two of these atoms will
“collide” if their centers pass within two Bohr radii, 2a0, of each other.8 As shown in Fig. 6,
we may consider the equivalent problem of a single atom of radius 2a0 moving with speed v

through a collection of stationary points that represent the centers of the other atoms. In an
amount of time t , this atom has moved a distance vt and has swept out a cylindrical volume
V = π(2a0)

2vt = σvt , where σ ≡ π(2a0)
2 is the collision cross section of the atom in this

classical approximation.9 Within this volume V are nV = nσvt point atoms with which
the moving atom has collided. Thus the average distance traveled between collisions is

ℓ = vt

nσvt
= 1

nσ
. (12)

The distance ℓ is the mean free path between collisions.10 For a hydrogen atom,

σ = π(2a0)
2 = 3.52 × 10−20 m2.

Thus the mean free path in this situation is

ℓ = 1
nσ

= 2.27 × 10−4 m.

The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
9The concept of cross section actually represents a probability of particle interactions but has units of cross-
sectional area.
10A more careful calculation, using a Maxwellian velocity distribution for all of the atoms, results in a mean free
path that is smaller by a factor of

√
2.
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“collide” if their centers pass within two Bohr radii, 2a0, of each other.8 As shown in Fig. 6,
we may consider the equivalent problem of a single atom of radius 2a0 moving with speed v

through a collection of stationary points that represent the centers of the other atoms. In an
amount of time t , this atom has moved a distance vt and has swept out a cylindrical volume
V = π(2a0)
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classical approximation.9 Within this volume V are nV = nσvt point atoms with which
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2 = 3.52 × 10−20 m2.
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ℓ = 1
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The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
9The concept of cross section actually represents a probability of particle interactions but has units of cross-
sectional area.
10A more careful calculation, using a Maxwellian velocity distribution for all of the atoms, results in a mean free
path that is smaller by a factor of
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In	a	time	t,	a	hydrogen	atom	
moves	through	a	volume	
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2 is the collision cross section of the atom in this

classical approximation.9 Within this volume V are nV = nσvt point atoms with which
the moving atom has collided. Thus the average distance traveled between collisions is

ℓ = vt

nσvt
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. (12)

The distance ℓ is the mean free path between collisions.10 For a hydrogen atom,

σ = π(2a0)
2 = 3.52 × 10−20 m2.

Thus the mean free path in this situation is

ℓ = 1
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= 2.27 × 10−4 m.

The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
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= 1.25 × 1023 m−3,

where mH is the mass of a hydrogen atom. In an approximate sense, two of these atoms will
“collide” if their centers pass within two Bohr radii, 2a0, of each other.8 As shown in Fig. 6,
we may consider the equivalent problem of a single atom of radius 2a0 moving with speed v

through a collection of stationary points that represent the centers of the other atoms. In an
amount of time t , this atom has moved a distance vt and has swept out a cylindrical volume
V = π(2a0)

2vt = σvt , where σ ≡ π(2a0)
2 is the collision cross section of the atom in this

classical approximation.9 Within this volume V are nV = nσvt point atoms with which
the moving atom has collided. Thus the average distance traveled between collisions is

ℓ = vt

nσvt
= 1

nσ
. (12)

The distance ℓ is the mean free path between collisions.10 For a hydrogen atom,

σ = π(2a0)
2 = 3.52 × 10−20 m2.

Thus the mean free path in this situation is

ℓ = 1
nσ

= 2.27 × 10−4 m.

The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
9The concept of cross section actually represents a probability of particle interactions but has units of cross-
sectional area.
10A more careful calculation, using a Maxwellian velocity distribution for all of the atoms, results in a mean free
path that is smaller by a factor of
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The	averaged	distance	travelled	
between	each	collision	

This	is	called	the	mean	free	path	
between	collisions	

For	hydrogen	atoms	in	the	solar	photosphere	
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classical approximation.9 Within this volume V are nV = nσvt point atoms with which
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2 = 3.52 × 10−20 m2.

Thus the mean free path in this situation is

ℓ = 1
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The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
9The concept of cross section actually represents a probability of particle interactions but has units of cross-
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path that is smaller by a factor of
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atoms per cubic meter is roughly

n = ρ

mH

= 1.25 × 1023 m−3,

where mH is the mass of a hydrogen atom. In an approximate sense, two of these atoms will
“collide” if their centers pass within two Bohr radii, 2a0, of each other.8 As shown in Fig. 6,
we may consider the equivalent problem of a single atom of radius 2a0 moving with speed v

through a collection of stationary points that represent the centers of the other atoms. In an
amount of time t , this atom has moved a distance vt and has swept out a cylindrical volume
V = π(2a0)

2vt = σvt , where σ ≡ π(2a0)
2 is the collision cross section of the atom in this

classical approximation.9 Within this volume V are nV = nσvt point atoms with which
the moving atom has collided. Thus the average distance traveled between collisions is

ℓ = vt

nσvt
= 1

nσ
. (12)

The distance ℓ is the mean free path between collisions.10 For a hydrogen atom,

σ = π(2a0)
2 = 3.52 × 10−20 m2.

Thus the mean free path in this situation is

ℓ = 1
nσ

= 2.27 × 10−4 m.

The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
9The concept of cross section actually represents a probability of particle interactions but has units of cross-
sectional area.
10A more careful calculation, using a Maxwellian velocity distribution for all of the atoms, results in a mean free
path that is smaller by a factor of

√
2.
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atoms per cubic meter is roughly

n = ρ

mH

= 1.25 × 1023 m−3,

where mH is the mass of a hydrogen atom. In an approximate sense, two of these atoms will
“collide” if their centers pass within two Bohr radii, 2a0, of each other.8 As shown in Fig. 6,
we may consider the equivalent problem of a single atom of radius 2a0 moving with speed v

through a collection of stationary points that represent the centers of the other atoms. In an
amount of time t , this atom has moved a distance vt and has swept out a cylindrical volume
V = π(2a0)

2vt = σvt , where σ ≡ π(2a0)
2 is the collision cross section of the atom in this

classical approximation.9 Within this volume V are nV = nσvt point atoms with which
the moving atom has collided. Thus the average distance traveled between collisions is

ℓ = vt

nσvt
= 1

nσ
. (12)

The distance ℓ is the mean free path between collisions.10 For a hydrogen atom,

σ = π(2a0)
2 = 3.52 × 10−20 m2.

Thus the mean free path in this situation is

ℓ = 1
nσ

= 2.27 × 10−4 m.

The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.
9The concept of cross section actually represents a probability of particle interactions but has units of cross-
sectional area.
10A more careful calculation, using a Maxwellian velocity distribution for all of the atoms, results in a mean free
path that is smaller by a factor of

√
2.
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Thermodynamic Equilibrium 

•  A	steady-state	condition	with	no	net	flow	of	energy	
within	the	volume	or	between	the	matter	(particles)	and	
the	radiation	field.		
•  Can	be	described	by	a	single	temperature	
•  NOT	the	case	for	stars!	

•  However,	if	the	distance	over	which	the	temperature	
changes	is	significantly	larger	than	the	mean	free	path	of	
particles	and	photons,	within	a	limited	volume,	it	
achieves	the	local	thermodynamic	equilibrium	(LTE)	–	
can	be	described	by	a	single	temperature	
•  E.g.,	the	temperature	scale	height	of	solar	photosphere		

• The kinetic temperature is contained in the Maxwell–Boltzmann distribution

• The color temperature is obtained by fitting the shape of a star’s continuous spectrum
to the Planck function

With the exception of the effective temperature, the remaining temperatures apply to any
location within the star and vary according to the conditions of the gas. Although defined
differently, the excitation temperature, the ionization temperature, the kinetic temperature,
and the color temperature are the same for the simple case of a gas confined within an
“ideal box.” The confined gas particles and blackbody radiation will come into equilibrium,
individually and with each other, and can be described by a single well-defined temperature.
In such a steady-state condition, no net flow of energy through the box or between the
matter and the radiation occurs. Every process (e.g., the absorption of a photon) occurs at
the same rate as its inverse process (e.g., the emission of a photon). This condition is called
thermodynamic equilibrium.

However, a star cannot be in perfect thermodynamic equilibrium. A net outward flow
of energy occurs through the star, and the temperature, however it is defined, varies with
location. Gas particles and photons at one position in the star may have arrived there
from other regions, either hotter or cooler (in other words, there is no “ideal box”). The
distribution in particle speeds and photon energies thus reflects a range of temperatures. As
the gas particles collide with one another and interact with the radiation field by absorbing
and emitting photons, the description of the processes of excitation and ionization becomes
quite complex. However, the idealized case of a single temperature can still be employed
if the distance over which the temperature changes significantly is large compared with the
distances traveled by the particles and photons between collisions (their mean free paths).
In this case, referred to as local thermodynamic equilibrium (LTE), the particles and
photons cannot escape the local environment and so are effectively confined to a limited
volume (an approximated “box”) of nearly constant temperature.

Example 2.1. The photosphere is the surface layer of the Sun’s atmosphere where the

HT ≡ T

|dT /dr| = 5685 K
(5790 K − 5580 K)/(25.0 km)

= 677 km,

where the average temperature has been used for the value of T .
How does the temperature scale height of 677 km compare with the average dis-

tance traveled by an atom before hitting another atom? The density of the photosphere at
that level is about ρ = 2.1 × 10−4 kg m−3, consisting primarily of neutral hydrogen atoms
in the ground state.Assuming a pure hydrogen gas for convenience, the number of hydrogen

continued
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photons can escape into space. According to a model solar atmosphere, the temperature in 
one region of the photosphere varies from 5580 K to 5790 K over a distance of 25.0 km. 
The characteristic distance over which the temperature varies, called the temperature scale 
height, HT , is given by
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Opacity 

of the solar surface that we observe from Earth. Thus, by the very definition of photosphere,
the photons must be able to escape freely into space. To say more about the photon mean
free path and the concept of LTE, and to better understand the solar spectrum shown in
Fig. 5, we must examine the interaction of particles and photons in some detail.

The Definition of Opacity

We now turn to a consideration of a beam of parallel light rays traveling through a gas. Any
process that removes photons from a beam of light will be collectively termed absorption. In
this sense then, absorption includes the scattering of photons (such as Compton scattering

The change in the intensity, dIλ, of a ray of wavelength λ as it travels through a gas is
proportional to its intensity, Iλ, the distance traveled, ds, and the density of the gas, ρ. That
is,

dIλ = −κλρIλ ds. (13)

The distance s is measured along the path traveled by the beam and increases in the direction
that the beam travels; the minus sign in Eq. ( 13) shows that the intensity decreases with
distance due to the absorption of photons. The quantity κλ is called the absorption coeffi-
cient, or opacity, with the λ subscript implicitly indicating that the opacity is wavelength-
dependent (κλ is sometimes referred to as a monochromatic opacity). The opacity is the
cross section for absorbing photons of wavelength λ per unit mass of stellar material and
has units of m2 kg−1. In general, the opacity of a gas is a function of its composition, density,
and temperature.11

Example 2.2. Consider a beam of light traveling through a gas with initial intensity Iλ,0
at s = 0. The final intensity Iλ,f after the light has traveled a distance s may be found by
integrating Eq. (13):

∫ Iλ,f

Iλ,0

dIλ

Iλ
= −

∫ s

0
κλρ ds.

