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Stellar Interiors 

• Most	of	the	stellar	material	is	in	the	τ	>>	1	(or	
completely	opaque)	portion	–	only	neutrinos	can	
escape	freely	
•  Governed	by	basic	physics	
•  Difficult	to	observe	
•  Great	success	in	theories	and	computer	modeling	

•  To	understand	why	stars	differ	from	one	another	in	
different	parts	of	the	H-R	diagram,	and	
subsequently	their	evolution,	we	have	to	learn	
their	internal	structure	



Outstanding questions 

• What	supports	the	stars	(from	
collapsing)?	
• What	powers	the	stars?	
• What	determines	the	internal	structure	
of	the	stars?	



What are stars made of?  
Or “Stellar Composition” 
•  Stars	are	basically	a	giant	sphere	of	hot	gas	made	
of	relatively	simple	stuff	
• Our	Sun:	73%	H,	26%	Helium,	and	1%	of	higher	
atomic	number	atoms	(called	“metals”)	
• We	write	these	quantities	in	terms	of	mass	fraction	
–	X	=	mHnH/ρ	=	density	of	hydrogen	/	total	density	
–	Y	=	mHenHe/ρ	=	density	of	helium	/	total	density	
–	Z	=	mZnZ/ρ	=	density	of	metals	/	total	density.	Also	
known	as	“metallicity”	
	
	



Mean molecular weight 

• Mean	molecular	weight:	the	average	mass	of	a	free	
particle	in	the	gas,	in	units	of	the	mass	of	hydrogen	

The Ideal Gas Law in Terms of the Mean Molecular Weight

Equation ( 8) is valid for both massive and massless particles (such as photons) traveling
at any speed. For the special case of massive, nonrelativistic particles, we may use p = mv

to write the pressure integral as

P = 1
3

∫ ∞

0
mnvv

2 dv, (9)

where nv dv = np dp is the number of particles per unit volume having speeds between v

and v + dv.
The function nv dv is dependent on the physical nature of the system being described.

In the case of an ideal gas, nv dv is the Maxwell–Boltzmann velocity distribution

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,

where n =
∫∞

0 nv dv is the particle number density. Substituting into the pressure integral
finally gives

Pg = nkT (10)

Since n ≡N/V , Eq. ( 10) is just the familiar ideal gas law.

In astrophysical applications it is often convenient to express the ideal gas law in an
alternative form. Since n is the particle number density, it is clear that it must be related to
the mass density of the gas. Allowing for a variety of particles of different masses, it is then
possible to express n as

n = ρ

m
,

where m is the average mass of a gas particle. Substituting, the ideal gas law becomes

Pg = ρkT

m
.

We now define a new quantity, the mean molecular weight, as

µ ≡ m

mH

,

where mH = 1.673532499 × 10−27 kg is the mass of the hydrogen atom. The mean molec-
ular weight is just the average mass of a free particle in the gas, in units of the mass of
hydrogen. The ideal gas law can now be written in terms of the mean molecular weight as

Pg = ρkT

µmH

. (11)

,
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where																														=			m =
ρ
ntotal

Mass	per	unit	volume	

Total	number	of	particles	
per	unit	volume	

ntotal = nH + nHe + nZ + ne

What	is	the	mean	molecular	weight	for	fully	ionized	hydrogen	gas?	

ntotal = nH + ne = 2nH ρ =mHnH +mene ≈ mHnH

m =
ρ
ntotal

≈
mHnH
2nH

= 0.5mH µ =
m
mH

≈
0.5mH

mH

= 0.5



What	is	the	mean	molecular	weight	of	a	fully	ionized	
helium	gas?	
	
A.  1/2	
B.  4/3	
C.  1	
D.  2	
E.  3/4	
	



Mean molecular weight 

• Mean	molecular	weight	of	full	ionized	gas	

•  For	the	Sun,	X	=	0.73,	Y	=	0.26,	Z	=	0.01,	so	1/μ	≈	
1.67		

1
µ
≈ 2X + 3

4
Y + 1

2
Z



Why do stars not collapse? 

• Gravity	pulls	everything	in.	If	nothing	is	resisting,	
stars	collapse!	

•  Internal	pressure!	

• Most	stars	are	in	a	quasi-static	state:	hydrostatic	
equilibrium	

	



Hydrostatic Equilibrium 

emitted every second. This rate of energy output would be sufficient to melt a 0◦C block of
ice measuring 1 AU × 1 mile × 1 mile in only 0.3 s, assuming that the absorption of the
energy was 100% efficient. Because stars do not have infinite supplies of energy, they must
eventually use up their reserves and die. Stellar evolution is the result of a constant fight
against the relentless pull of gravity.

The Derivation of the Hydrostatic Equilibrium Equation

The gravitational force is always attractive, implying that an opposing force must exist if a
star is to avoid collapse. This force is provided by pressure. To calculate how the pressure
must vary with depth, consider a cylinder of mass dm whose base is located a distance
r from the center of a spherical star (see Fig. 1). The areas of the top and bottom of
the cylinder are each A and the cylinder’s height is dr . Furthermore, assume that the only
forces acting on the cylinder are gravity and the pressure force, which is always normal to
the surface and may vary with distance from the center of the star. Using Newton’s second
law F = ma, we have the net force on the cylinder:

dm
d2r

dt2
= Fg + FP,t + FP,b,

where Fg < 0 is the gravitational force directed inward and FP,t and FP,b are the pressure
forces on the top and bottom of the cylinder, respectively. Note that since the pressure
forces on the side of the cylinder will cancel, they have been explicitly excluded from the
expression. Because the pressure force is always normal to the surface, the force exerted on
the top of the cylinder must necessarily be directed toward the center of the star (FP,t < 0),

drdm

FP,b

FP,t

A

Toward
surface

FIGURE 1 In a static star the gravitational force on a mass element is exactly canceled by the
outward force due to a pressure gradient in the star. A cylinder of mass dm is located at a distance r

from the center of the star. The height of the cylinder is dr , and the areas of the top and bottom are
both A. The density of the gas is assumed to be ρ at that position.
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Newton’s	2nd	law:		
									Acceleration	*	dm	=	Net	force	on	the	cylinder	

emitted every second. This rate of energy output would be sufficient to melt a 0◦C block of
ice measuring 1 AU × 1 mile × 1 mile in only 0.3 s, assuming that the absorption of the
energy was 100% efficient. Because stars do not have infinite supplies of energy, they must
eventually use up their reserves and die. Stellar evolution is the result of a constant fight
against the relentless pull of gravity.

The Derivation of the Hydrostatic Equilibrium Equation

The gravitational force is always attractive, implying that an opposing force must exist if a
star is to avoid collapse. This force is provided by pressure. To calculate how the pressure
must vary with depth, consider a cylinder of mass dm whose base is located a distance
r from the center of a spherical star (see Fig. 1). The areas of the top and bottom of
the cylinder are each A and the cylinder’s height is dr . Furthermore, assume that the only
forces acting on the cylinder are gravity and the pressure force, which is always normal to
the surface and may vary with distance from the center of the star. Using Newton’s second
law F = ma, we have the net force on the cylinder:

dm
d2r

dt2
= Fg + FP,t + FP,b,

where Fg < 0 is the gravitational force directed inward and FP,t and FP,b are the pressure
forces on the top and bottom of the cylinder, respectively. Note that since the pressure
forces on the side of the cylinder will cancel, they have been explicitly excluded from the
expression. Because the pressure force is always normal to the surface, the force exerted on
the top of the cylinder must necessarily be directed toward the center of the star (FP,t < 0),

drdm

FP,b

FP,t

A

Toward
surface

FIGURE 1 In a static star the gravitational force on a mass element is exactly canceled by the
outward force due to a pressure gradient in the star. A cylinder of mass dm is located at a distance r

from the center of the star. The height of the cylinder is dr , and the areas of the top and bottom are
both A. The density of the gas is assumed to be ρ at that position.
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whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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with	

whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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With	gravity	force	

And	definition	of	pressure	

whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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We	have	



Hydrostatic Equilibrium 

whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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Now	express	the	mass	as		

whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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whereas the force on the bottom is directed outward (FP,b> 0). Writing FP,t in terms of
FP,band a correction term dFP that accounts for the change in force due to a change in r

results in

FP,t = −
(

FP,b+ dFP

)

.

Substitution into the previous expression gives

dm
d2r

dt2
= Fg − dFP . (1)

dm located at a distance r from the center of a
spherically symmetric mass is

Fg = −G
Mr dm

r2
, (2)

where Mr is the mass inside the sphere of radius r , often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero

Pressure is defined as the amount of force per unit area exerted on a surface, or

P ≡ F

A
.

Allowing for a difference in pressures dP between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFP = A dP. (3)

Substituting Eqs. (2) and (3) into Eq. (1) gives

dm
d2r

dt2
= −G

Mr dm

r2
− A dP. (4)

If the density of the gas in the cylinder is ρ, its mass is just

dm = ρA dr,

where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

ρA dr
d2r

dt2
= −G

MrρA dr

r2
− A dP.

Finally, dividing through by the volume of the cylinder, we have

ρ
d2r

dt2
= −G

Mrρ

r2
− dP

dr
. (5)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.

The gravitational force on a small mass
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For	static	star,	the	left-hand	side	of	the	equation	is	zero.	So	
If we assume further that the star is static, then the acceleration must be zero. In this case

Eq. (5) reduces to

dP

dr
= −G

Mrρ

r2
= −ρg, (6)

where g ≡ GMr/r2 is the local acceleration of gravity at radius r . Equation ( 6), the
condition of hydrostatic equilibrium, represents one of the fundamental equations of
stellar structure for spherically symmetric objects under the assumption that accelerations
are negligible. Equation ( 6) clearly indicates that in order for a star to be static, a pressure
gradient dP/dr must exist to counteract the force of gravity. It is not the pressure that
supports a star, but the change in pressure with radius. Furthermore, the pressure must
decrease with increasing radius; the pressure is necessarily larger in the interior than it is
near the surface.

Example 1.1. To obtain a very crude estimate of the pressure at the center of the
Sun, assume that Mr = 1 M⊙, r = 1 R⊙, and ρ = ρ⊙ = 1410 kg m−3 is the average solar
density Assume also that the surface pressure is exactly zero. Then, converting the
differential equation to a difference equation, the left hand side of Eq. ( 6) becomes

dP

dr
∼ Ps − Pc

Rs − 0
∼ − Pc

R⊙
,

where Pc is the central pressure, and Ps and Rs are the surface pressure and radius, respec-
tively. Substituting into the equation of hydrostatic equilibrium and solving for the central
pressure, we find

Pc ∼ G
M⊙ρ⊙

R⊙
∼ 2.7 × 1014 N m−2.

To obtain a more accurate value, we need to integrate the hydrostatic equilibrium equa-
tion from the surface to the center, taking into consideration the change in the interior mass
Mr at each point, together with the variation of density with radius ρr ≡ ρ(r), giving

∫ Pc

Ps

dP = Pc = −
∫ Rc

Rs

GMrρ

r2
dr.