This leads to

Iλ = Iλ,0e
−
∫ s

0 κλρ ds, (14)

where the f subscript has been dropped. For the specific case of a uniform gas of constant
opacity and density,

Iλ = Iλ,0e
−κλρs .

continued

11Note that there is some inconsistency in the terminology; some authors refer to opacity as the inverse of the
mean free path of the photons.
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as well as the true absorption of photons by atomic electrons making upward transitions. 
In sufficiently cool gases, molecular energy-level transitions may also occur and must be 
included.
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A	measure	of	the	absorption	of	light	

Opacity	or	absorption	coefficient.	Unit:	m2	kg-1	

Distance	traveled	from	the	light	source	

of the solar surface that we observe from Earth. Thus, by the very definition of photosphere,
the photons must be able to escape freely into space. To say more about the photon mean
free path and the concept of LTE, and to better understand the solar spectrum shown in
Fig. 5, we must examine the interaction of particles and photons in some detail.

The Definition of Opacity

We now turn to a consideration of a beam of parallel light rays traveling through a gas. Any
process that removes photons from a beam of light will be collectively termed absorption. In
this sense then, absorption includes the scattering of photons (such as Compton scattering

The change in the intensity, dIλ, of a ray of wavelength λ as it travels through a gas is
proportional to its intensity, Iλ, the distance traveled, ds, and the density of the gas, ρ. That
is,

dIλ = −κλρIλ ds. (13)

The distance s is measured along the path traveled by the beam and increases in the direction
that the beam travels; the minus sign in Eq. ( 13) shows that the intensity decreases with
distance due to the absorption of photons. The quantity κλ is called the absorption coeffi-
cient, or opacity, with the λ subscript implicitly indicating that the opacity is wavelength-
dependent (κλ is sometimes referred to as a monochromatic opacity). The opacity is the
cross section for absorbing photons of wavelength λ per unit mass of stellar material and
has units of m2 kg−1. In general, the opacity of a gas is a function of its composition, density,
and temperature.11

Example 2.2. Consider a beam of light traveling through a gas with initial intensity Iλ,0
at s = 0. The final intensity Iλ,f after the light has traveled a distance s may be found by
integrating Eq. (13):

∫ Iλ,f

Iλ,0

dIλ

Iλ
= −

∫ s

0
κλρ ds.

This leads to

Iλ = Iλ,0e
−
∫ s

0 κλρ ds, (14)

where the f subscript has been dropped. For the specific case of a uniform gas of constant
opacity and density,

Iλ = Iλ,0e
−κλρs .
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as well as the true absorption of photons by atomic electrons making upward transitions. 
In sufficiently cool gases, molecular energy-level transitions may also occur and must be 
included.
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Light	traveling	through	an	absorbing	gas		

of the solar surface that we observe from Earth. Thus, by the very definition of photosphere,
the photons must be able to escape freely into space. To say more about the photon mean
free path and the concept of LTE, and to better understand the solar spectrum shown in
Fig. 5, we must examine the interaction of particles and photons in some detail.

The Definition of Opacity

We now turn to a consideration of a beam of parallel light rays traveling through a gas. Any
process that removes photons from a beam of light will be collectively termed absorption. In
this sense then, absorption includes the scattering of photons (such as Compton scattering

The change in the intensity, dIλ, of a ray of wavelength λ as it travels through a gas is
proportional to its intensity, Iλ, the distance traveled, ds, and the density of the gas, ρ. That
is,

dIλ = −κλρIλ ds. (13)

The distance s is measured along the path traveled by the beam and increases in the direction
that the beam travels; the minus sign in Eq. ( 13) shows that the intensity decreases with
distance due to the absorption of photons. The quantity κλ is called the absorption coeffi-
cient, or opacity, with the λ subscript implicitly indicating that the opacity is wavelength-
dependent (κλ is sometimes referred to as a monochromatic opacity). The opacity is the
cross section for absorbing photons of wavelength λ per unit mass of stellar material and
has units of m2 kg−1. In general, the opacity of a gas is a function of its composition, density,
and temperature.11

Example 2.2. Consider a beam of light traveling through a gas with initial intensity Iλ,0
at s = 0. The final intensity Iλ,f after the light has traveled a distance s may be found by
integrating Eq. (13):

∫ Iλ,f

Iλ,0

dIλ

Iλ
= −

∫ s

0
κλρ ds.

This leads to

Iλ = Iλ,0e
−
∫ s

0 κλρ ds, (14)

where the f subscript has been dropped. For the specific case of a uniform gas of constant
opacity and density,

Iλ = Iλ,0e
−κλρs .
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as well as the true absorption of photons by atomic electrons making upward transitions. 
In sufficiently cool gases, molecular energy-level transitions may also occur and must be 
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Which	leads	to		

For	constant	opacity	and	density	

of the solar surface that we observe from Earth. Thus, by the very definition of photosphere,
the photons must be able to escape freely into space. To say more about the photon mean
free path and the concept of LTE, and to better understand the solar spectrum shown in
Fig. 5, we must examine the interaction of particles and photons in some detail.

The Definition of Opacity

We now turn to a consideration of a beam of parallel light rays traveling through a gas. Any
process that removes photons from a beam of light will be collectively termed absorption. In
this sense then, absorption includes the scattering of photons (such as Compton scattering

The change in the intensity, dIλ, of a ray of wavelength λ as it travels through a gas is
proportional to its intensity, Iλ, the distance traveled, ds, and the density of the gas, ρ. That
is,

dIλ = −κλρIλ ds. (13)

The distance s is measured along the path traveled by the beam and increases in the direction
that the beam travels; the minus sign in Eq. ( 13) shows that the intensity decreases with
distance due to the absorption of photons. The quantity κλ is called the absorption coeffi-
cient, or opacity, with the λ subscript implicitly indicating that the opacity is wavelength-
dependent (κλ is sometimes referred to as a monochromatic opacity). The opacity is the
cross section for absorbing photons of wavelength λ per unit mass of stellar material and
has units of m2 kg−1. In general, the opacity of a gas is a function of its composition, density,
and temperature.11

Example 2.2. Consider a beam of light traveling through a gas with initial intensity Iλ,0
at s = 0. The final intensity Iλ,f after the light has traveled a distance s may be found by
integrating Eq. (13):

∫ Iλ,f

Iλ,0

dIλ

Iλ
= −

∫ s

0
κλρ ds.

This leads to

Iλ = Iλ,0e
−
∫ s

0 κλρ ds, (14)

where the f subscript has been dropped. For the specific case of a uniform gas of constant
opacity and density,

Iλ = Iλ,0e
−κλρs .
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Iλ = Iλ,0e
−s/l

Where		 l =1/ kλρ =1/ nσλ is	the	mean	free	path	of	the	photons	



Opacity and mean free path of photons 

In	solar	photosphere	

For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

'τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that
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Opacity	for	500	nm	photons:		

For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

'τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that
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Mean	free	path	for	500	nm	photons:		

For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

'τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that
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Comparable	to	temperature	scale	height	(677	km)!	LTE?	



Opacity and mean free path of photons 

In	solar	photosphere	

For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

'τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that
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Opacity	for	500	nm	photons:		

For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

'τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that
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Mean	free	path	for	500	nm	photons:		

For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

'τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that
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FIGURE 7 Optical depth τλ measured back along a ray’s path.

traveled a distance s to reach the top of the atmosphere:

0 − τλ,0 = −
∫ s

0
κλρ ds

τλ =
∫ s

0
κλρ ds. (17)

The “0” subscript has been dropped with the understanding that τλ is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. ( 17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth τλ to reach the observer is given by

Iλ = Iλ,0e
−τλ . (18)

Thus, if the optical depth of the ray’s starting point is τλ = 1, the intensity of the ray will
decline by a factor of e−1 before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than τλ ≈ 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of τλ = 0 at the top of the
atmosphere. Other choices of where τλ = 0 may be more useful in some situations.

If τλ ≫ 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if τλ ≪ 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.
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Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
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traveled a distance s to reach the top of the atmosphere:

0 − τλ,0 = −
∫ s

0
κλρ ds

τλ =
∫ s

0
κλρ ds. (17)

The “0” subscript has been dropped with the understanding that τλ is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. ( 17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth τλ to reach the observer is given by

Iλ = Iλ,0e
−τλ . (18)

Thus, if the optical depth of the ray’s starting point is τλ = 1, the intensity of the ray will
decline by a factor of e−1 before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than τλ ≈ 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of τλ = 0 at the top of the
atmosphere. Other choices of where τλ = 0 may be more useful in some situations.

If τλ ≫ 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if τλ ≪ 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.
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traveled a distance s to reach the top of the atmosphere:

0 − τλ,0 = −
∫ s

0
κλρ ds

τλ =
∫ s

0
κλρ ds. (17)

The “0” subscript has been dropped with the understanding that τλ is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. ( 17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth τλ to reach the observer is given by

Iλ = Iλ,0e
−τλ . (18)

Thus, if the optical depth of the ray’s starting point is τλ = 1, the intensity of the ray will
decline by a factor of e−1 before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than τλ ≈ 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of τλ = 0 at the top of the
atmosphere. Other choices of where τλ = 0 may be more useful in some situations.

If τλ ≫ 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if τλ ≪ 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.
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of the solar surface that we observe from Earth. Thus, by the very definition of photosphere,
the photons must be able to escape freely into space. To say more about the photon mean
free path and the concept of LTE, and to better understand the solar spectrum shown in
Fig. 5, we must examine the interaction of particles and photons in some detail.

The Definition of Opacity

We now turn to a consideration of a beam of parallel light rays traveling through a gas. Any
process that removes photons from a beam of light will be collectively termed absorption. In
this sense then, absorption includes the scattering of photons (such as Compton scattering

The change in the intensity, dIλ, of a ray of wavelength λ as it travels through a gas is
proportional to its intensity, Iλ, the distance traveled, ds, and the density of the gas, ρ. That
is,

dIλ = −κλρIλ ds. (13)

The distance s is measured along the path traveled by the beam and increases in the direction
that the beam travels; the minus sign in Eq. ( 13) shows that the intensity decreases with
distance due to the absorption of photons. The quantity κλ is called the absorption coeffi-
cient, or opacity, with the λ subscript implicitly indicating that the opacity is wavelength-
dependent (κλ is sometimes referred to as a monochromatic opacity). The opacity is the
cross section for absorbing photons of wavelength λ per unit mass of stellar material and
has units of m2 kg−1. In general, the opacity of a gas is a function of its composition, density,
and temperature.11

Example 2.2. Consider a beam of light traveling through a gas with initial intensity Iλ,0
at s = 0. The final intensity Iλ,f after the light has traveled a distance s may be found by
integrating Eq. (13):

∫ Iλ,f

Iλ,0

dIλ

Iλ
= −

∫ s

0
κλρ ds.

This leads to

Iλ = Iλ,0e
−
∫ s

0 κλρ ds, (14)

where the f subscript has been dropped. For the specific case of a uniform gas of constant
opacity and density,

Iλ = Iλ,0e
−κλρs .

continued

11Note that there is some inconsistency in the terminology; some authors refer to opacity as the inverse of the
mean free path of the photons.

)
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as well as the true absorption of photons by atomic electrons making upward transitions. 
In sufficiently cool gases, molecular energy-level transitions may also occur and must be 
included.
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traveled a distance s to reach the top of the atmosphere:

0 − τλ,0 = −
∫ s

0
κλρ ds

τλ =
∫ s

0
κλρ ds. (17)

The “0” subscript has been dropped with the understanding that τλ is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. ( 17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth τλ to reach the observer is given by

Iλ = Iλ,0e
−τλ . (18)

Thus, if the optical depth of the ray’s starting point is τλ = 1, the intensity of the ray will
decline by a factor of e−1 before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than τλ ≈ 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of τλ = 0 at the top of the
atmosphere. Other choices of where τλ = 0 may be more useful in some situations.

If τλ ≫ 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if τλ ≪ 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.
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traveled a distance s to reach the top of the atmosphere:

0 − τλ,0 = −
∫ s

0
κλρ ds

τλ =
∫ s

0
κλρ ds. (17)

The “0” subscript has been dropped with the understanding that τλ is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. ( 17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth τλ to reach the observer is given by

Iλ = Iλ,0e
−τλ . (18)

Thus, if the optical depth of the ray’s starting point is τλ = 1, the intensity of the ray will
decline by a factor of e−1 before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than τλ ≈ 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of τλ = 0 at the top of the
atmosphere. Other choices of where τλ = 0 may be more useful in some situations.

If τλ ≫ 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if τλ ≪ 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.
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traveled a distance s to reach the top of the atmosphere:

0 − τλ,0 = −
∫ s

0
κλρ ds

τλ =
∫ s

0
κλρ ds. (17)

The “0” subscript has been dropped with the understanding that τλ is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. ( 17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth τλ to reach the observer is given by

Iλ = Iλ,0e
−τλ . (18)

Thus, if the optical depth of the ray’s starting point is τλ = 1, the intensity of the ray will
decline by a factor of e−1 before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than τλ ≈ 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of τλ = 0 at the top of the
atmosphere. Other choices of where τλ = 0 may be more useful in some situations.

If τλ ≫ 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if τλ ≪ 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.

Stellar Atmospheres

���

:	Optically	thin		



General sources of opacity 

• Bound-bound	transitions	
• Bound-free	absorption	
•  Free-free	absorption	
•  Electron	scattering	

mean opacity would be given by 
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where the last integral is just a numerical constant equal to 4! 4
/ 15  times Strömgren’s 

function !(x)  evaluated at x equal to infinity, !(") # 196.  

A numerical fit in cgs units when ionized hydrogen and helium,  with mass fractions, 

respectively, of X and Y, provide the main scatterers of free electrons, yields Kramers’ 

law in the form: 
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Bound-Free Opacity 

 

 In the bound-free (photo-ionization) process, the absorption of a continuum 

photon of sufficient energy ejects a bound electron from an incompletely ionized atom 

into a free state, with the difference in energy !h of the photon and the ionization 

potential I going into the excess kinetic energy 2/v
2

e
m of the freed electron (Figure 7.2).  

The cross-section for the bound-free process is zero below threshold, i.e., for photon 

energies lower than I; it generally reaches a maximum value at the ionization edge; and it 

declines typically as !"3  at higher frequencies (Figure 7.3).  In a hydrogenic atom of  

 

Figure 7.2.  Bound-free absorption. 
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FIGURE 9 Free–free absorption of a photon.

which is comparable to the collision cross section for hydrogen found in Exam-
ple 2.1. The inverse process of free–bound emission occurs when a free electron
recombines with an ion, emitting one or more photons in random directions. As with
bound–bound emission, this also contributes to reducing the average energy of the
photons in the radiation field.

3. Free–free absorption is a scattering process, shown in Fig. 9, that takes place when
a free electron in the vicinity of an ion absorbs a photon, causing the speed of the
electron to increase. In this process the nearby ion is necessary in order to conserve
both energy and momentum. (It is left as an exercise to show that an isolated free
electron cannot absorb a photon.) Since this mechanism can occur for a continuous
range of wavelengths, free–free opacity, κλ,ff , is another contributor to the continuum
opacity. It may also happen that as it passes near an ion, the electron loses energy
by emitting a photon, which causes the electron to slow down. This process of free–
free emission is also known as bremsstrahlung, which means “braking radiation” in
German.

4. Electron scattering is as advertised: A photon is scattered (not absorbed) by a free
electron through the process of Thomson scattering. In this process, the electron can
be thought of as being made to oscillate in the electromagnetic field of the photon.
However, because the electron is tiny, it makes a poor target for an incident photon,
resulting in a small cross section. The cross section for Thomson scattering has the
same value for photons of all wavelengths:

σT = 1
6πϵ2

0

(

e2

mec2

)2

= 6.65 × 10−29 m2. (20)

This is typically two billion times smaller than the hydrogen cross section for pho-
toionization, σbf . The small size of the Thomson cross section means that electron
scattering is most effective as a source of opacity when the electron density is very
high, which requires high temperature. In the atmospheres of the hottest stars (and in
the interiors of all stars), where most of the gas is completely ionized, other sources of
opacity that involve bound electrons are eliminated. In this high-temperature regime,
the opacity due to electron scattering, κes, dominates the continuum opacity.
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Rosseland mean opacity 

• Mean	opacity	averaged	over	all	wavelengths	

on the wavelength of the light being absorbed but also on the composition, density, and
temperature of the stellar material.14

The Rosseland Mean Opacity

It is often useful to employ an opacity that has been averaged over all wavelengths (or
frequencies) to produce a function that depends only on the composition, density, and
temperature. Although a variety of different schemes have been developed to compute a
wavelength-independent opacity, by far the most commonly used is the Rosseland mean
opacity, often simply referred to as the Rosseland mean.15 This harmonic mean gives
the greatest contribution to the lowest values of opacity. In addition, the Rosseland mean
incorporates a weighting function that depends on the rate at which the blackbody spectrum
varies with temperature Formally, the Rosseland mean opacity is defined as

1
κ

≡

∫ ∞

0

1
κν

∂Bν(T )

∂T
dν

∫ ∞

0

∂Bν(T )

∂T
dν

. (21)

Unfortunately, there is no simple equation that is capable of describing all of the complex
contributions to the opacity by individual spectral lines in bound–bound transitions, and
so an analytic expression for the Rosseland mean cannot be given for these processes.
However, approximation formulae have been developed for both the average bound–free
and free–free opacities:

κbf = 4.34 × 1021 gbf

t
Z(1 + X)

ρ

T 3.5
m2 kg−1 (22)

κ ff = 3.68 × 1018 gff (1 − Z)(1 + X)
ρ

T 3.5
m2 kg−1, (23)

where ρ is the density (in kg m−3) and T is the temperature (in kelvins). X and Z are the
mass fractions, or fractional abundances (by mass), of hydrogen and metals, respectively.16

14The additional dependencies of the opacity on the electron number density, states of excitation and ionization
of the atoms and ions, and other factors can all be calculated from the composition, density, and temperature.
15This wavelength-averaged opacity was introduced in 1924 by the Norwegian astronomer Svein Rosseland
(1894–1985).

1

other constituents are frequently lumped together and referred to as metals. In certain applications, however, it is
necessary to specify the composition in greater detail. In these cases, each species is represented by its own mass
fraction.

6Because the primary components of most stellar gases are hydrogen and helium, all

.
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of the atoms and ions, and other factors can all be calculated from the composition, density, and temperature.
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1

other constituents are frequently lumped together and referred to as metals. In certain applications, however, it is
necessary to specify the composition in greater detail. In these cases, each species is represented by its own mass
fraction.

6Because the primary components of most stellar gases are hydrogen and helium, all
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Together with the mass fraction of helium, Y , their formal definitions are

X ≡ total mass of hydrogen
total mass of gas

Y ≡ total mass of helium
total mass of gas

Z ≡ total mass of metals
total mass of gas

.

(24)

(25)

(26)

Clearly, X + Y + Z = 1.
The Gaunt factors, gbf and gff , are quantum-mechanical correction terms first calcu-

lated by J. A. Gaunt. These Gaunt factors are both ≈ 1 for the visible and ultraviolet
wavelengths of interest in stellar atmospheres. The additional correction factor, t , in the
equation for the bound–free opacity is called the guillotine factor and describes the cutoff
of an atom’s contribution to the opacity after it has been ionized. Typical values of t lie
between 1 and 100.

Both of these formulae have the functional form κ = κ0ρ/T 3.5, where κ0 is approxi-
mately constant for a given composition. The first forms of these expressions were derived
by H. A. Kramers (1894–1952) in 1923 using classical physics and the Rosseland mean.
Any opacity having this density and temperature dependence is referred to as a Kramers
opacity law.

Because the cross section for electron scattering is independent of wavelength, the Rosse-
land mean for this case has the particularly simple form

κes = 0.02(1 + X) m2 kg−1. (27)

An estimate of the contribution to the mean opacity provided by the H− ion may also
be included over the temperature range 3000 K ≤ T ≤ 6000 K and for densities between
10−7 kg m−3 ≤ ρ ≤ 10−2 kg m−3 when X ∼ 0.7 and 0.001 < Z < 0.03 (the values of X

and Z are typical of main-sequence stars). Specifically,

κH− ≈ 7.9 × 10−34(Z/0.02)ρ1/2T 9 m2 kg−1. (28)

The total Rosseland mean opacity, κ , is the average of the sum of the individual contrib-
utors to the opacity:

κ = κbb + κbf + κff + κes + κH− .

Figure 10 shows the results of an extensive computer calculation of the Rosseland mean
opacity from first principles using detailed quantum physics. The calculation was carried
out by Carlos Iglesias and Forrest Rogers for a composition with X = 0.70 and Z = 0.02.17

The values of κ are plotted as a function of the temperature for several densities.

1 A specific mixture of elements known as the Anders–Grevesse abundances were used to calculate the opacities
shown.
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FIGURE 10 Rosseland mean opacity for a composition that is 70% hydrogen, 28% helium, and
2% metals by mass. The curves are labeled by the logarithmic value of the density (log10 ρ in kg m−3).
(Data from Iglesias and Rogers, Ap. J., 464, 943, 1996.)