Actually carrying out the integration requires functional forms of Mr and ρ. Unfortunately,
such explicit expressions are not available, implying that further relationships between such
quantities must be developed.

From a more rigorous calculation, a standard solar model gives a central pressure of
nearly 2.34 × 1016 N m−2. This value is much larger than the one obtained from our crude
estimate because of the increased density near the center of the Sun. As a reference, one
atmosphere of pressure is 1 atm = 1.013 × 105 N m−2; therefore, the more realistic model
predicts a central pressure of 2.3 × 1011 atm!
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Where																													is	the	local	
acceleration	of	gravity	at	radius	r	

If we assume further that the star is static, then the acceleration must be zero. In this case
Eq. (5) reduces to

dP

dr
= −G

Mrρ

r2
= −ρg, (6)

where g ≡ GMr/r2 is the local acceleration of gravity at radius r . Equation ( 6), the
condition of hydrostatic equilibrium, represents one of the fundamental equations of
stellar structure for spherically symmetric objects under the assumption that accelerations
are negligible. Equation ( 6) clearly indicates that in order for a star to be static, a pressure
gradient dP/dr must exist to counteract the force of gravity. It is not the pressure that
supports a star, but the change in pressure with radius. Furthermore, the pressure must
decrease with increasing radius; the pressure is necessarily larger in the interior than it is
near the surface.

Example 1.1. To obtain a very crude estimate of the pressure at the center of the
Sun, assume that Mr = 1 M⊙, r = 1 R⊙, and ρ = ρ⊙ = 1410 kg m−3 is the average solar
density Assume also that the surface pressure is exactly zero. Then, converting the
differential equation to a difference equation, the left hand side of Eq. ( 6) becomes

dP

dr
∼ Ps − Pc

Rs − 0
∼ − Pc

R⊙
,

where Pc is the central pressure, and Ps and Rs are the surface pressure and radius, respec-
tively. Substituting into the equation of hydrostatic equilibrium and solving for the central
pressure, we find

Pc ∼ G
M⊙ρ⊙

R⊙
∼ 2.7 × 1014 N m−2.

To obtain a more accurate value, we need to integrate the hydrostatic equilibrium equa-
tion from the surface to the center, taking into consideration the change in the interior mass
Mr at each point, together with the variation of density with radius ρr ≡ ρ(r), giving

∫ Pc

Ps

dP = Pc = −
∫ Rc

Rs

GMrρ

r2
dr.

Actually carrying out the integration requires functional forms of Mr and ρ. Unfortunately,
such explicit expressions are not available, implying that further relationships between such
quantities must be developed.

From a more rigorous calculation, a standard solar model gives a central pressure of
nearly 2.34 × 1016 N m−2. This value is much larger than the one obtained from our crude
estimate because of the increased density near the center of the Sun. As a reference, one
atmosphere of pressure is 1 atm = 1.013 × 105 N m−2; therefore, the more realistic model
predicts a central pressure of 2.3 × 1011 atm!
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Hydrostatic Equilibrium If we assume further that the star is static, then the acceleration must be zero. In this case
Eq. (5) reduces to

dP

dr
= −G

Mrρ

r2
= −ρg, (6)

where g ≡ GMr/r2 is the local acceleration of gravity at radius r . Equation ( 6), the
condition of hydrostatic equilibrium, represents one of the fundamental equations of
stellar structure for spherically symmetric objects under the assumption that accelerations
are negligible. Equation ( 6) clearly indicates that in order for a star to be static, a pressure
gradient dP/dr must exist to counteract the force of gravity. It is not the pressure that
supports a star, but the change in pressure with radius. Furthermore, the pressure must
decrease with increasing radius; the pressure is necessarily larger in the interior than it is
near the surface.

Example 1.1. To obtain a very crude estimate of the pressure at the center of the
Sun, assume that Mr = 1 M⊙, r = 1 R⊙, and ρ = ρ⊙ = 1410 kg m−3 is the average solar
density Assume also that the surface pressure is exactly zero. Then, converting the
differential equation to a difference equation, the left hand side of Eq. ( 6) becomes

dP

dr
∼ Ps − Pc

Rs − 0
∼ − Pc

R⊙
,

where Pc is the central pressure, and Ps and Rs are the surface pressure and radius, respec-
tively. Substituting into the equation of hydrostatic equilibrium and solving for the central
pressure, we find

Pc ∼ G
M⊙ρ⊙

R⊙
∼ 2.7 × 1014 N m−2.

To obtain a more accurate value, we need to integrate the hydrostatic equilibrium equa-
tion from the surface to the center, taking into consideration the change in the interior mass
Mr at each point, together with the variation of density with radius ρr ≡ ρ(r), giving

∫ Pc

Ps

dP = Pc = −
∫ Rc

Rs

GMrρ

r2
dr.

Actually carrying out the integration requires functional forms of Mr and ρ. Unfortunately,
such explicit expressions are not available, implying that further relationships between such
quantities must be developed.

From a more rigorous calculation, a standard solar model gives a central pressure of
nearly 2.34 × 1016 N m−2. This value is much larger than the one obtained from our crude
estimate because of the increased density near the center of the Sun. As a reference, one
atmosphere of pressure is 1 atm = 1.013 × 105 N m−2; therefore, the more realistic model
predicts a central pressure of 2.3 × 1011 atm!
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•  In	order	to	have	a	static	star,	the	pressure	gradient	
must	exist	to	counteract	the	force	of	gravity	

•  The	pressure	must	decrease	with	increasing	radius:	
larger	in	the	interior	than	it	is	near	the	surface	



Pressure equation of state 

• What	is	the	origin	of	the	pressure	gradient?	
• We	need	a	pressure	equation	of	state	of	the	
material	
•  Ideal	gas	law:	

r

dMr

dr

FIGURE 2 A spherically symmetric shell of mass dMr having a thickness dr and located a
distance r from the center of the star. The local density of the shell is ρ.

The Equation of Mass Conservation

Asecond relationship involving mass, radius, and density also exists.Again, for a spherically
symmetric star, consider a shell of mass dMr and thickness dr , located a distance r from
the center, as in Fig. 2. Assuming that the shell is sufficiently thin (i.e., dr ≪ r), the
volume of the shell is approximately dV = 4πr2 dr . If the local density of the gas is ρ, the
shell’s mass is given by

dMr = ρ(4πr2dr).

Rewriting, we arrive at the mass conservation equation,

dMr

dr
= 4πr2ρ, (7)

which dictates how the interior mass of a star must change with distance from the center.
Equation (7) is the second of the fundamental equations of stellar structure.

2 PRESSURE EQUATION OF STATE

Up to this point no information has been provided about the origin of the pressure term
required by Eq. ( 6). To describe this macroscopic manifestation of particle interactions, it
is necessary to derive a pressure equation of state of the material. Such an equation of state
relates the dependence of pressure on other fundamental parameters of the material. One
well-known example of a pressure equation of state is the ideal gas law, often expressed as

PV = NkT,
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Volume	 #	of	particles	 Temperature	

Or	in	terms	of	number	density	n:		

The Ideal Gas Law in Terms of the Mean Molecular Weight

Equation ( 8) is valid for both massive and massless particles (such as photons) traveling
at any speed. For the special case of massive, nonrelativistic particles, we may use p = mv

to write the pressure integral as

P = 1
3

∫ ∞

0
mnvv

2 dv, (9)

where nv dv = np dp is the number of particles per unit volume having speeds between v

and v + dv.
The function nv dv is dependent on the physical nature of the system being described.

In the case of an ideal gas, nv dv is the Maxwell–Boltzmann velocity distribution

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,

where n =
∫∞

0 nv dv is the particle number density. Substituting into the pressure integral
finally gives

Pg = nkT (10)

Since n ≡N/V , Eq. ( 10) is just the familiar ideal gas law.

In astrophysical applications it is often convenient to express the ideal gas law in an
alternative form. Since n is the particle number density, it is clear that it must be related to
the mass density of the gas. Allowing for a variety of particles of different masses, it is then
possible to express n as

n = ρ

m
,

where m is the average mass of a gas particle. Substituting, the ideal gas law becomes

Pg = ρkT

m
.

We now define a new quantity, the mean molecular weight, as

µ ≡ m

mH

,

where mH = 1.673532499 × 10−27 kg is the mass of the hydrogen atom. The mean molec-
ular weight is just the average mass of a free particle in the gas, in units of the mass of
hydrogen. The ideal gas law can now be written in terms of the mean molecular weight as

Pg = ρkT

µmH

. (11)

,
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Using	mean	molecular	weight	

The Ideal Gas Law in Terms of the Mean Molecular Weight

Equation ( 8) is valid for both massive and massless particles (such as photons) traveling
at any speed. For the special case of massive, nonrelativistic particles, we may use p = mv

to write the pressure integral as

P = 1
3

∫ ∞

0
mnvv

2 dv, (9)

where nv dv = np dp is the number of particles per unit volume having speeds between v

and v + dv.
The function nv dv is dependent on the physical nature of the system being described.

In the case of an ideal gas, nv dv is the Maxwell–Boltzmann velocity distribution

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,

where n =
∫∞

0 nv dv is the particle number density. Substituting into the pressure integral
finally gives

Pg = nkT (10)

Since n ≡N/V , Eq. ( 10) is just the familiar ideal gas law.

In astrophysical applications it is often convenient to express the ideal gas law in an
alternative form. Since n is the particle number density, it is clear that it must be related to
the mass density of the gas. Allowing for a variety of particles of different masses, it is then
possible to express n as

n = ρ

m
,

where m is the average mass of a gas particle. Substituting, the ideal gas law becomes

Pg = ρkT

m
.

We now define a new quantity, the mean molecular weight, as

µ ≡ m

mH

,

where mH = 1.673532499 × 10−27 kg is the mass of the hydrogen atom. The mean molec-
ular weight is just the average mass of a free particle in the gas, in units of the mass of
hydrogen. The ideal gas law can now be written in terms of the mean molecular weight as

Pg = ρkT

µmH

. (11)

,
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Special case: Isothermal gas If we assume further that the star is static, then the acceleration must be zero. In this case
Eq. (5) reduces to

dP

dr
= −G

Mrρ

r2
= −ρg, (6)

where g ≡ GMr/r2 is the local acceleration of gravity at radius r . Equation ( 6), the
condition of hydrostatic equilibrium, represents one of the fundamental equations of
stellar structure for spherically symmetric objects under the assumption that accelerations
are negligible. Equation ( 6) clearly indicates that in order for a star to be static, a pressure
gradient dP/dr must exist to counteract the force of gravity. It is not the pressure that
supports a star, but the change in pressure with radius. Furthermore, the pressure must
decrease with increasing radius; the pressure is necessarily larger in the interior than it is
near the surface.