Considering the details of Fig. 10, first notice that the opacity increases with increasing
density for a given temperature. Next, starting at the left-hand side of the figure, follow
a constant-density plot as it rises steeply with increasing temperature. This reflects the
increase in the number of free electrons produced by the ionization of hydrogen and helium.

temperature of 10,000 K, and neutral helium is ionized at about the same temperature. The
decline of the plot after the peak in the opacity roughly follows a Kramers law, κ ∝ T −3.5,
and is due primarily to the bound–free and free–free absorption of photons. The He II ion
loses its remaining electron at a characteristic temperature of 40,000 K for a wide range
of stellar parameters; the slight increase in the number of free electrons produces a small
“bump” seen near that temperature. Another bump, evident above 105 K, is the result of
the ionization of certain metals, most notably iron. Finally, the plot reaches a flat floor at
the right-hand side of the figure. Electron scattering dominates at the highest temperatures,
when nearly all of the stellar material is ionized and there are few bound electrons available
for bound–bound and bound–free processes. The form of Eq. ( 27) for electron scattering,
with no density or temperature dependence, requires that all of the curves in Fig. 10
converge to the same constant value in the high-temperature limit.

3 RADIATIVE TRANSFER

In an equilibrium, steady-state star, there can be no change in the total energy contained
within any layer of the stellar atmosphere or interior.18 In other words, the mechanisms

1 This is not the case for a star that is not in equilibrium. For instance, pulsating stars periodically absorb or “dam up”
the outward flow of energy, driving the oscillations.

,

The  hydrogen partial ionization zone has a characteristic
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Radiative Transfer: Random walk 
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FIGURE 11 Displacement d of a random-walking photon.

where θij is the angle between the vectors ℓi and ℓj . For a large number of randomly directed
steps, the sum of all the cosine terms approaches zero. As a result, for a random walk, the
displacement d is related to the size of each step, ℓ, by

d = ℓ
√

N. (29)

Thus the transport of energy through a star by radiation may be extremely inefficient.
As a photon follows its tortuous path to the surface of a star, it takes 100 steps to travel
a distance of 10ℓ; 10,000 steps to travel 100ℓ; and one million steps to travel 1000ℓ.20

Because the optical depth at a point is roughly the number of photon mean free paths from
that point to the surface (as measured along a light ray’s straight path), Eq. ( 29) implies
that the distance to the surface is d = τλℓ = ℓ

√
N . The average number of steps needed for

a photon to travel the distance d before leaving the surface is then

N = τ 2
λ , (30)

for τλ ≫ 1. As might be expected, when τλ ≈1, a photon may escape from that level of the
star. A more careful analysis (performed in Section 4) shows that the average level in the
atmosphere from which photons of wavelength λ escape is at a characteristic optical depth
of about τλ = 2/3. Looking into a star at any angle, we always look back to an optical
depth of about τλ = 2/3, as measured straight back along the line of sight. In fact, a star’s
photosphere is defined as the layer from which its visible light originates—that is, where
τλ ≈2/3 for wavelengths in the star’s continuum.

The realization that an observer looking vertically down on the surface of a star sees
photons from τλ ≈2/3 offers an important insight into the formation of spectral lines.

Strictly speaking, an individual photon does not make the entire journey, but rather, along with being scattered,
photons may be absorbed and re-emitted during the “collisions.”

that another transport process, convection, must take over.
The process of transporting energy by radiation is sometimes so inefficient
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involved in absorbing and emitting energy must be precisely in balance throughout the
star. In this section, the competition between the absorption and emission processes will be
described, first in qualitative terms and later in more quantitative detail.

Photon Emission Processes

Any process that adds photons to a beam of light will be called emission. Thus emission
includes the scattering of photons into the beam, as well as the true emission of photons
by electrons making downward atomic transitions. Each of the four primary sources of
opacity listed in Section 2 has an inverse emission process: bound–bound and free–bound
emission, free–free emission (bremsstrahlung), and electron scattering. The simultaneous
and complementary processes of absorption and emission hinder the flow of photons through
the star by redirecting the paths of the photons and redistributing their energy. Thus in a star
there is not a direct flow of photons streaming toward the surface, carrying energy outward
at the speed of light. Instead, the individual photons travel only temporarily with the beam
as they are repeatedly scattered in random directions following their encounters with gas
particles.

The Random Walk

As the photons diffuse upward through the stellar material, they follow a haphazard path
called a random walk. Figure 11 shows a photon that undergoes a net vector displacement
d as the result of making a large number N of randomly directed steps, each of length ℓ
(the mean free path):

d = ℓ1 + ℓ2 + ℓ3 + · · · + ℓN.

Taking the vector dot product of d with itself gives

d · d = ℓ1 · ℓ1 + ℓ1 · ℓ2 + · · · + ℓ1 · ℓN

+ ℓ2 · ℓ1 + ℓ2 · ℓ2 + · · · + ℓ2 · ℓN

+ · · · + ℓN · ℓ1 + ℓN · ℓ2 + · · · + ℓN · ℓN

=
N
∑

i=1

N
∑

j=1

ℓi · ℓj ,

or

d 2 = Nℓ2 + ℓ2[cos θ12 + cos θ13 + · · · + cos θ1N

+ cos θ21 + cos θ23 + · · · + cos θ2N

+ · · · + cos θN1 + cos θN2 + · · · + cos θN(N−1)]

= Nℓ2 + ℓ2
N
∑

i=1

N
∑

j=1
j ̸=i

cos θij ,
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Take	a	vector	dot	of	itself:	

involved in absorbing and emitting energy must be precisely in balance throughout the
star. In this section, the competition between the absorption and emission processes will be
described, first in qualitative terms and later in more quantitative detail.

Photon Emission Processes

Any process that adds photons to a beam of light will be called emission. Thus emission
includes the scattering of photons into the beam, as well as the true emission of photons
by electrons making downward atomic transitions. Each of the four primary sources of
opacity listed in Section 2 has an inverse emission process: bound–bound and free–bound
emission, free–free emission (bremsstrahlung), and electron scattering. The simultaneous
and complementary processes of absorption and emission hinder the flow of photons through
the star by redirecting the paths of the photons and redistributing their energy. Thus in a star
there is not a direct flow of photons streaming toward the surface, carrying energy outward
at the speed of light. Instead, the individual photons travel only temporarily with the beam
as they are repeatedly scattered in random directions following their encounters with gas
particles.

The Random Walk

As the photons diffuse upward through the stellar material, they follow a haphazard path
called a random walk. Figure 11 shows a photon that undergoes a net vector displacement
d as the result of making a large number N of randomly directed steps, each of length ℓ
(the mean free path):

d = ℓ1 + ℓ2 + ℓ3 + · · · + ℓN.

Taking the vector dot product of d with itself gives

d · d = ℓ1 · ℓ1 + ℓ1 · ℓ2 + · · · + ℓ1 · ℓN

+ ℓ2 · ℓ1 + ℓ2 · ℓ2 + · · · + ℓ2 · ℓN

+ · · · + ℓN · ℓ1 + ℓN · ℓ2 + · · · + ℓN · ℓN

=
N
∑

i=1

N
∑

j=1

ℓi · ℓj ,

or

d 2 = Nℓ2 + ℓ2[cos θ12 + cos θ13 + · · · + cos θ1N

+ cos θ21 + cos θ23 + · · · + cos θ2N

+ · · · + cos θN1 + cos θN2 + · · · + cos θN(N−1)]

= Nℓ2 + ℓ2
N
∑

i=1

N
∑

j=1
j ̸=i

cos θij ,

Stellar Atmospheres

���

Which	becomes	

!!3

!!4

!!1

!!2

!!5

!!6

!!7

!!8

!!9!!12

!!10

!!11

d

FIGURE 11 Displacement d of a random-walking photon.

where θij is the angle between the vectors ℓi and ℓj . For a large number of randomly directed
steps, the sum of all the cosine terms approaches zero. As a result, for a random walk, the
displacement d is related to the size of each step, ℓ, by

d = ℓ
√

N. (29)

Thus the transport of energy through a star by radiation may be extremely inefficient.
As a photon follows its tortuous path to the surface of a star, it takes 100 steps to travel
a distance of 10ℓ; 10,000 steps to travel 100ℓ; and one million steps to travel 1000ℓ.20

Because the optical depth at a point is roughly the number of photon mean free paths from
that point to the surface (as measured along a light ray’s straight path), Eq. ( 29) implies
that the distance to the surface is d = τλℓ = ℓ

√
N . The average number of steps needed for

a photon to travel the distance d before leaving the surface is then

N = τ 2
λ , (30)

for τλ ≫ 1. As might be expected, when τλ ≈1, a photon may escape from that level of the
star. A more careful analysis (performed in Section 4) shows that the average level in the
atmosphere from which photons of wavelength λ escape is at a characteristic optical depth
of about τλ = 2/3. Looking into a star at any angle, we always look back to an optical
depth of about τλ = 2/3, as measured straight back along the line of sight. In fact, a star’s
photosphere is defined as the layer from which its visible light originates—that is, where
τλ ≈2/3 for wavelengths in the star’s continuum.

The realization that an observer looking vertically down on the surface of a star sees
photons from τλ ≈2/3 offers an important insight into the formation of spectral lines.

Strictly speaking, an individual photon does not make the entire journey, but rather, along with being scattered,
photons may be absorbed and re-emitted during the “collisions.”

that another transport process, convection, must take over.
The process of transporting energy by radiation is sometimes so inefficient
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displacement d is related to the size of each step, ℓ, by

d = ℓ
√

N. (29)

Thus the transport of energy through a star by radiation may be extremely inefficient.
As a photon follows its tortuous path to the surface of a star, it takes 100 steps to travel
a distance of 10ℓ; 10,000 steps to travel 100ℓ; and one million steps to travel 1000ℓ.20

Because the optical depth at a point is roughly the number of photon mean free paths from
that point to the surface (as measured along a light ray’s straight path), Eq. ( 29) implies
that the distance to the surface is d = τλℓ = ℓ

√
N . The average number of steps needed for

a photon to travel the distance d before leaving the surface is then

N = τ 2
λ , (30)

for τλ ≫ 1. As might be expected, when τλ ≈1, a photon may escape from that level of the
star. A more careful analysis (performed in Section 4) shows that the average level in the
atmosphere from which photons of wavelength λ escape is at a characteristic optical depth
of about τλ = 2/3. Looking into a star at any angle, we always look back to an optical
depth of about τλ = 2/3, as measured straight back along the line of sight. In fact, a star’s
photosphere is defined as the layer from which its visible light originates—that is, where
τλ ≈2/3 for wavelengths in the star’s continuum.

The realization that an observer looking vertically down on the surface of a star sees
photons from τλ ≈2/3 offers an important insight into the formation of spectral lines.

Strictly speaking, an individual photon does not make the entire journey, but rather, along with being scattered,
photons may be absorbed and re-emitted during the “collisions.”

that another transport process, convection, must take over.
The process of transporting energy by radiation is sometimes so inefficient
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Stellar	photosphere	is	defined	as	the	layer	from	which	its	visible	light	originates,	that	is			

τλ = 2 / 3



Radiative Transfer: Limb darkening 

Recalling the definition of optical depth, Eq. (17),

τλ =
∫ s

0
κλρ ds,

we see that if the opacityκλ increases at some wavelength, then the actual distance back along
the ray to the level where τλ = 2/3 decreases for that wavelength. One cannot see as far into
murky material, so an observer will not see as deeply into the star at wavelengths where the
opacity is greater than average (i.e., greater than the continuum opacity). This implies that if
the temperature of the stellar atmosphere decreases outward, then these higher regions of the
atmosphere will be cooler. As a result, the intensity of the radiation at τλ ≈ 2/3 will decline
the most for those wavelengths at which the opacity is greatest, resulting in absorption
lines in the continuous spectrum. Therefore, the temperature must decrease outward for the
formation of absorption lines. This is the analog for stellar atmospheres of Kirchhoff’s law
that a cool, diffuse gas in front of a source of a continuous spectrum produces dark spectral
lines in the continuous spectrum.

Limb Darkening

Another implication of receiving radiation from an optical depth of about two-thirds is
shown in Fig. 12. The line of sight of an observer on Earth viewing the Sun is vertically
downward at the center of the Sun’s disk but makes an increasingly larger angle θ with the
vertical near the edge, or limb, of the Sun. Looking near the limb, the observer will not see
as deeply into the solar atmosphere and will therefore see a lower temperature at an optical
depth of two-thirds (compared to looking at the center of the disk). As a result, the limb of

r1

r2 > r1

Line of sight
toward the star's center

!" = 2/3

!" = 2/3

Line of sight #

FIGURE 12 Limb darkening. The distance traversed within the atmosphere of the star to reach
a specified radial distance r from the star’s center increases along the line of sight of the observer
as θ increases. This implies that to reach a specified optical depth (e.g., τλ = 2/3), the line of sight
terminates at greater distances (and cooler temperatures) from the star’s center as θ increases. Note
that the physical scale of the photosphere has been greatly exaggerated for illustration purposes. The
thickness of a typical photosphere is on the order of 0.1% of the stellar radius.
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Radiative Transfer Equation:  
The Emission Coefficient 
• Previously	we	have	been	dealing	with	the	
absorption	of	light	along	its	path	
•  The	material	along	the	path	can	also	emit	photons,	
and	adds	up	to	its	intensity	
• We	use	the	emission	coefficient	to	describe	this	
effect.	For	pure	emission	(no	absorption)	

The Emission Coefficient

In the following discussions of beams and light rays, the primary consideration is the net
flow of energy in a given direction, not the specific path taken by individual photons. First,
we will examine the emission process that increases the intensity of a ray of wavelength
λ as it travels through a gas. The increase in intensity dIλ is proportional to both ds, the
distance traveled in the direction of the ray, and ρ, the density of the gas. For pure emission
(no absorption of the radiation),

dIλ = jλρ ds, (32)

where jλ is the emission coefficient of the gas. The emission coefficient, which has units
of m s−3 sr−1, varies with the wavelength of the light.

As a beam of light moves through the gas in a star, its specific intensity, Iλ, changes as
photons traveling with the beam are removed by absorption or scattering out of the beam,
and are replaced by photons emitted from the surrounding stellar material, or scattered
into the beam. Combining Eq. ( 13) for the decrease in intensity due to the absorption of
radiation with Eq. ( 32) for the increase produced by emission gives the general result

dIλ = −κλρIλ ds + jλρ ds. (33)

The ratio of the rates at which the competing processes of emission and absorption occur
determines how rapidly the intensity of the beam changes. This is similar to describing the
flow of traffic on an interstate highway. Imagine following a group of cars as they leave Los
Angeles, traveling north on I-15. Initially, nearly all of the cars on the road have California
license plates. Driving north, the number of cars on the road declines as more individuals
exit than enter the highway. Eventually approaching Las Vegas, the number of cars on the
road increases again, but now the surrounding cars bear Nevada license plates. Continuing
onward, the traffic fluctuates as the license plates eventually change to those of Utah, Idaho,
and Montana. Most of the cars have the plates of the state they are in, with a few cars from
neighboring states and even fewer from more distant locales. At any point along the way,
the number of cars on the road reflects the local population density. Of course, this is to be
expected; the surrounding area is the source of the traffic entering the highway, and the rate
at which the traffic changes is determined by the ratio of the number of entering to exiting
automobiles. This ratio determines how rapidly the cars on the road from elsewhere are
replaced by the cars belonging to the local population. Thus the traffic constantly changes,
always tending to resemble the number and types of automobiles driven by the people living
nearby.

The Source Function and the Transfer Equation

In a stellar atmosphere or interior, the same considerations describe the competition between
the rates at which photons are plucked out of a beam of light by absorption, and introduced
into the beam by emission processes. The ratio of the rates of emission and absorption
determines how rapidly the intensity of the beam of light changes and describes the tendency
of the population of photons in the beam to resemble the local source of photons in the
surrounding stellar material. To introduce the ratio of emission to absorption, we divide
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Radiative Transfer Equation 

S=0	

Iλ

jλ κλ

The Emission Coefficient

In the following discussions of beams and light rays, the primary consideration is the net
flow of energy in a given direction, not the specific path taken by individual photons. First,
we will examine the emission process that increases the intensity of a ray of wavelength
λ as it travels through a gas. The increase in intensity dIλ is proportional to both ds, the
distance traveled in the direction of the ray, and ρ, the density of the gas. For pure emission
(no absorption of the radiation),

dIλ = jλρ ds, (32)

where jλ is the emission coefficient of the gas. The emission coefficient, which has units
of m s−3 sr−1, varies with the wavelength of the light.

As a beam of light moves through the gas in a star, its specific intensity, Iλ, changes as
photons traveling with the beam are removed by absorption or scattering out of the beam,
and are replaced by photons emitted from the surrounding stellar material, or scattered
into the beam. Combining Eq. ( 13) for the decrease in intensity due to the absorption of
radiation with Eq. ( 32) for the increase produced by emission gives the general result

dIλ = −κλρIλ ds + jλρ ds. (33)

The ratio of the rates at which the competing processes of emission and absorption occur
determines how rapidly the intensity of the beam changes. This is similar to describing the
flow of traffic on an interstate highway. Imagine following a group of cars as they leave Los
Angeles, traveling north on I-15. Initially, nearly all of the cars on the road have California
license plates. Driving north, the number of cars on the road declines as more individuals
exit than enter the highway. Eventually approaching Las Vegas, the number of cars on the
road increases again, but now the surrounding cars bear Nevada license plates. Continuing
onward, the traffic fluctuates as the license plates eventually change to those of Utah, Idaho,
and Montana. Most of the cars have the plates of the state they are in, with a few cars from
neighboring states and even fewer from more distant locales. At any point along the way,
the number of cars on the road reflects the local population density. Of course, this is to be
expected; the surrounding area is the source of the traffic entering the highway, and the rate
at which the traffic changes is determined by the ratio of the number of entering to exiting
automobiles. This ratio determines how rapidly the cars on the road from elsewhere are
replaced by the cars belonging to the local population. Thus the traffic constantly changes,
always tending to resemble the number and types of automobiles driven by the people living
nearby.

The Source Function and the Transfer Equation

In a stellar atmosphere or interior, the same considerations describe the competition between
the rates at which photons are plucked out of a beam of light by absorption, and introduced
into the beam by emission processes. The ratio of the rates of emission and absorption
determines how rapidly the intensity of the beam of light changes and describes the tendency
of the population of photons in the beam to resemble the local source of photons in the
surrounding stellar material. To introduce the ratio of emission to absorption, we divide
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Divide	both	sides	by		Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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Radiative Transfer Equation 

Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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Implications:	

•  Left-hand	side	=	0:																->	intensity	equals	to	source	function	
•  												:																					->	intensity	decreases	with	distance	
•  												:																					->	intensity	increases	with	distance	

Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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Iλ > Sλ dIλ / ds < 0

Iλ < Sλ dIλ / ds > 0

The	intensity	of	the	light	tries	to	become	equal	to	
the	local	value	of	the	source	function	

or	

for the net outward flow of energy. And although absorption and emission coefficients are
the same for light traveling in all directions (implying that the source function is indepen-
dent of direction), the absorption and emission coefficients depend on the temperature and
density in a rather complicated way.

However, if astronomers are to learn anything about the physical conditions in stellar
atmospheres, such as temperature or density, they must know where (at what depth) a
spectral line is formed. A vast amount of effort has therefore been devoted to solving and
understanding the implications of the transfer equation, and several powerful techniques
have been developed that simplify the analysis considerably.

We will begin by rewriting Eq. ( 34) in terms of the optical depth τλ, defined by
Eq. ( 15), resulting in

dIλ

dτλ
= Iλ − Sλ. (36)

Unfortunately, because the optical depth is measured along the path of the light ray, neither
the optical depth nor the distance s in Eq. ( 34) corresponds to a unique geometric depth in
the atmosphere. Consequently, the optical depth must be replaced by a meaningful measure
of position.

To find a suitable replacement, we introduce the first of several standard approximations.
The atmospheres of stars near the main sequence are physically thin compared with the size
of the star, analogous to the skin of an onion. The atmosphere’s radius of curvature is thus
much larger than its thickness, and we may consider the atmosphere as a plane-parallel
slab. As shown in Fig. 14, the z-axis is assumed to be in the vertical direction, with z = 0
at the top of this plane-parallel atmosphere.

Next, a vertical optical depth, τλ,v(z), is defined as

τλ,v(z) ≡
∫ 0

z

κλρ dz. (37)

Comparison with Eq. ( 17) reveals that this is just the initial optical depth of a ray traveling

z Light ray

0

!dz ds

"#,v

"#

FIGURE 14 Plane-parallel stellar atmosphere.
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For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e−1 over a characteristic distance of ℓ = 1/κλρ. In the solar photosphere where the
density is approximately ρ = 2.1 × 10−4 kg m−3, the opacity (at a wavelength of 500 nm)
is κ500 = 0.03 m2 kg−1. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

ℓ = 1
κ500ρ

= 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height HT =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas.Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance ℓ is in fact the mean free path of the
photons. From Eq. ( 12),

ℓ = 1
κλρ

= 1
nσλ

.

Both κλρ and nσλ can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.

It is convenient to define an optical depth, τλ, back along a light ray by

dτλ = −κλρ ds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

'τλ = τλ,f − τλ,0 = −
∫ s

0
κλρ ds. (16)

Note that 'τλ < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at τλ = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of τλ = 0, Eq. ( 16) gives the initial optical depth, τλ,0, of a ray of light that
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Radiative Transfer Equation: 
Blackbody radiation 

Blackbody	radiation:		
•  emission	is	balanced	by	absorption,	no	net	gain	or	loss	

of	intensity	along	the	light	path	
•  Intensity	
•  So	

Iλ = Bλ

Eq. (33) by −κλρ ds:

− 1
κλρ

dIλ

ds
= Iλ − jλ

κλ
.

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, Sλ ≡ jλ/κλ. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.2 The source function, Sλ, has the same
units as the intensity, W m−3 sr−1. Therefore, in terms of the source function,

− 1
κλρ

dIλ

ds
= Iλ − Sλ. (34)

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).23 According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, Iλ = Sλ. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then dIλ/ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature T . The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, Iλ = Bλ. Furthermore, because the intensity is constant throughout the
box, dIλ/ds = 0, and so Iλ = Sλ. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, Sλ = Bλ.