Example 1.1. To obtain a very crude estimate of the pressure at the center of the
Sun, assume that Mr = 1 M⊙, r = 1 R⊙, and ρ = ρ⊙ = 1410 kg m−3 is the average solar
density Assume also that the surface pressure is exactly zero. Then, converting the
differential equation to a difference equation, the left hand side of Eq. ( 6) becomes

dP

dr
∼ Ps − Pc

Rs − 0
∼ − Pc

R⊙
,

where Pc is the central pressure, and Ps and Rs are the surface pressure and radius, respec-
tively. Substituting into the equation of hydrostatic equilibrium and solving for the central
pressure, we find

Pc ∼ G
M⊙ρ⊙

R⊙
∼ 2.7 × 1014 N m−2.

To obtain a more accurate value, we need to integrate the hydrostatic equilibrium equa-
tion from the surface to the center, taking into consideration the change in the interior mass
Mr at each point, together with the variation of density with radius ρr ≡ ρ(r), giving

∫ Pc

Ps

dP = Pc = −
∫ Rc

Rs

GMrρ

r2
dr.

Actually carrying out the integration requires functional forms of Mr and ρ. Unfortunately,
such explicit expressions are not available, implying that further relationships between such
quantities must be developed.

From a more rigorous calculation, a standard solar model gives a central pressure of
nearly 2.34 × 1016 N m−2. This value is much larger than the one obtained from our crude
estimate because of the increased density near the center of the Sun. As a reference, one
atmosphere of pressure is 1 atm = 1.013 × 105 N m−2; therefore, the more realistic model
predicts a central pressure of 2.3 × 1011 atm!

.
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The Ideal Gas Law in Terms of the Mean Molecular Weight

Equation ( 8) is valid for both massive and massless particles (such as photons) traveling
at any speed. For the special case of massive, nonrelativistic particles, we may use p = mv

to write the pressure integral as

P = 1
3

∫ ∞

0
mnvv

2 dv, (9)

where nv dv = np dp is the number of particles per unit volume having speeds between v

and v + dv.
The function nv dv is dependent on the physical nature of the system being described.

In the case of an ideal gas, nv dv is the Maxwell–Boltzmann velocity distribution

nv dv = n
( m

2πkT

)3/2
e−mv2/2kT 4πv2 dv,

where n =
∫∞

0 nv dv is the particle number density. Substituting into the pressure integral
finally gives

Pg = nkT (10)

Since n ≡N/V , Eq. ( 10) is just the familiar ideal gas law.

In astrophysical applications it is often convenient to express the ideal gas law in an
alternative form. Since n is the particle number density, it is clear that it must be related to
the mass density of the gas. Allowing for a variety of particles of different masses, it is then
possible to express n as

n = ρ

m
,

where m is the average mass of a gas particle. Substituting, the ideal gas law becomes

Pg = ρkT

m
.

We now define a new quantity, the mean molecular weight, as

µ ≡ m

mH

,

where mH = 1.673532499 × 10−27 kg is the mass of the hydrogen atom. The mean molec-
ular weight is just the average mass of a free particle in the gas, in units of the mass of
hydrogen. The ideal gas law can now be written in terms of the mean molecular weight as

Pg = ρkT

µmH

. (11)
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Hydrostatic	equilibrium:	

Ideal	gas	equation	of	state:	

If	T	independent	of	r	(isothermal):	 dP
dr

=
kT
µmH

dρ
dr

= −ρg

Which	is	a	first-order	differential	equation	with	a	simple	solution:	

ρ(r) = ρ0 exp(−r /H ) Where																																	is	the	density	scale	height		H = kT /µmHg

Base	density	at	r	=	0	 Similar	relation	holds	for	pressure	as	well	



Density scale height 

•  Esp.	useful	in	describing	the	stellar	atmosphere	
(not	the	interior,	unfortunately)	
• Pressure	and	density	both	drop	by	1/e=0.368	for	
each	increase	in	height	of	a	distance	H	
•  Scale	height	determines	the	“thickness”	of	the	
atmosphere	
• Hotter	atmosphere	has	a	larger	scale	height	
•  Larger	gravity	->	smaller	scale	height	

ρ(r) = ρ0 exp(−r /H ) H = kT /µmHg



Example: Earth’s atmosphere   
H = kT /µmHg

At	the	Earth’s	surface,	T	~	300	K,	g	=	9.8	m/s2,	but	what	is	μ?	

Earth	is	80%	molecular	nitrogen,	N2	

μ	≈	28	

H = kT /µmHg = (1.38×10
−23J /K )(300K ) / [28(1.67×10−27kg)(9.8m / s2 )]

≈	9.0	km	

See	homework	assignment	for	scale	height	in	the	Sun’s	photosphere	



Other equations of state 

•  Ideal	gas	law	is	pretty	good	for	stellar	atmosphere	and	
outer	layers	of	most	stars	(well,	“normal”	stars)	

•  In	the	stellar	interiors,	new	effects	can	come	into	play	
•  From	lecture	5,	photons	have	momentum																,	and	
light	itself	can	exert	pressure,	called	radiation	pressure	

•  Combining	both	ideal	gas	and	radiation	pressure	terms	

sufficiently low densities and velocities. In these limits both distribution functions become
indistinguishable from the classical Maxwell–Boltzmann distribution function.

The Contribution Due to Radiation Pressure

using an identity for the distribution function, np dp = nν dν, the general pressure integral,
Eq. ( 8), now describes the effect of radiation, giving

Prad = 1
3

∫ ∞

0
hνnν dν.

At this point, the problem again reduces to finding an appropriate expression for nν dν.
Since photons are bosons, the Bose–Einstein distribution function would apply. However,
the problem may also be solved by realizing that nν dν represents the number density of
photons having frequencies lying in the range between ν and ν + dν. Multiplying by the
energy of each photon in that range would then give the energy density over the frequency
interval, or

Prad = 1
3

∫ ∞

0
uν dν, (18)

where uν dν = hνnν dν. But the energy density distribution function is found from the
Planck function for blackbody radiation Substituting into Eq. ( 18) and performing the
integration lead to

Prad = 1
3
aT 4, (19)

where a is the radiation constant
In many astrophysical situations the pressure due to photons can actually exceed by a

significant amount the pressure produced by the gas. In fact it is possible that the magnitude
of the force due to radiation pressure can become sufficiently great that it surpasses the
gravitational force, resulting in an overall expansion of the system.

Combining both the ideal gas and radiation pressure terms, the total pressure becomes

Pt = ρkT

µmH

+ 1
3
aT 4. (20)

Example 2.1. Using the results of Example 1.1, we can estimate the central tem-
perature of the Sun. Neglecting the radiation pressure term, the central temperature is found

continued
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Because photons possess momentum pγ = hv /c, they are capable of delivering an 
 impulse to other particles during absorption or reflection. Consequently, electro-
magnetic radiation results in another form of pressure. It is instructive to rederive the 
 expression for radiation pressure by making use of the pressure integral. Substituting 
the speed of light for the velocity v, using the expression for photon momentum, and
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sufficiently low densities and velocities. In these limits both distribution functions become
indistinguishable from the classical Maxwell–Boltzmann distribution function.

The Contribution Due to Radiation Pressure

using an identity for the distribution function, np dp = nν dν, the general pressure integral,
Eq. ( 8), now describes the effect of radiation, giving

Prad = 1
3

∫ ∞

0
hνnν dν.

At this point, the problem again reduces to finding an appropriate expression for nν dν.
Since photons are bosons, the Bose–Einstein distribution function would apply. However,
the problem may also be solved by realizing that nν dν represents the number density of
photons having frequencies lying in the range between ν and ν + dν. Multiplying by the
energy of each photon in that range would then give the energy density over the frequency
interval, or

Prad = 1
3

∫ ∞

0
uν dν, (18)

where uν dν = hνnν dν. But the energy density distribution function is found from the
Planck function for blackbody radiation Substituting into Eq. ( 18) and performing the
integration lead to

Prad = 1
3
aT 4, (19)

where a is the radiation constant
In many astrophysical situations the pressure due to photons can actually exceed by a

significant amount the pressure produced by the gas. In fact it is possible that the magnitude
of the force due to radiation pressure can become sufficiently great that it surpasses the
gravitational force, resulting in an overall expansion of the system.

Combining both the ideal gas and radiation pressure terms, the total pressure becomes

Pt = ρkT

µmH

+ 1
3
aT 4. (20)

Example 2.1. Using the results of Example 1.1, we can estimate the central tem-
perature of the Sun. Neglecting the radiation pressure term, the central temperature is found
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magnetic radiation results in another form of pressure. It is instructive to rederive the 
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the speed of light for the velocity v, using the expression for photon momentum, and

���

sufficiently low densities and velocities. In these limits both distribution functions become
indistinguishable from the classical Maxwell–Boltzmann distribution function.

The Contribution Due to Radiation Pressure

using an identity for the distribution function, np dp = nν dν, the general pressure integral,
Eq. ( 8), now describes the effect of radiation, giving

Prad = 1
3

∫ ∞

0
hνnν dν.

At this point, the problem again reduces to finding an appropriate expression for nν dν.
Since photons are bosons, the Bose–Einstein distribution function would apply. However,
the problem may also be solved by realizing that nν dν represents the number density of
photons having frequencies lying in the range between ν and ν + dν. Multiplying by the
energy of each photon in that range would then give the energy density over the frequency
interval, or

Prad = 1
3

∫ ∞

0
uν dν, (18)

where uν dν = hνnν dν. But the energy density distribution function is found from the
Planck function for blackbody radiation Substituting into Eq. ( 18) and performing the
integration lead to

Prad = 1
3
aT 4, (19)

where a is the radiation constant
In many astrophysical situations the pressure due to photons can actually exceed by a

significant amount the pressure produced by the gas. In fact it is possible that the magnitude
of the force due to radiation pressure can become sufficiently great that it surpasses the
gravitational force, resulting in an overall expansion of the system.

Combining both the ideal gas and radiation pressure terms, the total pressure becomes

Pt = ρkT

µmH

+ 1
3
aT 4. (20)

Example 2.1. Using the results of Example 1.1, we can estimate the central tem-
perature of the Sun. Neglecting the radiation pressure term, the central temperature is found
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Because photons possess momentum pγ = hv /c, they are capable of delivering an 
 impulse to other particles during absorption or reflection. Consequently, electro-
magnetic radiation results in another form of pressure. It is instructive to rederive the 
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the speed of light for the velocity v, using the expression for photon momentum, and
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Other equations of state 

•  Ideal	gas	law	is	based	on	the	classical	Maxwell-
Boltzmann	statistics	
•  The	equation	of	state	will	be	very	different	when	
relativistic	and	quantum	effects	kick	in	
•  Important	in	extremely	dense	stars	like	white	
dwarfs	and	neutrons	stars	
•  Fermi-Dirac	statistics	for	fermions	
• Bose-Einstein	statistics	for	bosons	



Outstanding questions 

• What	supports	the	stars	(from	
collapsing)?	
• What	powers	the	stars?	
• What	determines	the	internal	structure	
of	the	stars?	