As mentioned in Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is a net flow of energy from the center to the surface. Deep in the atmosphere, where τλ ≫ 1
as measured along a vertical ray, a random-walking photon will take at least τ 2

λ steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are jλ and κλ individually.
2 It is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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dIλ / ds = 0

Sλ = Bλ
•  The	source	function	of	a	blackbody	is	equal	to	the	Planck	function	
•  This	also	applies	to	local	thermodynamic	equilibrium	(LTE).	However,	

in	LTE,	not	necessarily																	unless							much	greater	than	1.	Iλ = Bλ

or	

for the net outward flow of energy. And although absorption and emission coefficients are
the same for light traveling in all directions (implying that the source function is indepen-
dent of direction), the absorption and emission coefficients depend on the temperature and
density in a rather complicated way.

However, if astronomers are to learn anything about the physical conditions in stellar
atmospheres, such as temperature or density, they must know where (at what depth) a
spectral line is formed. A vast amount of effort has therefore been devoted to solving and
understanding the implications of the transfer equation, and several powerful techniques
have been developed that simplify the analysis considerably.

We will begin by rewriting Eq. ( 34) in terms of the optical depth τλ, defined by
Eq. ( 15), resulting in

dIλ

dτλ
= Iλ − Sλ. (36)

Unfortunately, because the optical depth is measured along the path of the light ray, neither
the optical depth nor the distance s in Eq. ( 34) corresponds to a unique geometric depth in
the atmosphere. Consequently, the optical depth must be replaced by a meaningful measure
of position.

To find a suitable replacement, we introduce the first of several standard approximations.
The atmospheres of stars near the main sequence are physically thin compared with the size
of the star, analogous to the skin of an onion. The atmosphere’s radius of curvature is thus
much larger than its thickness, and we may consider the atmosphere as a plane-parallel
slab. As shown in Fig. 14, the z-axis is assumed to be in the vertical direction, with z = 0
at the top of this plane-parallel atmosphere.

Next, a vertical optical depth, τλ,v(z), is defined as

τλ,v(z) ≡
∫ 0

z

κλρ dz. (37)

Comparison with Eq. ( 17) reveals that this is just the initial optical depth of a ray traveling
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0

!dz ds
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FIGURE 14 Plane-parallel stellar atmosphere.
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Formation of absorption lines 



The Profiles of Spectral Lines 

• Absorption	lines	are	common	features	in	stellar	
spectra	
•  Usually	they	are	also	not	entirely	“black”,	with	a	“depth”	
of		

•  They	are	also	not	infinitely	thin	
• We	use	equivalent	width	

to	quantify	the	line	“strength”		

5 THE PROFILES OF SPECTRAL LINES

We now have a formidable theoretical arsenal to bring to bear on the analysis of spectral
lines. The shape of an individual spectral line contains a wealth of information about the
environment in which it was formed.

Equivalent Widths

Figure 18 shows a graph of the radiant flux, Fλ, as a function of wavelength for a typical
absorption line. In the figure, Fλ is expressed as a fraction of Fc, the value of the flux
from the continuous spectrum outside the spectral line. Near the central wavelength, λ0, is
the core of the line, and the sides sweeping upward to the continuum are the line’s wings.
Individual lines may be narrow or broad, shallow or deep. The quantity (Fc − Fλ)/Fc is
referred to as the depth of the line. The strength of a spectral line is measured in terms of
its equivalent width. The equivalent width W of a spectral line is defined as the width of a
box (shaded in Fig. 18) reaching up to the continuum that has the same area as the spectral
line. That is,

W =
∫

Fc − Fλ

Fc

dλ, (59)

where the integral is taken from one side of the line to the other. The equivalent width of a
line in the visible spectrum, shaded in Fig. 18, is usually on the order of 0.01 nm. Another
measure of the width of a spectral line is the change in wavelength from one side of the
line to the other, where its depth (Fc − Fλ)/(Fc − Fλ0) = 1/2; this is called the full width
at half-maximum and will be denoted by ("λ)1/2.

The spectral line shown in Fig. 18 is termed optically thin because there is no wave-
length at which the radiant flux has been completely blocked. The opacity κλ of the stellar
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FIGURE 18 The profile of a typical spectral line.
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5 THE PROFILES OF SPECTRAL LINES

We now have a formidable theoretical arsenal to bring to bear on the analysis of spectral
lines. The shape of an individual spectral line contains a wealth of information about the
environment in which it was formed.

Equivalent Widths

Figure 18 shows a graph of the radiant flux, Fλ, as a function of wavelength for a typical
absorption line. In the figure, Fλ is expressed as a fraction of Fc, the value of the flux
from the continuous spectrum outside the spectral line. Near the central wavelength, λ0, is
the core of the line, and the sides sweeping upward to the continuum are the line’s wings.
Individual lines may be narrow or broad, shallow or deep. The quantity (Fc − Fλ)/Fc is
referred to as the depth of the line. The strength of a spectral line is measured in terms of
its equivalent width. The equivalent width W of a spectral line is defined as the width of a
box (shaded in Fig. 18) reaching up to the continuum that has the same area as the spectral
line. That is,

W =
∫

Fc − Fλ

Fc

dλ, (59)

where the integral is taken from one side of the line to the other. The equivalent width of a
line in the visible spectrum, shaded in Fig. 18, is usually on the order of 0.01 nm. Another
measure of the width of a spectral line is the change in wavelength from one side of the
line to the other, where its depth (Fc − Fλ)/(Fc − Fλ0) = 1/2; this is called the full width
at half-maximum and will be denoted by ("λ)1/2.

The spectral line shown in Fig. 18 is termed optically thin because there is no wave-
length at which the radiant flux has been completely blocked. The opacity κλ of the stellar
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5 THE PROFILES OF SPECTRAL LINES

We now have a formidable theoretical arsenal to bring to bear on the analysis of spectral
lines. The shape of an individual spectral line contains a wealth of information about the
environment in which it was formed.

Equivalent Widths

Figure 18 shows a graph of the radiant flux, Fλ, as a function of wavelength for a typical
absorption line. In the figure, Fλ is expressed as a fraction of Fc, the value of the flux
from the continuous spectrum outside the spectral line. Near the central wavelength, λ0, is
the core of the line, and the sides sweeping upward to the continuum are the line’s wings.
Individual lines may be narrow or broad, shallow or deep. The quantity (Fc − Fλ)/Fc is
referred to as the depth of the line. The strength of a spectral line is measured in terms of
its equivalent width. The equivalent width W of a spectral line is defined as the width of a
box (shaded in Fig. 18) reaching up to the continuum that has the same area as the spectral
line. That is,

W =
∫

Fc − Fλ

Fc

dλ, (59)

where the integral is taken from one side of the line to the other. The equivalent width of a
line in the visible spectrum, shaded in Fig. 18, is usually on the order of 0.01 nm. Another
measure of the width of a spectral line is the change in wavelength from one side of the
line to the other, where its depth (Fc − Fλ)/(Fc − Fλ0) = 1/2; this is called the full width
at half-maximum and will be denoted by ("λ)1/2.

The spectral line shown in Fig. 18 is termed optically thin because there is no wave-
length at which the radiant flux has been completely blocked. The opacity κλ of the stellar
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Spectral line broadening 
• Natural	broadening	
•  Lifetime	of	an	atom	at	a	certain	orbit	is	not	infinitely	
long.	Heisenberg’s	principle	says	the	energy	can	not	be	
perfectly	precise	at	E,	but	with	a	finite	width	in	energy	

Processes That Broaden Spectral Lines

Three main processes are responsible for the broadening of spectral lines. Each of these
mechanisms produces its own distinctive line shape or line profile.

1. Natural broadening. Spectral lines cannot be infinitely sharp, even for motionless,

only a brief instant,!t , the orbital’s energy, E, cannot have a precise value. Thus the
uncertainty in the energy, !E, of the orbital is approximately

!E ≈ !

!t
.

(The electron’s lifetime in the ground state may be taken as infinite, so in that case
!E = 0.) Electrons can make transitions from and to anywhere within these “fuzzy”
energy levels, producing an uncertainty in the wavelength of the photon absorbed or
emitted in a transition. Using the following equation for the energy of a photon,
Ephoton = hc/λ, we find that the uncertainty in the photon’s wavelength has a
magnitude of roughly

!λ ≈ λ2

2πc

(

1
!ti

+ 1
!tf

)

, (60)

where !ti is the lifetime of the electron in its initial state and !tf is the lifetime in
the final state. (The proof is left as a problem.)

Example 5.1. The lifetime of an electron in the first and second excited states of
hydrogen is about !t = 10−8 s. The natural broadening of the Hα line of hydrogen,
λ = 656.3 nm, is then

!λ ≈ 4.57 × 10−14 m = 4.57 × 10−5 nm.

A more involved calculation shows that the full width at half-maximum of the
line profile for natural broadening is

(!λ)1/2 = λ2

πc

1
!t0

, (61)

Stellar Atmospheres

material is greatest at the wavelength  at the line’s center and decreases moving into the 
wings. This means that the center of the line is formed at higher (and cooler) regions of the 
stellar atmosphere. Moving into the wings from , the line formation occurs at progres-
sively deeper (and hotter) layers of the atmosphere, until it merges with the continuum-
producing region at an optical depth of 2/3.

λ0

λ0

isolated atoms. According to Heisenberg’s uncertainty principle, as the time 
 available for an energy measurement decreases, the inherent uncertainty of the  
result increases. Because an electron in an excited state occupies its orbital for
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Lifetime	of	the	atom	in	this	orbit	

Processes That Broaden Spectral Lines

Three main processes are responsible for the broadening of spectral lines. Each of these
mechanisms produces its own distinctive line shape or line profile.

1. Natural broadening. Spectral lines cannot be infinitely sharp, even for motionless,

only a brief instant,!t , the orbital’s energy, E, cannot have a precise value. Thus the
uncertainty in the energy, !E, of the orbital is approximately

!E ≈ !

!t
.

(The electron’s lifetime in the ground state may be taken as infinite, so in that case
!E = 0.) Electrons can make transitions from and to anywhere within these “fuzzy”
energy levels, producing an uncertainty in the wavelength of the photon absorbed or
emitted in a transition. Using the following equation for the energy of a photon,
Ephoton = hc/λ, we find that the uncertainty in the photon’s wavelength has a
magnitude of roughly

!λ ≈ λ2

2πc

(

1
!ti

+ 1
!tf

)

, (60)

where !ti is the lifetime of the electron in its initial state and !tf is the lifetime in
the final state. (The proof is left as a problem.)

Example 5.1. The lifetime of an electron in the first and second excited states of
hydrogen is about !t = 10−8 s. The natural broadening of the Hα line of hydrogen,
λ = 656.3 nm, is then

!λ ≈ 4.57 × 10−14 m = 4.57 × 10−5 nm.

A more involved calculation shows that the full width at half-maximum of the
line profile for natural broadening is

(!λ)1/2 = λ2

πc

1
!t0

, (61)
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material is greatest at the wavelength  at the line’s center and decreases moving into the 
wings. This means that the center of the line is formed at higher (and cooler) regions of the 
stellar atmosphere. Moving into the wings from , the line formation occurs at progres-
sively deeper (and hotter) layers of the atmosphere, until it merges with the continuum-
producing region at an optical depth of 2/3.