Stellar Energy Sources 

• Chemical	energy	
• Gravitational	energy	
• Nuclear	energy	
• A	key	to	the	evaluation	comes	from	two	
observables	
•  Solar	luminosity:	L	=	3.8	x	1026	J/s	
•  Age	of	the	Sun/solar	system:		
									~4.6	billion	years,	or	~1.45	x	1017	s	
•  Total	energy	available	should	be	at	least:		
									E	>	L	*	t	~	5.5	x	1043	J	



Chemical Energy 

• A	misconception:	the	Sun	is	a	“burning	fireball”	
• Burning	is	a	chemical	process	
•  Releases	energy	by	rearrangement	of	chemical	bonds,	
which	involves	bound	electrons	

•  If	every	atom	in	the	Sun	were	available	to	release,	
say,	10	eV	of	energy,	how	much	total	energy	would	
that	be?	

-  Total	number	of	hydrogen	atoms:	N	=	Msun/MH	=	1.989	x	
1030	kg	/	1.67	x	10-27	kg	~	1057	

-  Each	atom	can	release	10	eV	=	1.6	x	10-18	J		
-  Total	energy	available	is	1057	x	1.6	x	10-18	~	1.6	x	1039	J	
-  How	long	does	it	last?	t	=	E/L	=	1.6	x	1039	J	/	3.8	x	1026	J/s	

~	5	x	1012	s	~	170,000	years		
	



Gravitational Energy 

•  Star	can	contracts	over	time	->	reduce	its	
gravitational	potential	->	releases	gravitational	
potential	energy	
•  Is	the	gravitational	potential	energy	enough	to	
power	the	stars?	



Gravitation Potential Energy 
Gravitational	potential	energy	of	a	system	of	two	particles	

from the ideal gas law equation of state to be

Tc = PcµmH

ρk
.

Using ρ⊙, a value of µi = 0.62 appropriate for complete ionization, and the estimated
value for the central pressure, we find that

Tc ∼ 1.44 × 107 K

which is in reasonable agreement with more detailed calculations. One standard solar model
gives a central temperature of 1.57 × 107 K. At this temperature, the pressure due to
radiation is only 1.53 × 1013 N m−2, 0.065% of the gas pressure.

3 STELLAR ENERGY SOURCES

As we have already seen, the rate of energy output of stars (their luminosities) is very large.
However, the question of the source of that energy has not yet been addressed. Clearly, one
measure of the lifetime of a star must be related to how long it can sustain its power output.

Gravitation and the Kelvin–Helmholtz Timescale

One likely source of stellar energy is gravitational potential energy. tional potential
energy of a system of two particles is given by

U = −G
Mm

r
.

As the distance between M and m diminishes, the gravitational potential energy becomes
more negative, implying that energy must have been converted to other forms, such as
kinetic energy. If a star can manage to convert its gravitational potential energy into heat
and then radiate that heat into space, the star may be able to shine for a significant period

Calculating the gravitational potential energy of a star requires consideration of the
interaction between every possible pair of particles. This is not as difficult as it might first
seem. The gravitational force on a point mass dmi located outside of a spherically symmetric
mass Mr is

dFg,i = G
Mr dmi

r2

Since, as we will see in the next chapter, the Sun has already converted a significant amount of its core hydrogen
into helium via nuclear reactions, the actual value of µi is closer to 0.84.

2

The gravita
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of time. However, we must also remember that by the virial theorem the total energy of a 
system of particles in equilibrium is one-half of the system’s potential energy. Therefore, 
only one-half of the change in gravitational potential energy of a star is actually available 
to be radiated away; the remaining potential energy supplies the thermal energy that heats 
the star.
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Gravitational	force	on	a	point	mass	dmi	located	outside	of	a	spherically	
symmetric	mass	Mr	

from the ideal gas law equation of state to be

Tc = PcµmH

ρk
.

Using ρ⊙, a value of µi = 0.62 appropriate for complete ionization, and the estimated
value for the central pressure, we find that

Tc ∼ 1.44 × 107 K

which is in reasonable agreement with more detailed calculations. One standard solar model
gives a central temperature of 1.57 × 107 K. At this temperature, the pressure due to
radiation is only 1.53 × 1013 N m−2, 0.065% of the gas pressure.

3 STELLAR ENERGY SOURCES

As we have already seen, the rate of energy output of stars (their luminosities) is very large.
However, the question of the source of that energy has not yet been addressed. Clearly, one
measure of the lifetime of a star must be related to how long it can sustain its power output.

Gravitation and the Kelvin–Helmholtz Timescale

One likely source of stellar energy is gravitational potential energy. tional potential
energy of a system of two particles is given by

U = −G
Mm

r
.

As the distance between M and m diminishes, the gravitational potential energy becomes
more negative, implying that energy must have been converted to other forms, such as
kinetic energy. If a star can manage to convert its gravitational potential energy into heat
and then radiate that heat into space, the star may be able to shine for a significant period

Calculating the gravitational potential energy of a star requires consideration of the
interaction between every possible pair of particles. This is not as difficult as it might first
seem. The gravitational force on a point mass dmi located outside of a spherically symmetric
mass Mr is

dFg,i = G
Mr dmi

r2

Since, as we will see in the next chapter, the Sun has already converted a significant amount of its core hydrogen
into helium via nuclear reactions, the actual value of µi is closer to 0.84.
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of time. However, we must also remember that by the virial theorem the total energy of a 
system of particles in equilibrium is one-half of the system’s potential energy. Therefore, 
only one-half of the change in gravitational potential energy of a star is actually available 
to be radiated away; the remaining potential energy supplies the thermal energy that heats 
the star.
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The	corresponding	gravitational	potential	energy	of	the	point	mass	is	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius

continued

The Interiors of Stars

���



Gravitational Potential Energy 

Now	consider	point	masses	are	distributed	uniformly	within	a	shell	of	
thickness	dr	and	mass	dm	outside	a	spherically	symmetric	mass	Mr	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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The	corresponding	gravitational	potential	energy	of	this	shell	is	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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Integrating	over	all	mass	shells	from	the	center	of	the	star	to	the	surface,	the	
total	gravitational	potential	energy	is	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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Gravitational Potential Energy 
An	exact	calculation	requires	knowledge	of	how	ρ	and	subsequently	Mr	depend	
on	r.	For	simplicity,	let’s	assume	ρ	is	constant	and	equal	to	its	average	value:	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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M	is	the	total	mass	of	the	star.	

Now	we	may	approximate	Mr	as		

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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Plug	in	the	integral		

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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We	have	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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Gravitational Potential Energy 
•  Applying	the	virial	theorem:	When	a	system	is	in	one	
equilibrium	state	and	changes	to	another	equilibrium	state,	
the	difference	in	potential	energy	goes	equally	into	1)	the	
mechanical	energy	of	the	system	and	2)	energy	loss	via	
radiation	or	other	loss	mechanisms.	

Total	potential	energy:	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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Total	mechanical	energy	of	the	star:	

and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

dUg,i = −G
Mr dmi

r
.

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dmi), then

dm = 4πr2ρ dr,

where ρ is the mass density of the shell and 4πr2 dr is its volume. Thus

dUg = −G
Mr4πr2ρ

r
dr.

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

Ug = −4πG

∫ R

0
Mrρr dr, (21)

where R is the radius of the star.
An exact calculation of Ug requires knowledge of how ρ, and consequently Mr , depend

on r . Nevertheless, an approximate value can be obtained by assuming that ρ is constant
and equal to its average value, or

ρ ∼ ρ = M
4
3πR3

,

M being the total mass of the star. Now we may also approximate Mr as

Mr ∼ 4
3
πr3ρ.

If we substitute into Eq. (21), the total gravitational potential energy becomes

Ug ∼ −16π2

15
Gρ2R5 ∼ −3

5
GM2

R
. (22)

Lastly, applying the virial theorem, the total mechanical energy of the star is

E ∼ − 3
10

GM2

R
. (23)

Example 3.1. If the Sun were originally much larger than it is today, how much en-
ergy would have been liberated in its gravitational collapse?Assuming that its original radius
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Kevin-Helmholtz Timescale 

•  If	the	Sun	were	originally	much	larger	than	it	is	
today,	how	much	total	energy	would	have	been	
liberated	in	its	gravitational	collapse?	How	long	
does	it	take?	

Original	radius	Ri	>>	Rf:	
was Ri , where Ri ≫ 1 R⊙, then the energy radiated away during collapse would be

!Eg = −
(

Ef − Ei

)

≃ −Ef ≃ 3
10

GM2
⊙

R⊙
≃ 1.1 × 1041 J.

Assuming also that the luminosity of the Sun has been roughly constant throughout its
lifetime, it could emit energy at that rate for approximately

tKH = !Eg

L⊙
(24)

∼ 107 yr.

tKH is known as the Kelvin–Helmholtz timescale. Based on radioactive dating techniques,
however, the estimated age of rocks on the Moon’s surface is over 4 × 109 yr. It seems
unlikely that the age of the Sun is less than the age of the Moon! Therefore, gravitational
potential energy alone cannot account for the Sun’s luminosity throughout its entire lifetime.
As we shall see in later chapters, however, gravitational energy can play an important role
during some phases of the evolution of stars.

Another possible energy source involves chemical processes. However, since chemical
reactions are based on the interactions of orbital electrons in atoms, the amount of energy
available to be released per atom is not likely to be more than 1–10 electron volts, typical

The Nuclear Timescale

The nuclei of atoms may also be considered as sources of energy. Whereas electron orbits
involve energies in the electron volt (eV) range, nuclear processes generally involve energies
millions of times larger (MeV). Just as chemical reactions can result in the transformation
of atoms into molecules or one kind of molecule into another, nuclear reactions change one
type of nucleus into another.

The nucleus of a particular element is specified by the number of protons, Z, it contains
(not to be confused with the mass fraction of metals), with each proton carrying a charge of
+e. Obviously, in a neutral atom the number of protons must exactly equal the number of
orbital electrons. An isotope of a given element is identified by the number of neutrons, N ,
in the nucleus, with neutrons being electrically neutral, as the name implies. (All isotopes
of a given element have the same number of protons.) Collectively, protons and neutrons
are referred to as nucleons, the number of nucleons in a particular isotope being A =
Z + N . Since protons and neutrons have very similar masses and greatly exceed the mass
of electrons, A is a good indication of the mass of the isotope and is often referred to as the

The Interiors of Stars

of the atomic energy levels in hydrogen and helium. Given the number of atoms present in 
a star, the amount of chemical energy available is also far too low to account for the Sun’s 
luminosity over a reasonable period of time.
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Assuming	the	luminosity	is	constant	throughout	the	lifetime:	

was Ri , where Ri ≫ 1 R⊙, then the energy radiated away during collapse would be

!Eg = −
(

Ef − Ei

)

≃ −Ef ≃ 3
10

GM2
⊙

R⊙
≃ 1.1 × 1041 J.

Assuming also that the luminosity of the Sun has been roughly constant throughout its
lifetime, it could emit energy at that rate for approximately

tKH = !Eg

L⊙
(24)

∼ 107 yr.

tKH is known as the Kelvin–Helmholtz timescale. Based on radioactive dating techniques,
however, the estimated age of rocks on the Moon’s surface is over 4 × 109 yr. It seems
unlikely that the age of the Sun is less than the age of the Moon! Therefore, gravitational
potential energy alone cannot account for the Sun’s luminosity throughout its entire lifetime.
As we shall see in later chapters, however, gravitational energy can play an important role
during some phases of the evolution of stars.

Another possible energy source involves chemical processes. However, since chemical
reactions are based on the interactions of orbital electrons in atoms, the amount of energy
available to be released per atom is not likely to be more than 1–10 electron volts, typical

The Nuclear Timescale

The nuclei of atoms may also be considered as sources of energy. Whereas electron orbits
involve energies in the electron volt (eV) range, nuclear processes generally involve energies
millions of times larger (MeV). Just as chemical reactions can result in the transformation
of atoms into molecules or one kind of molecule into another, nuclear reactions change one
type of nucleus into another.

The nucleus of a particular element is specified by the number of protons, Z, it contains
(not to be confused with the mass fraction of metals), with each proton carrying a charge of
+e. Obviously, in a neutral atom the number of protons must exactly equal the number of
orbital electrons. An isotope of a given element is identified by the number of neutrons, N ,
in the nucleus, with neutrons being electrically neutral, as the name implies. (All isotopes
of a given element have the same number of protons.) Collectively, protons and neutrons
are referred to as nucleons, the number of nucleons in a particular isotope being A =
Z + N . Since protons and neutrons have very similar masses and greatly exceed the mass
of electrons, A is a good indication of the mass of the isotope and is often referred to as the

The Interiors of Stars

of the atomic energy levels in hydrogen and helium. Given the number of atoms present in 
a star, the amount of chemical energy available is also far too low to account for the Sun’s 
luminosity over a reasonable period of time.
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This	is	known	as	the	Kelvin-Helmholtz	timescale	

Too	short	to	account	for	the	age	of	the	Sun,	but	
important	during	some	phases	of	stellar	evolution.	



Nuclear Energy 
•  The	real	energy	source	of	stars	is	nuclear	energy	
• While	chemical	processes/transitions	of	electrons	
in	atoms	are	of	the	order	of	10	eV,	nuclear	
processes	involve	energies	millions	of	times	larger	
(at	the	order	of	MeV)	
• A	few	definitions:	

•  Elements	are	specified	by	atomic	number	Z	(number	of	
protons)	

•  Isotopes	of	a	given	element	are	identified	by	weight	A	=	
Z	+	N,	where	number	of	neutrons	N	varies	

•  E.g.,	hydrogen	has	three	isotopes,	1H	(1	p),	2H	=	
deuterium	(1	p	+	1	n),	3H	=	tritium	(1	p	and	2	n)	



Nuclear Energy 

•  Energy	contained	in	the	nucleus	is	given	by	
Einstein’s	famous	equation	

• Rest	mass	of	proton,	neutron,	and	electron	

E =mc2 Where	m	is	the	rest	mass	

mass number. The masses of the proton, neutron, and electron are, respectively,

mp = 1.67262158 × 10−27 kg = 1.00727646688 u

mn = 1.67492716 × 10−27 kg = 1.00866491578 u

me = 9.10938188 × 10−31 kg = 0.0005485799110 u.

It is often convenient to express the masses of nuclei in terms of atomic mass units;
1 u = 1.66053873 × 10−27 kg, exactly one-twelfth the mass of the isotope carbon-12. The
masses of nuclear particles are also frequently expressed in terms of their rest mass energies,
in units of MeV. Using Einstein’s E = mc2, we find 1 u = 931.494013 MeV/c2. When
masses are expressed simply in terms of rest mass energies, as is often the case, the factor
c2 is implicitly assumed.

The simplest isotope of hydrogen is composed of one proton and one electron and has a
mass of mH = 1.00782503214 u. This mass is actually very slightly less than the combined
masses of the proton and electron taken separately. In fact, if the atom is in its ground state,
the exact mass difference is 13.6 eV, which is just its ionization potential. Since mass is
equivalent to a corresponding amount of energy, and the total mass–energy of the system
must be conserved, any loss in energy when the electron and proton combine to form an
atom must come at the expense of a loss in total mass.

Similarly, energy is also released with an accompanying loss in mass when nucleons
are combined to form atomic nuclei. A helium nucleus, composed of two protons and
two neutrons, can be formed by a series of nuclear reactions originally involving four
hydrogen nuclei (i.e., 4H → He + low mass remnants). Such reactions are known as fusion
reactions, since lighter particles are “fused” together to form a heavier particle. (Conversely,
a fission reaction occurs when a massive nucleus is split into smaller fragments.) The
total mass of the four hydrogen atoms is 4.03130013 u, whereas the mass of one helium
atom is mHe = 4.002603 u. Neglecting the contribution of low-mass remnants such as
neutrinos, the combined mass of the hydrogen atoms exceeds the mass of the helium atom
by !m = 0.028697 u, or 0.7%. Therefore, the total amount of energy released in forming
the helium nucleus is Eb= !mc2 = 26.731 MeV. This is known as the binding energy of
the helium nucleus. If the nucleus were to be broken apart into its constituent protons and
neutrons, the amount of energy required to accomplish the task would be 26.731 MeV.

Example 3.2. Is this source of nuclear energy sufficient to power the Sun during its
lifetime? For simplicity, assume also that the Sun was originally 100% hydrogen and that
only the inner 10% of the Sun’s mass becomes hot enough to convert hydrogen into helium.

Since 0.7% of the mass of hydrogen would be converted to energy in forming a helium
nucleus, the amount of nuclear energy available in the Sun would be

Enuclear = 0.1 × 0.007 × M⊙c2 = 1.3 × 1044 J.
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mass number. The masses of the proton, neutron, and electron are, respectively,

mp = 1.67262158 × 10−27 kg = 1.00727646688 u

mn = 1.67492716 × 10−27 kg = 1.00866491578 u

me = 9.10938188 × 10−31 kg = 0.0005485799110 u.

It is often convenient to express the masses of nuclei in terms of atomic mass units;
1 u = 1.66053873 × 10−27 kg, exactly one-twelfth the mass of the isotope carbon-12. The
masses of nuclear particles are also frequently expressed in terms of their rest mass energies,
in units of MeV. Using Einstein’s E = mc2, we find 1 u = 931.494013 MeV/c2. When
masses are expressed simply in terms of rest mass energies, as is often the case, the factor
c2 is implicitly assumed.

The simplest isotope of hydrogen is composed of one proton and one electron and has a
mass of mH = 1.00782503214 u. This mass is actually very slightly less than the combined
masses of the proton and electron taken separately. In fact, if the atom is in its ground state,
the exact mass difference is 13.6 eV, which is just its ionization potential. Since mass is
equivalent to a corresponding amount of energy, and the total mass–energy of the system
must be conserved, any loss in energy when the electron and proton combine to form an
atom must come at the expense of a loss in total mass.

Similarly, energy is also released with an accompanying loss in mass when nucleons
are combined to form atomic nuclei. A helium nucleus, composed of two protons and
two neutrons, can be formed by a series of nuclear reactions originally involving four
hydrogen nuclei (i.e., 4H → He + low mass remnants). Such reactions are known as fusion
reactions, since lighter particles are “fused” together to form a heavier particle. (Conversely,
a fission reaction occurs when a massive nucleus is split into smaller fragments.) The
total mass of the four hydrogen atoms is 4.03130013 u, whereas the mass of one helium
atom is mHe = 4.002603 u. Neglecting the contribution of low-mass remnants such as
neutrinos, the combined mass of the hydrogen atoms exceeds the mass of the helium atom
by !m = 0.028697 u, or 0.7%. Therefore, the total amount of energy released in forming
the helium nucleus is Eb= !mc2 = 26.731 MeV. This is known as the binding energy of
the helium nucleus. If the nucleus were to be broken apart into its constituent protons and
neutrons, the amount of energy required to accomplish the task would be 26.731 MeV.

Example 3.2. Is this source of nuclear energy sufficient to power the Sun during its
lifetime? For simplicity, assume also that the Sun was originally 100% hydrogen and that
only the inner 10% of the Sun’s mass becomes hot enough to convert hydrogen into helium.

Since 0.7% of the mass of hydrogen would be converted to energy in forming a helium
nucleus, the amount of nuclear energy available in the Sun would be

Enuclear = 0.1 × 0.007 × M⊙c2 = 1.3 × 1044 J.
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is	the	atomic	mass	unit,	1/12	of	the	mass	of	carbon	12	



Nuclear Energy 

• When	protons	and	neutrons	are	combined	into	nucleus,	the	
total	mass	is	slightly	less.	The	difference	accounts	for	the	
nuclear	binding	energy	
•  The	binding	energy	is	the	energy	required	to	split	the	
nucleus	into	its	constituent	parts	
• When	lighter	atoms	combine	into	larger	atoms,	sometimes	
their	combined	mass	gets	smaller,	and	releases	energy,	
known	as	atomic	fusion	
•  The	total	mass	of	four	1H	atoms	is	4.031280	u	
•  After	fusion	into	helium,	the								atom	is	4.002603	u,	0.7%	
smaller	in	mass	
•  Difference	in	mass	dm	=	0.028677	u,	which	corresponds	to	a	
energy	release	dE	=	dmc2	=	26.71	MeV	

2
4He



Nuclear Energy 

• How	long	(in	years)	will	the	Sun	last	if	it	shines	at	its	
current	rate	and	converts	10%	of	its	mass	from	
hydrogen	to	helium	in	nuclear	fusion?	

Msun	=	1.99	x	1030	kg;	c	=	2.998	x	108	m/s;	1	yr	=	3.15576	x	107	s	

mass number. The masses of the proton, neutron, and electron are, respectively,

mp = 1.67262158 × 10−27 kg = 1.00727646688 u

mn = 1.67492716 × 10−27 kg = 1.00866491578 u

me = 9.10938188 × 10−31 kg = 0.0005485799110 u.

It is often convenient to express the masses of nuclei in terms of atomic mass units;
1 u = 1.66053873 × 10−27 kg, exactly one-twelfth the mass of the isotope carbon-12. The
masses of nuclear particles are also frequently expressed in terms of their rest mass energies,
in units of MeV. Using Einstein’s E = mc2, we find 1 u = 931.494013 MeV/c2. When
masses are expressed simply in terms of rest mass energies, as is often the case, the factor
c2 is implicitly assumed.

The simplest isotope of hydrogen is composed of one proton and one electron and has a
mass of mH = 1.00782503214 u. This mass is actually very slightly less than the combined
masses of the proton and electron taken separately. In fact, if the atom is in its ground state,
the exact mass difference is 13.6 eV, which is just its ionization potential. Since mass is
equivalent to a corresponding amount of energy, and the total mass–energy of the system
must be conserved, any loss in energy when the electron and proton combine to form an
atom must come at the expense of a loss in total mass.