λ0

λ0

isolated atoms. According to Heisenberg’s uncertainty principle, as the time 
 available for an energy measurement decreases, the inherent uncertainty of the  
result increases. Because an electron in an excited state occupies its orbital for
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Since 	 											=	Ef	– Ei	

Processes That Broaden Spectral Lines

Three main processes are responsible for the broadening of spectral lines. Each of these
mechanisms produces its own distinctive line shape or line profile.

1. Natural broadening. Spectral lines cannot be infinitely sharp, even for motionless,

only a brief instant,!t , the orbital’s energy, E, cannot have a precise value. Thus the
uncertainty in the energy, !E, of the orbital is approximately

!E ≈ !

!t
.

(The electron’s lifetime in the ground state may be taken as infinite, so in that case
!E = 0.) Electrons can make transitions from and to anywhere within these “fuzzy”
energy levels, producing an uncertainty in the wavelength of the photon absorbed or
emitted in a transition. Using the following equation for the energy of a photon,
Ephoton = hc/λ, we find that the uncertainty in the photon’s wavelength has a
magnitude of roughly

!λ ≈ λ2

2πc

(

1
!ti

+ 1
!tf

)

, (60)

where !ti is the lifetime of the electron in its initial state and !tf is the lifetime in
the final state. (The proof is left as a problem.)

Example 5.1. The lifetime of an electron in the first and second excited states of
hydrogen is about !t = 10−8 s. The natural broadening of the Hα line of hydrogen,
λ = 656.3 nm, is then

!λ ≈ 4.57 × 10−14 m = 4.57 × 10−5 nm.

A more involved calculation shows that the full width at half-maximum of the
line profile for natural broadening is

(!λ)1/2 = λ2

πc

1
!t0

, (61)
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material is greatest at the wavelength  at the line’s center and decreases moving into the 
wings. This means that the center of the line is formed at higher (and cooler) regions of the 
stellar atmosphere. Moving into the wings from , the line formation occurs at progres-
sively deeper (and hotter) layers of the atmosphere, until it merges with the continuum-
producing region at an optical depth of 2/3.

λ0

λ0

isolated atoms. According to Heisenberg’s uncertainty principle, as the time 
 available for an energy measurement decreases, the inherent uncertainty of the  
result increases. Because an electron in an excited state occupies its orbital for
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You	did	this	in	
problem	set	#2	

Processes That Broaden Spectral Lines

Three main processes are responsible for the broadening of spectral lines. Each of these
mechanisms produces its own distinctive line shape or line profile.

1. Natural broadening. Spectral lines cannot be infinitely sharp, even for motionless,

only a brief instant,!t , the orbital’s energy, E, cannot have a precise value. Thus the
uncertainty in the energy, !E, of the orbital is approximately

!E ≈ !

!t
.

(The electron’s lifetime in the ground state may be taken as infinite, so in that case
!E = 0.) Electrons can make transitions from and to anywhere within these “fuzzy”
energy levels, producing an uncertainty in the wavelength of the photon absorbed or
emitted in a transition. Using the following equation for the energy of a photon,
Ephoton = hc/λ, we find that the uncertainty in the photon’s wavelength has a
magnitude of roughly

!λ ≈ λ2

2πc

(

1
!ti

+ 1
!tf

)

, (60)

where !ti is the lifetime of the electron in its initial state and !tf is the lifetime in
the final state. (The proof is left as a problem.)

Example 5.1. The lifetime of an electron in the first and second excited states of
hydrogen is about !t = 10−8 s. The natural broadening of the Hα line of hydrogen,
λ = 656.3 nm, is then

!λ ≈ 4.57 × 10−14 m = 4.57 × 10−5 nm.

A more involved calculation shows that the full width at half-maximum of the
line profile for natural broadening is

(!λ)1/2 = λ2

πc

1
!t0

, (61)
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material is greatest at the wavelength  at the line’s center and decreases moving into the 
wings. This means that the center of the line is formed at higher (and cooler) regions of the 
stellar atmosphere. Moving into the wings from , the line formation occurs at progres-
sively deeper (and hotter) layers of the atmosphere, until it merges with the continuum-
producing region at an optical depth of 2/3.

λ0

λ0

isolated atoms. According to Heisenberg’s uncertainty principle, as the time 
 available for an energy measurement decreases, the inherent uncertainty of the  
result increases. Because an electron in an excited state occupies its orbital for
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More	involved	calculation	gives	 Average	waiting	time	for	
the	transition	to	occur	

Full	width	at	half	maximum	of	the	line	profile	



Spectral line broadening 

• Doppler	Broadening	
This	is	due	to	the	Doppler	Effect	from	the	thermal	
and/or	turbulent	motion	of	atoms	in	stellar	
atmosphere	

where !t0 is the average waiting time for a specific transition to occur. This results
in a typical value of

(!λ)1/2 ≃ 2.4 × 10−5 nm,

in good agreement with the preceding estimate.
2. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell–Boltzmann distribution function, with the most probable speed given by
vmp = √

2kT /m. The wavelengths of the light absorbed or emitted by the atoms in the
gas are Doppler-shifted according to (nonrelativistic) !λ/λ = ± |vr |/c. Thus the
width of a spectral line due to Doppler broadening should be approximately

!λ ≈ 2λ
c

√

2kT

m
.

Example 5.2. For hydrogen atoms in the Sun’s photosphere (T = 5777 K), the
Doppler broadening of the Hα line should be about

!λ ≈ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

Amore in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is

(!λ)1/2 = 2λ
c

√

2kT ln 2
m

. (62)

Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength λ0. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell–Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.

Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. ( 62) if the distribution of turbulent velocities follows the Maxwell–Boltzmann
distribution. In that case,
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where vturb is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In

,

,

Stellar Atmospheres

���

where !t0 is the average waiting time for a specific transition to occur. This results
in a typical value of

(!λ)1/2 ≃ 2.4 × 10−5 nm,

in good agreement with the preceding estimate.
2. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell–Boltzmann distribution function, with the most probable speed given by
vmp = √

2kT /m. The wavelengths of the light absorbed or emitted by the atoms in the
gas are Doppler-shifted according to (nonrelativistic) !λ/λ = ± |vr |/c. Thus the
width of a spectral line due to Doppler broadening should be approximately

!λ ≈ 2λ
c

√

2kT

m
.

Example 5.2. For hydrogen atoms in the Sun’s photosphere (T = 5777 K), the
Doppler broadening of the Hα line should be about

!λ ≈ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

Amore in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is

(!λ)1/2 = 2λ
c

√

2kT ln 2
m

. (62)

Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength λ0. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell–Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.

Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. ( 62) if the distribution of turbulent velocities follows the Maxwell–Boltzmann
distribution. In that case,

(!λ)1/2 = 2λ
c

√
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)
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where vturb is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In
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Most	probable	speed	in	Maxwell-
Boltzmann	distribution:		

where !t0 is the average waiting time for a specific transition to occur. This results
in a typical value of

(!λ)1/2 ≃ 2.4 × 10−5 nm,

in good agreement with the preceding estimate.
2. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell–Boltzmann distribution function, with the most probable speed given by
vmp = √

2kT /m. The wavelengths of the light absorbed or emitted by the atoms in the
gas are Doppler-shifted according to (nonrelativistic) !λ/λ = ± |vr |/c. Thus the
width of a spectral line due to Doppler broadening should be approximately

!λ ≈ 2λ
c

√
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.

Example 5.2. For hydrogen atoms in the Sun’s photosphere (T = 5777 K), the
Doppler broadening of the Hα line should be about

!λ ≈ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

Amore in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is
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c
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2kT ln 2
m

. (62)

Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength λ0. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell–Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.

Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. ( 62) if the distribution of turbulent velocities follows the Maxwell–Boltzmann
distribution. In that case,

(!λ)1/2 = 2λ
c
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)
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where vturb is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In
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So	

More	in-depth	analysis	gives		

where !t0 is the average waiting time for a specific transition to occur. This results
in a typical value of

(!λ)1/2 ≃ 2.4 × 10−5 nm,

in good agreement with the preceding estimate.
2. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell–Boltzmann distribution function, with the most probable speed given by
vmp = √

2kT /m. The wavelengths of the light absorbed or emitted by the atoms in the
gas are Doppler-shifted according to (nonrelativistic) !λ/λ = ± |vr |/c. Thus the
width of a spectral line due to Doppler broadening should be approximately

!λ ≈ 2λ
c

√

2kT

m
.

Example 5.2. For hydrogen atoms in the Sun’s photosphere (T = 5777 K), the
Doppler broadening of the Hα line should be about

!λ ≈ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

Amore in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is

(!λ)1/2 = 2λ
c

√

2kT ln 2
m

. (62)

Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength λ0. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell–Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.

Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. ( 62) if the distribution of turbulent velocities follows the Maxwell–Boltzmann
distribution. In that case,
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)
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where vturb is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In
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where !t0 is the average waiting time for a specific transition to occur. This results
in a typical value of

(!λ)1/2 ≃ 2.4 × 10−5 nm,

in good agreement with the preceding estimate.
2. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell–Boltzmann distribution function, with the most probable speed given by
vmp = √

2kT /m. The wavelengths of the light absorbed or emitted by the atoms in the
gas are Doppler-shifted according to (nonrelativistic) !λ/λ = ± |vr |/c. Thus the
width of a spectral line due to Doppler broadening should be approximately

!λ ≈ 2λ
c

√

2kT

m
.

Example 5.2. For hydrogen atoms in the Sun’s photosphere (T = 5777 K), the
Doppler broadening of the Hα line should be about

!λ ≈ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

Amore in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is
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c

√

2kT ln 2
m

. (62)

Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength λ0. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell–Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.

Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. ( 62) if the distribution of turbulent velocities follows the Maxwell–Boltzmann
distribution. In that case,

(!λ)1/2 = 2λ
c

√
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turb

)

ln 2, (63)

where vturb is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In
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With	turbulence		



Spectral line broadening 

• Pressure	(and	collisional)	broadening	
The	orbitals	of	an	atom	can	be	perturbed	in	a	
collision	with	another	atom	or	ion	
Calculation	quite	complicated.	Just	as	an	estimate,	replace								
with	the	time	between	collisions	

fact, the existence of turbulence in the atmospheres of these stars was first deduced
from the inordinately large effect of Doppler broadening on their spectra.

Other sources of Doppler broadening involve orderly, coherent mass motions,
such as stellar rotation, pulsation, and mass loss. These phenomena can have a sub-
stantial effect on the shape and width of the line profiles but cannot be combined
with the results of Doppler broadening produced by random thermal motions obey-
ing the Maxwell–Boltzmann distribution.

3. Pressure (and collisional) broadening. The orbitals of an atom can be perturbed
in a collision with a neutral atom or by a close encounter involving the electric field
of an ion. The results of individual collisions are called collisional broadening, and
the statistical effects of the electric fields of large numbers of closely passing ions
is termed pressure broadening; however, in the following discussion, both of these
effects will be collectively referred to as pressure broadening. In either case, the out-
come depends on the average time between collisions or encounters with other atoms
and ions.