Similarly, energy is also released with an accompanying loss in mass when nucleons
are combined to form atomic nuclei. A helium nucleus, composed of two protons and
two neutrons, can be formed by a series of nuclear reactions originally involving four
hydrogen nuclei (i.e., 4H → He + low mass remnants). Such reactions are known as fusion
reactions, since lighter particles are “fused” together to form a heavier particle. (Conversely,
a fission reaction occurs when a massive nucleus is split into smaller fragments.) The
total mass of the four hydrogen atoms is 4.03130013 u, whereas the mass of one helium
atom is mHe = 4.002603 u. Neglecting the contribution of low-mass remnants such as
neutrinos, the combined mass of the hydrogen atoms exceeds the mass of the helium atom
by !m = 0.028697 u, or 0.7%. Therefore, the total amount of energy released in forming
the helium nucleus is Eb= !mc2 = 26.731 MeV. This is known as the binding energy of
the helium nucleus. If the nucleus were to be broken apart into its constituent protons and
neutrons, the amount of energy required to accomplish the task would be 26.731 MeV.

Example 3.2. Is this source of nuclear energy sufficient to power the Sun during its
lifetime? For simplicity, assume also that the Sun was originally 100% hydrogen and that
only the inner 10% of the Sun’s mass becomes hot enough to convert hydrogen into helium.

Since 0.7% of the mass of hydrogen would be converted to energy in forming a helium
nucleus, the amount of nuclear energy available in the Sun would be

Enuclear = 0.1 × 0.007 × M⊙c2 = 1.3 × 1044 J.
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This gives a nuclear timescale of approximately

tnuclear = Enuclear

L⊙
(25)

∼ 1010 yr,

more than enough time to account for the age of Moon rocks.

Quantum Mechanical Tunneling

Apparently, sufficient energy is available in the nuclei of atoms to provide a source for stellar
luminosities, but can nuclear reactions actually occur in the interiors of stars? For a reaction
to occur, the nuclei of atoms must collide, forming new nuclei in the process. However,
all nuclei are positively charged, meaning that a Coulomb potential energy barrier must
be overcome before contact can occur. Figure 4 shows the characteristic shape of the
potential energy curve that an atomic nucleus would experience when approaching another
nucleus. The curve is composed of two parts: The portion outside of the nucleus is the
potential energy that exists between two positively charged nuclei, and the portion inside
the nucleus forms a potential well governed by the strong nuclear force that binds the
nucleus together. The strong nuclear force is a very short-range force that acts between all
nucleons within the atom. It is an attractive force that dominates the Coulomb repulsion
between protons. Clearly, if such a force did not exist, a nucleus would immediately fly
apart.
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FIGURE 4 The potential energy curve characteristic of nuclear reactions. The Coulomb repul-
sion between positive nuclei results in a barrier that is inversely proportional to the separation between
nuclei and is proportional to the product of their charges. The nuclear potential well inside the nucleus
is due to the attractive strong nuclear force.
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Nuclear	timescale.	Enough	to	account	for	the	
age	of	Moon	rocks	



How does nuclear fusion occur? 

This gives a nuclear timescale of approximately

tnuclear = Enuclear

L⊙
(25)

∼ 1010 yr,

more than enough time to account for the age of Moon rocks.

Quantum Mechanical Tunneling

Apparently, sufficient energy is available in the nuclei of atoms to provide a source for stellar
luminosities, but can nuclear reactions actually occur in the interiors of stars? For a reaction
to occur, the nuclei of atoms must collide, forming new nuclei in the process. However,
all nuclei are positively charged, meaning that a Coulomb potential energy barrier must
be overcome before contact can occur. Figure 4 shows the characteristic shape of the
potential energy curve that an atomic nucleus would experience when approaching another
nucleus. The curve is composed of two parts: The portion outside of the nucleus is the
potential energy that exists between two positively charged nuclei, and the portion inside
the nucleus forms a potential well governed by the strong nuclear force that binds the
nucleus together. The strong nuclear force is a very short-range force that acts between all
nucleons within the atom. It is an attractive force that dominates the Coulomb repulsion
between protons. Clearly, if such a force did not exist, a nucleus would immediately fly
apart.

0 2 4 6 8 10 12

r (fm)

Deuterium binding energy –2.22 MeV

Strong nuclear potential well (approx –30 MeV)

–3

–2

–1

0

1

2

U
(r

) (
M

eV
)

Coulomb repulsion (1/r)

p-p interaction

FIGURE 4 The potential energy curve characteristic of nuclear reactions. The Coulomb repul-
sion between positive nuclei results in a barrier that is inversely proportional to the separation between
nuclei and is proportional to the product of their charges. The nuclear potential well inside the nucleus
is due to the attractive strong nuclear force.
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•  The	lighter	nucleus	have	to	get	(very)	
close	enough	to	become	a	heavier	
nucleus	

•  Say	two	hydrogen	nucleus	wants	to	
collide	and	form	a	deuterium	nucleus	

•  Both	of	the	protons	have	positive	charges	
•  They	have	to	overcome	the	strong	

Coulomb	barrier	–electric	potential	
energy	before	it	reaches	the	region	
where	the	strong	nuclear	force	is	in	
charge.	The	potential	energy	goes	as	~1/r	

•  If	the	energy	required	comes	from	the	
thermal	energy	of	the	gas	

If we assume that the energy required to overcome the Coulomb barrier is provided by
the thermal energy of the gas, and that all nuclei are moving nonrelativistically, then the
temperature Tclassical required to overcome the barrier can be estimated. Since all of the
particles in the gas are in random motion, it is appropriate to refer to the relative velocity
v between two nuclei and their reduced mass, µm (note that we are not referring here to
the mean molecular weight, µ). Equating the initial kinetic energy of the reduced mass to
the potential energy of the barrier gives the position of the classical “turn-around point.”
Now, using Eq. ( 17) yields

1
2
µmv2 = 3

2
kTclassical = 1

4πϵ0

Z1Z2e
2

r
,

where Tclassical denotes the temperature required for an average particle to overcome the
barrier, Z1 and Z2 are the numbers of protons in each nucleus, and r is their distance of
separation. Assuming that the radius of a typical nucleus is on the order of 1 fm = 10−15 m,
the temperature needed to overcome the Coulomb potential energy barrier is approximately

Tclassical = Z1Z2e
2

6πϵ0kr
(26)

∼ 1010 K

for a collision between two protons (Z1 = Z2 = 1). However, the central temperature of the
Sun is only 1.57 × 107 K, much lower than required here. Even taking into consideration
the fact that the Maxwell–Boltzmann distribution indicates that a significant number of
particles have speeds well in excess of the average speed of particles in the gas, classical
physics is unable to explain how a sufficient number of particles can overcome the Coulomb
barrier to produce the Sun’s observed luminosity.

uantum mechanics tells us that it is never possible
to know both the position and the momentum of a particle to unlimited accuracy. The
Heisenberg uncertainty principle states that the uncertainties in position and momentum
are related by

#x#px ≥ !

2
.

The uncertainty in the position of one proton colliding with another may be so large that even
though the kinetic energy of the collision is insufficient to overcome the classical Coulomb
barrier, one proton might nevertheless find itself within the central potential well defined by
the strong force of the other.This quantum mechanical tunneling hasnoclassicalcounterpart.  

As a crude estimate of the effect of tunneling on the temperature necessary to sus-
tain nuclear reactions, assume that a proton must be within approximately one de Broglie
wavelength of its target in order to tunnel through the Coulomb barrier. Recalling that the

Q
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Of course, the greater the ratio of the potential energy barrier height to the particle’s kinetic 
energy or the wider the barrier, the less likely tunneling becomes.
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If we assume that the energy required to overcome the Coulomb barrier is provided by
the thermal energy of the gas, and that all nuclei are moving nonrelativistically, then the
temperature Tclassical required to overcome the barrier can be estimated. Since all of the
particles in the gas are in random motion, it is appropriate to refer to the relative velocity
v between two nuclei and their reduced mass, µm (note that we are not referring here to
the mean molecular weight, µ). Equating the initial kinetic energy of the reduced mass to
the potential energy of the barrier gives the position of the classical “turn-around point.”
Now, using Eq. ( 17) yields
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kTclassical = 1
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,

where Tclassical denotes the temperature required for an average particle to overcome the
barrier, Z1 and Z2 are the numbers of protons in each nucleus, and r is their distance of
separation. Assuming that the radius of a typical nucleus is on the order of 1 fm = 10−15 m,
the temperature needed to overcome the Coulomb potential energy barrier is approximately

Tclassical = Z1Z2e
2

6πϵ0kr
(26)

∼ 1010 K

for a collision between two protons (Z1 = Z2 = 1). However, the central temperature of the
Sun is only 1.57 × 107 K, much lower than required here. Even taking into consideration
the fact that the Maxwell–Boltzmann distribution indicates that a significant number of
particles have speeds well in excess of the average speed of particles in the gas, classical
physics is unable to explain how a sufficient number of particles can overcome the Coulomb
barrier to produce the Sun’s observed luminosity.

uantum mechanics tells us that it is never possible
to know both the position and the momentum of a particle to unlimited accuracy. The
Heisenberg uncertainty principle states that the uncertainties in position and momentum
are related by

#x#px ≥ !

2
.

The uncertainty in the position of one proton colliding with another may be so large that even
though the kinetic energy of the collision is insufficient to overcome the classical Coulomb
barrier, one proton might nevertheless find itself within the central potential well defined by
the strong force of the other.This quantum mechanical tunneling has noclassicalcounterpart.  

As a crude estimate of the effect of tunneling on the temperature necessary to sus-
tain nuclear reactions, assume that a proton must be within approximately one de Broglie
wavelength of its target in order to tunnel through the Coulomb barrier. Recalling that the
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If we assume that the energy required to overcome the Coulomb barrier is provided by
the thermal energy of the gas, and that all nuclei are moving nonrelativistically, then the
temperature Tclassical required to overcome the barrier can be estimated. Since all of the
particles in the gas are in random motion, it is appropriate to refer to the relative velocity
v between two nuclei and their reduced mass, µm (note that we are not referring here to
the mean molecular weight, µ). Equating the initial kinetic energy of the reduced mass to
the potential energy of the barrier gives the position of the classical “turn-around point.”
Now, using Eq. ( 17) yields
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kTclassical = 1
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where Tclassical denotes the temperature required for an average particle to overcome the
barrier, Z1 and Z2 are the numbers of protons in each nucleus, and r is their distance of
separation. Assuming that the radius of a typical nucleus is on the order of 1 fm = 10−15 m,
the temperature needed to overcome the Coulomb potential energy barrier is approximately

Tclassical = Z1Z2e
2

6πϵ0kr
(26)

∼ 1010 K

for a collision between two protons (Z1 = Z2 = 1). However, the central temperature of the
Sun is only 1.57 × 107 K, much lower than required here. Even taking into consideration
the fact that the Maxwell–Boltzmann distribution indicates that a significant number of
particles have speeds well in excess of the average speed of particles in the gas, classical
physics is unable to explain how a sufficient number of particles can overcome the Coulomb
barrier to produce the Sun’s observed luminosity.

uantum mechanics tells us that it is never possible
to know both the position and the momentum of a particle to unlimited accuracy. The
Heisenberg uncertainty principle states that the uncertainties in position and momentum
are related by

#x#px ≥ !

2
.

The uncertainty in the position of one proton colliding with another may be so large that even
though the kinetic energy of the collision is insufficient to overcome the classical Coulomb
barrier, one proton might nevertheless find itself within the central potential well defined by
the strong force of the other.This quantum mechanical tunneling hasnoclassicalcounterpart.  

As a crude estimate of the effect of tunneling on the temperature necessary to sus-
tain nuclear reactions, assume that a proton must be within approximately one de Broglie
wavelength of its target in order to tunnel through the Coulomb barrier. Recalling that the

Q

The Interiors of Stars

Of course, the greater the ratio of the potential energy barrier height to the particle’s kinetic 
energy or the wider the barrier, the less likely tunneling becomes.

���

r	~	1	fm	=	10-15	m	

Femtometer	

Temperature	at	the	core	of	the	Sun	~	1.6	x	107	K	 Way	smaller!	



Quantum Mechanical Tunneling 

•  Quantum	physics	is	the	savior!	
•  Heisenberg’s	uncertainty	principle	
says	the	position	of	a	particle	is	
uncertain	

•  de	Broglie	says	matter	particles	can	
also	display	wave	properties		

•  Our	proton	can	be	found	inside	the	
Coulomb	barrier	even	if	the	kinetic	
energy	is	insufficient,	just	with	some	
probability	—	quantum	mechanical	
tunneling		

If we assume that the energy required to overcome the Coulomb barrier is provided by
the thermal energy of the gas, and that all nuclei are moving nonrelativistically, then the
temperature Tclassical required to overcome the barrier can be estimated. Since all of the
particles in the gas are in random motion, it is appropriate to refer to the relative velocity
v between two nuclei and their reduced mass, µm (note that we are not referring here to
the mean molecular weight, µ). Equating the initial kinetic energy of the reduced mass to
the potential energy of the barrier gives the position of the classical “turn-around point.”
Now, using Eq. ( 17) yields

1
2
µmv2 = 3

2
kTclassical = 1

4πϵ0

Z1Z2e
2

r
,

where Tclassical denotes the temperature required for an average particle to overcome the
barrier, Z1 and Z2 are the numbers of protons in each nucleus, and r is their distance of
separation. Assuming that the radius of a typical nucleus is on the order of 1 fm = 10−15 m,
the temperature needed to overcome the Coulomb potential energy barrier is approximately

Tclassical = Z1Z2e
2

6πϵ0kr
(26)

∼ 1010 K

for a collision between two protons (Z1 = Z2 = 1). However, the central temperature of the
Sun is only 1.57 × 107 K, much lower than required here. Even taking into consideration
the fact that the Maxwell–Boltzmann distribution indicates that a significant number of
particles have speeds well in excess of the average speed of particles in the gas, classical
physics is unable to explain how a sufficient number of particles can overcome the Coulomb
barrier to produce the Sun’s observed luminosity.

uantum mechanics tells us that it is never possible
to know both the position and the momentum of a particle to unlimited accuracy. The
Heisenberg uncertainty principle states that the uncertainties in position and momentum
are related by

#x#px ≥ !

2
.

The uncertainty in the position of one proton colliding with another may be so large that even
though the kinetic energy of the collision is insufficient to overcome the classical Coulomb
barrier, one proton might nevertheless find itself within the central potential well defined by
the strong force of the other.This quantum mechanical tunneling hasnoclassicalcounterpart.  

As a crude estimate of the effect of tunneling on the temperature necessary to sus-
tain nuclear reactions, assume that a proton must be within approximately one de Broglie
wavelength of its target in order to tunnel through the Coulomb barrier. Recalling that the
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wavelength of a massive particle is given by λ = h/p rewriting the kinetic energy in
terms of momentum,

1
2
µmv2 = p2

2µm

,

and setting the distance of closest approach equal to one wavelength (where the potential
energy barrier height is equal to the original kinetic energy) give

1
4πϵ0

Z1Z2e
2

λ
= p2

2µm

= (h/λ)2

2µm

.

Solving for λ and substituting r = λ into Eq. ( 26), we find the quantum mechanical
estimate of the temperature required for a reaction to occur:

Tquantum = Z2
1Z

2
2e

4µm

12π2ϵ2
0h

2k
. (27)

Again assuming the collision of two protons, µm = mp/2 and Z1 = Z2 = 1. Substituting,
we find that Tquantum ∼ 107 K. In this case, if we assume the effects of quantum mechan-
ics, the temperature required for nuclear reactions is consistent with the estimated central
temperature of the Sun.

Nuclear Reaction Rates and the Gamow Peak

Now that the possibility of a nuclear energy source has been established, we need a more
detailed description of nuclear reaction rates in order to apply them to the development of
stellar models. For instance, not all particles in a gas of temperature T will have sufficient
kinetic energy and the necessary wavelength to tunnel through the Coulomb barrier suc-
cessfully. Consequently, the reaction rate per energy interval must be described in terms
of the number density of particles having energies within a specific range, combined with
the probability that those particles can actually tunnel through the Coulomb barrier of the
target nucleus. The total nuclear reaction rate is then integrated over all possible energies.

that particles are initially sufficiently far apart that the potential energy may be neglected,
the nonrelativistic kinetic energy relation describes the total energy of the particles, or
K = E = µmv2/2. Solving for the velocity and substituting, we can write the Maxwell–
Boltzmann distribution in terms of the number of particles with kinetic energies between
E and E + dE as

nE dE = 2n

π1/2

1
(kT )3/2

E1/2e−E/kT dE (28)

In astrophysical processes, nuclei are usually nonrelativistic, except in the extreme environment of neutron stars.
Because of the much smaller masses of electrons, it cannot be assumed that they are also nonrelativistic, however.

,

4
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First consider the number density of nuclei within a specified energy interval.  
As we have seen, the Maxwell–Boltzmann distribution relates the number density of 
particles with velocities between v and v + d  v to the temperature of the gas. Assuming
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Nuclear Fusion: Quantum Effects 
Assume	that	a	proton	can	be	within	approximately	one	de	Broglie	wavelength	of	its	
target	in	order	to	tunnel	through	the	barrier:		
	

Rewrite	the	kinetic	energy	in	terms	of	momentum	

wavelength of a massive particle is given by λ = h/p rewriting the kinetic energy in
terms of momentum,

1
2
µmv2 = p2

2µm

,

and setting the distance of closest approach equal to one wavelength (where the potential
energy barrier height is equal to the original kinetic energy) give

1
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= (h/λ)2

2µm

.

Solving for λ and substituting r = λ into Eq. ( 26), we find the quantum mechanical
estimate of the temperature required for a reaction to occur:

Tquantum = Z2
1Z

2
2e
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12π2ϵ2
0h

2k
. (27)

Again assuming the collision of two protons, µm = mp/2 and Z1 = Z2 = 1. Substituting,
we find that Tquantum ∼ 107 K. In this case, if we assume the effects of quantum mechan-
ics, the temperature required for nuclear reactions is consistent with the estimated central
temperature of the Sun.

Nuclear Reaction Rates and the Gamow Peak

Now that the possibility of a nuclear energy source has been established, we need a more
detailed description of nuclear reaction rates in order to apply them to the development of
stellar models. For instance, not all particles in a gas of temperature T will have sufficient
kinetic energy and the necessary wavelength to tunnel through the Coulomb barrier suc-
cessfully. Consequently, the reaction rate per energy interval must be described in terms
of the number density of particles having energies within a specific range, combined with
the probability that those particles can actually tunnel through the Coulomb barrier of the
target nucleus. The total nuclear reaction rate is then integrated over all possible energies.

that particles are initially sufficiently far apart that the potential energy may be neglected,
the nonrelativistic kinetic energy relation describes the total energy of the particles, or
K = E = µmv2/2. Solving for the velocity and substituting, we can write the Maxwell–
Boltzmann distribution in terms of the number of particles with kinetic energies between
E and E + dE as

nE dE = 2n

π1/2

1
(kT )3/2

E1/2e−E/kT dE (28)

In astrophysical processes, nuclei are usually nonrelativistic, except in the extreme environment of neutron stars.
Because of the much smaller masses of electrons, it cannot be assumed that they are also nonrelativistic, however.
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First consider the number density of nuclei within a specified energy interval.  
As we have seen, the Maxwell–Boltzmann distribution relates the number density of 
particles with velocities between v and v + d  v to the temperature of the gas. Assuming
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wavelength of a massive particle is given by λ = h/p rewriting the kinetic energy in
terms of momentum,

1
2
µmv2 = p2

2µm

,

and setting the distance of closest approach equal to one wavelength (where the potential
energy barrier height is equal to the original kinetic energy) give

1
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.

Solving for λ and substituting r = λ into Eq. ( 26), we find the quantum mechanical
estimate of the temperature required for a reaction to occur:

Tquantum = Z2
1Z

2
2e

4µm

12π2ϵ2
0h

2k
. (27)

Again assuming the collision of two protons, µm = mp/2 and Z1 = Z2 = 1. Substituting,
we find that Tquantum ∼ 107 K. In this case, if we assume the effects of quantum mechan-
ics, the temperature required for nuclear reactions is consistent with the estimated central
temperature of the Sun.

Nuclear Reaction Rates and the Gamow Peak

Now that the possibility of a nuclear energy source has been established, we need a more
detailed description of nuclear reaction rates in order to apply them to the development of
stellar models. For instance, not all particles in a gas of temperature T will have sufficient
kinetic energy and the necessary wavelength to tunnel through the Coulomb barrier suc-
cessfully. Consequently, the reaction rate per energy interval must be described in terms
of the number density of particles having energies within a specific range, combined with
the probability that those particles can actually tunnel through the Coulomb barrier of the
target nucleus. The total nuclear reaction rate is then integrated over all possible energies.

that particles are initially sufficiently far apart that the potential energy may be neglected,
the nonrelativistic kinetic energy relation describes the total energy of the particles, or
K = E = µmv2/2. Solving for the velocity and substituting, we can write the Maxwell–
Boltzmann distribution in terms of the number of particles with kinetic energies between
E and E + dE as

nE dE = 2n

π1/2

1
(kT )3/2

E1/2e−E/kT dE (28)

In astrophysical processes, nuclei are usually nonrelativistic, except in the extreme environment of neutron stars.
Because of the much smaller masses of electrons, it cannot be assumed that they are also nonrelativistic, however.
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First consider the number density of nuclei within a specified energy interval.  
As we have seen, the Maxwell–Boltzmann distribution relates the number density of 
particles with velocities between v and v + d  v to the temperature of the gas. Assuming
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~107	K.	Good	enough	for	the	core	
temperature	of	the	Sun!	



Nuclear Fusion Reactions 

•  Fusion	of	hydrogen	to	helium	
is	accomplished	not	in	one	
step,	but	through	a	chain	of	
reactions	

•  Two	main	“pathways”	for	
hydrogen	burning:		
1.  The	proton-proton	chains	

(p-p	chains).	Important	for	
our	Sun	

2.  The	CNO	cycle,	which	
requires	the	presence	of	
carbon,	nitrogen,	and	
oxygen,	but	does	not	
consume	them.	Important	
for	more	massive	stars.	