Calculating the precise width and shape of a pressure-broadened line is quite com-
plicated. Atoms and ions of the same or different elements, as well as free electrons,
are involved in these collisions and close encounters. The general shape of the line,
however, is like that found for natural broadening, Eq. ( 61), and the line profile
shared by natural and pressure broadening is sometimes referred to as a damping
profile (also known as a Lorentz profile), so named because the shape is characteristic
of the spectrum of radiation emitted by an electric charge undergoing damped simple
harmonic motion. The values of the full width at half-maximum for natural and pres-
sure broadening usually prove to be comparable, although the pressure profile can at
times be more than an order of magnitude wider.

An estimate of pressure broadening due to collisions with atoms of a single ele-
ment can be obtained by taking the value of !t0 in Eq. ( 61) to be the average time
between collisions. This time is approximately equal to the mean free path between
collisions divided by the average speed of the atoms. Using Eq. ( 12) for the mean
free path and for the speed, we find that

!t0 ≈ ℓ

v
= 1

nσ
√

2kT /m
,

where m is the mass of an atom, σ is its collision cross section, and n is the number
density of the atoms. Thus the width of the spectral line due to pressure broadening
is on the order of

!λ = λ2

c

1
π!t0

≈ λ2

c

nσ

π

√

2kT

m
. (64)

Note that the width of the line is proportional to the number density n of the atoms.
The physical reason for the Morgan–Keenan luminosity classes is now clear. The

narrower lines observed for the more luminous giant and supergiant stars are due to
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fact, the existence of turbulence in the atmospheres of these stars was first deduced
from the inordinately large effect of Doppler broadening on their spectra.

Other sources of Doppler broadening involve orderly, coherent mass motions,
such as stellar rotation, pulsation, and mass loss. These phenomena can have a sub-
stantial effect on the shape and width of the line profiles but cannot be combined
with the results of Doppler broadening produced by random thermal motions obey-
ing the Maxwell–Boltzmann distribution.

3. Pressure (and collisional) broadening. The orbitals of an atom can be perturbed
in a collision with a neutral atom or by a close encounter involving the electric field
of an ion. The results of individual collisions are called collisional broadening, and
the statistical effects of the electric fields of large numbers of closely passing ions
is termed pressure broadening; however, in the following discussion, both of these
effects will be collectively referred to as pressure broadening. In either case, the out-
come depends on the average time between collisions or encounters with other atoms
and ions.

Calculating the precise width and shape of a pressure-broadened line is quite com-
plicated. Atoms and ions of the same or different elements, as well as free electrons,
are involved in these collisions and close encounters. The general shape of the line,
however, is like that found for natural broadening, Eq. ( 61), and the line profile
shared by natural and pressure broadening is sometimes referred to as a damping
profile (also known as a Lorentz profile), so named because the shape is characteristic
of the spectrum of radiation emitted by an electric charge undergoing damped simple
harmonic motion. The values of the full width at half-maximum for natural and pres-
sure broadening usually prove to be comparable, although the pressure profile can at
times be more than an order of magnitude wider.

An estimate of pressure broadening due to collisions with atoms of a single ele-
ment can be obtained by taking the value of !t0 in Eq. ( 61) to be the average time
between collisions. This time is approximately equal to the mean free path between
collisions divided by the average speed of the atoms. Using Eq. ( 12) for the mean
free path and for the speed, we find that

!t0 ≈ ℓ

v
= 1

nσ
√

2kT /m
,

where m is the mass of an atom, σ is its collision cross section, and n is the number
density of the atoms. Thus the width of the spectral line due to pressure broadening
is on the order of

!λ = λ2

c
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π!t0

≈ λ2
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π

√

2kT

m
. (64)

Note that the width of the line is proportional to the number density n of the atoms.
The physical reason for the Morgan–Keenan luminosity classes is now clear. The

narrower lines observed for the more luminous giant and supergiant stars are due to
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fact, the existence of turbulence in the atmospheres of these stars was first deduced
from the inordinately large effect of Doppler broadening on their spectra.

Other sources of Doppler broadening involve orderly, coherent mass motions,
such as stellar rotation, pulsation, and mass loss. These phenomena can have a sub-
stantial effect on the shape and width of the line profiles but cannot be combined
with the results of Doppler broadening produced by random thermal motions obey-
ing the Maxwell–Boltzmann distribution.

3. Pressure (and collisional) broadening. The orbitals of an atom can be perturbed
in a collision with a neutral atom or by a close encounter involving the electric field
of an ion. The results of individual collisions are called collisional broadening, and
the statistical effects of the electric fields of large numbers of closely passing ions
is termed pressure broadening; however, in the following discussion, both of these
effects will be collectively referred to as pressure broadening. In either case, the out-
come depends on the average time between collisions or encounters with other atoms
and ions.

Calculating the precise width and shape of a pressure-broadened line is quite com-
plicated. Atoms and ions of the same or different elements, as well as free electrons,
are involved in these collisions and close encounters. The general shape of the line,
however, is like that found for natural broadening, Eq. ( 61), and the line profile
shared by natural and pressure broadening is sometimes referred to as a damping
profile (also known as a Lorentz profile), so named because the shape is characteristic
of the spectrum of radiation emitted by an electric charge undergoing damped simple
harmonic motion. The values of the full width at half-maximum for natural and pres-
sure broadening usually prove to be comparable, although the pressure profile can at
times be more than an order of magnitude wider.

An estimate of pressure broadening due to collisions with atoms of a single ele-
ment can be obtained by taking the value of !t0 in Eq. ( 61) to be the average time
between collisions. This time is approximately equal to the mean free path between
collisions divided by the average speed of the atoms. Using Eq. ( 12) for the mean
free path and for the speed, we find that

!t0 ≈ ℓ

v
= 1

nσ
√

2kT /m
,

where m is the mass of an atom, σ is its collision cross section, and n is the number
density of the atoms. Thus the width of the spectral line due to pressure broadening
is on the order of

!λ = λ2

c

1
π!t0

≈ λ2

c

nσ
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√
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Note that the width of the line is proportional to the number density n of the atoms.
The physical reason for the Morgan–Keenan luminosity classes is now clear. The

narrower lines observed for the more luminous giant and supergiant stars are due to
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So		

Width	is	proportional	to	density.	Recall	luminosity	class	of	stars.	Supergiant	stars	have	
very	low	density,	while	dwarf	stars	have	greater	density	and	appreciable	broadening.	



The curve of growth 
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FIGURE 20 Voigt profiles of the K line of Ca II. The shallowest line is produced by Na=
3.4 × 1015 ions m−2, and the ions are ten times more abundant for each successively broader line.
(Adapted from Novotny, Introduction to Stellar Atmospheres and Interiors, Oxford University Press,
New York, 1973.)

orbital add up to the number of electrons in the atom or ion. Thus the oscillator strength is
the effective number of electrons per atom participating in a transition, and so multiplying
the number of absorbing atoms per unit area by the f -value gives the number of atoms
lying above each square meter of the photosphere that are actively involved in producing
a given spectral line, f Na. Figure 20 shows the Voigt profiles of the K line of Ca II
(λ = 393.3 nm) for various values of the number of absorbing calcium ions.

The Curve of Growth

The curve of growth is an important tool that astronomers use to determine the value of
Na and thus the abundances of elements in stellar atmospheres. As seen in Fig. 20, the
equivalent width, W , of the line varies with Na. A curve of growth, shown in Fig. 21,
is a logarithmic graph of the equivalent width, W , as a function of the number of absorb-
ing atoms, Na. To begin with, imagine that a specific element is not present in a stellar
atmosphere. As some of that element is introduced, a weak absorption line appears that
is initially optically thin. If the number of the absorbing atoms is doubled, twice as much
light is removed, and the equivalent width of the line is twice as great. So W ∝ Na, and the
curve of growth is initially linear with ln Na. As the number of absorbing atoms continues
to increase, the center of the line becomes optically thick as the maximum amount of flux
at the line’s center is absorbed.29 With the addition of still more atoms, the line bottoms
out and becomes saturated. The wings of the line, which are still optically thin, continue to
deepen. This occurs with relatively little change in the line’s equivalent width and produces
a flattening on the curve of growth where W ∝ √

ln Na. Increasing the number of absorbing
atoms still further increases the width of the pressure-broadening profile [recall Eq. ( 64)],

29The zero flux at the center of the line shown in Fig. 20 is a peculiarity of the Schuster–Schwarzschild model.
Actually, there is always some flux received at the central wavelength, λ0, even for very strong, optically thick
lines. As a rule, the flux at any wavelength cannot fall below Fλ = πSλ(τλ = 2/3), the value of the source function
at an optical depth of 2/3.
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FIGURE 21 The curve of growth for the K line of Ca II. As Na increases, the functional depen-
dence of the equivalent width (W ) changes. At various positions along the curve of growth, W is
proportional to the functional forms indicated. (Figure adapted from Aller, The Atmospheres of the
Sun and Stars, Ronald Press, New York, 1963.)

enabling it to contribute to the wings of the line. The equivalent width grows more rapidly,
although not as steeply as at first, with approximately W ∝ √

Na for the total line profile.
Using the curve of growth and a measured equivalent width, we can obtain the number of
absorbing atoms. The Boltzmann and Saha equations are then used to convert this value
into the total number of atoms of that element lying above the photosphere.

To reduce the errors involved in using a single spectral line, it is advantageous to locate,
on a single curve of growth, the positions of the equivalent widths of several lines formed by
transitions from the same initial orbital.30 This can be accomplished by plotting log10(W/λ)

on the vertical axis and log10[f Na(λ/500 nm)] on the horizontal axis. This scaling results
in a general curve of growth that can be used for several lines. Figure 22 shows a general
curve of growth for the Sun. The use of such a curve of growth is best illustrated by an
example.

Example 5.5. We will use Fig. 22 to find the number of sodium atoms above each
square meter of the Sun’s photosphere from measurements of the 330.238-nm and 588.997-
nm absorption lines of sodium (Table 1). Values of T = 5800 K and Pe = 1 N m−2 were
used for the temperature and electron pressure, respectively, to construct this curve of growth
and will be adopted in the calculations that follow.

Both of these lines are produced when an electron makes an upward transition from the
ground state orbital of the neutral Na I atom, and so these lines have the same value of Na,

30This is just one of several possible ways of scaling the curve of growth. The assumptions used to obtain such a
scaling are not valid for all broad lines (such as hydrogen) and may lead to inaccurate results.
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Column	density	increases	

•  Initially	the	line	grows	deeper,	and	the	equivalent	
width	grows	linearly	with	N	

•  Ultimately	the	core	of	the	line	saturates.	At	this	point	
the	wings	continue	to	grow	deeper	and	broader,	but	
the	core	gets	flatter.	The	equivalent	width	grows	
more	slowly.	

•  Even	denser,	wings	grow	deeper,	pressure-
broadening	more	important,	equivalent	width	grows	
more	quickly	again,	but	not	as	quickly	as	at	first.	

Useful	for	estimating	the	
number	of	absorbing	
atoms	