The production of helium-3 nuclei in the PP I chain also provides for the possibility of
their interaction directly with helium-4 nuclei, resulting in a second branch of the proton–
proton chain. In an environment characteristic of the center of the Sun, 69% of the time a
helium-3 interacts with another helium-3 in the PP I chain, whereas 31% of the time the
PP II chain occurs:

3
2He + 4

2He → 7
4Be + γ (40)

7
4Be + e−→ 7

3Li + νe (41)

7
3Li + 1

1H → 2 4
2He. (42)

Yet another branch, the PP III chain, is possible because the capture of an electron by
the beryllium-7 nucleus in the PP II chain competes with the capture of a proton (a proton
is captured only 0.3% of the time in the center of the Sun):

7
4Be + 1

1H → 8
5B + γ (43)

8
5B → 8

4Be + e+ + νe (44)

8
4Be → 2 4

2He. (45)

The three branches of the proton–proton (pp) chain, along with their branching ratios, are
summarized in Fig. 8.

69% 31%

(PP I)

(PP II)

(PP III)

99.7% 0.3%

1
1H + 11H 2

1H + e+ + !e

3
2He + 32He 4

2He + 2 11H

7
4Be + e– 7

3Li + !e
7
4Be + 11H

7
3Li + 11H 2 42He

3
2He + 42He 7

4Be + "

8
5B + "

8
5B 8

4Be + e+ + !e

8
4Be 2 42He

2
1H + 11H 3

2He + "

FIGURE 8 The three branches of the pp chain, along with the branching ratios appropriate for
conditions in the core of the Sun.
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The	proton-proton	chains	



Binding energy per nucleon 

Reactions marked by *** are ones for which energy is absorbed rather than released and
are referred to as being endothermic; energy-releasing reactions are exothermic. In en-
dothermic reactions the product nucleus actually possesses more energy per nucleon than
did the nuclei from which it formed. Such reactions occur at the expense of the energy
released by exothermic reactions or by gravitational collapse (the virial theorem). In gen-
eral, endothermic reactions are much less likely to occur than exothermic reactions under
conditions that normally prevail in stellar interiors.

The Binding Energy Per Nucleon

A useful quantity in understanding the energy release in nuclear reactions is the binding
energy per nucleon, Eb/A, where

Eb = !mc2 =
[

Zmp + (A − Z)mn − mnucleus
]

c2.

Figure 9 shows Eb/A versus the mass number. It is apparent that for relatively small
values of A (less than 56), several nuclei have abnormally high values of Eb/A relative to
others of similar mass. Among these unusually stable nuclei are 4

2He and 16
8O, which, along

with 1
1H, are the most abundant nuclei in the universe. This unusual stability arises from

an inherent shell structure of the nucleus, analogous to the shell structure of atomic energy
levels that accounts for the chemical nature of elements. These unusually stable nuclei are
called magic nuclei.

It is believed that shortly after the Big Bang the early universe was composed primarily
of hydrogen and helium, with no heavy elements. Today, Earth and its inhabitants contain
an abundance of heavier metals. The study of stellar nucleosynthesis strongly suggests that
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FIGURE 9 The binding energy per nucleon, Eb/A, as a function of mass number, A. Notice that
several nuclei, most notably 4

2He (see also 12
6 C and 16

8O), lie well above the general trend of the other
nuclei, indicating unusual stability. At the peak of the curve is 56

26Fe, the most stable of all nuclei.
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•  To	understand	the	energy	release	in	
nuclear	reactions,	it	is	useful	to	
consider	the	binding	energy	per	nucleon	
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are referred to as being endothermic; energy-releasing reactions are exothermic. In en-
dothermic reactions the product nucleus actually possesses more energy per nucleon than
did the nuclei from which it formed. Such reactions occur at the expense of the energy
released by exothermic reactions or by gravitational collapse (the virial theorem). In gen-
eral, endothermic reactions are much less likely to occur than exothermic reactions under
conditions that normally prevail in stellar interiors.
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Reactions marked by *** are ones for which energy is absorbed rather than released and
are referred to as being endothermic; energy-releasing reactions are exothermic. In en-
dothermic reactions the product nucleus actually possesses more energy per nucleon than
did the nuclei from which it formed. Such reactions occur at the expense of the energy
released by exothermic reactions or by gravitational collapse (the virial theorem). In gen-
eral, endothermic reactions are much less likely to occur than exothermic reactions under
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Total	mass	of	individual	nucleons	

Mass	of	the	nucleus	

•  The	more	the	binding	energy	per	nucleon,	the	
lighter	the	average	mass	per	nucleon,	the	more	
stable	the	nucleon	

•  The	curve	peaks	at	Fe	(Z=26)	
•  If	we	combine	smaller	nuclei	into	larger	ones	

(nuclear	fusion),	we	will	only	gain	energy	up	to	
Fe	->	nuclear	fusion	stops	up	to	Fe	



Energy Generation 
•  Energy	generation	in	stars	can	be	parameterized	by	
an	energy	generation	rate						,	which	is	the	total	
energy	release	per	kilogram	of	material	per	second	
(J	s-1	kg-1)	

“sea” of negative charge that partially hides the target nucleus, reducing its effective positive
charge. The result of this reduced positive charge is a lower Coulomb barrier to the incom-
ing nucleus and an enhanced reaction rate. By including electron screening, the effective
Coulomb potential becomes

Ueff = 1
4πϵ0

Z1Z2e
2

r
+ Us(r),

where Us(r) < 0 is the electron screening contribution. Electron screening can be signifi-
cant, sometimes enhancing the helium-producing reactions by 10% to 50%.

Representing Nuclear Reaction Rates Using Power Laws

It is often illuminating to write the complicated reaction rate equations in the form of a
power law centered at a particular temperature. Neglecting the screening factor, in the case
of a two-particle interaction, the reaction rate would become

rix ≃ r0XiXx ρ
α′
T β,

where r0 is a constant, Xi and Xx are the mass fractions of the two particles, and α′ and β
are determined from the power law expansion of the reaction rate equations. Usually α′ = 2
for a two-body collision, and β can range from near unity to 40 or more.

By combining the reaction rate equation with the amount of energy released per reaction,
we can calculate the amount of energy released per second in each kilogram of stellar
material. If E0 is the amount of energy released per reaction, the amount of energy liberated
per kilogram of material per second becomes

ϵix =
(

E0

ρ

)

rix ,

or, in the form of a power law,

ϵix = ϵ′
0XiXx ρ

αT β, (35)

where α = α′ − 1. ϵix has units of W kg− 1 and the sum of ϵix for all reactions is the total
nuclear energy generation rate. This form of the nuclear energy generation rate will be used
later to show the dependence of energy production on temperature and density for several
reaction sequences typically operating in stellar interiors.

The Luminosity Gradient Equation

To determine the luminosity of a star, we must now consider all of the energy generated by
stellar material. The contribution to the total luminosity due to an infinitesimal mass dm is
simply

dL = ϵ dm,

where ϵ is the total energy released per kilogram per second by all nuclear reactions and
by gravity, or ϵ = ϵnuclear + ϵgravity. It is worth noting that ϵgravity could be negative if the
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Contribution	to	the	total	luminosity	from	a	small	mass	dm	is	
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For	a	spherically	symmetric	star,	mass	of	a	thin	shell	of	thickness	dr	is	
star is expanding, a point to be discussed later. For a spherically symmetric star, the mass
of a thin shell of thickness dr is just dm = dMr = ρ dV = 4πr2ρ dr (recall Fig. 2).
Substituting and dividing by the shell thickness, we have

dLr

dr
= 4πr2ρϵ, (36)

where Lr is the interior luminosity due to all of the energy generated within the star’s
interior out to the radius r . Equation ( 36) is another of the fundamental stellar structure
equations.

Stellar Nucleosynthesis and Conservation Laws

The remaining problem in understanding nuclear reactions is the exact sequence of steps
by which one element is converted into another, a process known as nucleosynthesis. Our
estimate of the nuclear timescale for the Sun was based on the assumption that four hydrogen
nuclei are converted into helium. However, it is highly unlikely that this could occur via
a four-body collision (i.e., all nuclei hitting simultaneously). For the process to occur, the
final product must be created by a chain of reactions, each involving much more probable
two-body interactions. In fact, we derived the reaction rate equation under the assumption
that only two nuclei would collide at any one time.

The process by which a chain of nuclear reactions leads to the final product cannot
happen in a completely arbitrary way, however; a series of particle conservation laws must
be obeyed. In particular, during every reaction it is necessary to conserve electric charge,
the number of nucleons, and the number of leptons. The term lepton means a “light thing”
and includes electrons, positrons, neutrinos, and antineutrinos.

Although antimatter is extremely rare in comparison with matter, it plays an important
role in subatomic physics, including nuclear reactions. Antimatter particles are identical to
their matter counterparts but have opposite attributes, such as electric charge. Antimatter
also has the characteristic (often used in science fiction) that a collision with its matter coun-
terpart results in complete annihilation of both particles, accompanied by the production of
energetic photons. For instance,

e− + e+ → 2γ ,

where e−, e+, and γ denote an electron, positron, and photon, respectively. Note that two
photons are required to conserve both momentum and energy simultaneously.

ν ν

These particles were originally proposed by Wolfgang Pauli in 1930, in order that energy and momentum might
be conserved in certain reaction processes. In 1934, they were given the name neutrinos (“little neutral ones”) by
Italian physicist Enrico Fermi (1901–1954).

7
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Neutrinos and antineutrinos (symbolized by  and , respectively) are 
an  interesting class of particles in their own right 7 Neutrinos are electrical-
ly neutral and have a very small but non-zero mass (m  < 2 .2  eV/c2 ). One of 
the  interesting characteristics of a neutrino is its extremely small cross sec-
tion for interactions with other matter, making it very difficult to detect. Typically

ν
.
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So	the	interior	luminosity	as	a	function	of	r	is	
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ν ν

These particles were originally proposed by Wolfgang Pauli in 1930, in order that energy and momentum might
be conserved in certain reaction processes. In 1934, they were given the name neutrinos (“little neutral ones”) by
Italian physicist Enrico Fermi (1901–1954).
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Neutrinos and antineutrinos (symbolized by  and , respectively) are 
an  interesting class of particles in their own right 7 Neutrinos are electrical-
ly neutral and have a very small but non-zero mass (m  < 2 .2  eV/c2 ). One of 
the  interesting characteristics of a neutrino is its extremely small cross sec-
tion for interactions with other matter, making it very difficult to detect. Typically

ν
.
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Luminosity	gradient	equation	



Energy generation rates in stellar 
nucleosynthesis  
•  The	reaction	rates	from	different	nuclear	reactions	depend	on	the	cross-

section	
•  Usually	heavily	dependent	on	temperature	

Proton-Proton	chains	

Beginning with Eq. ( 33), the nuclear energy generation rate for the combined pp chain
is calculated to be

ϵpp = 0.241ρX2fppψppCppT
−2/3

6 e−33.80T
−1/3

6 W kg−1, (46)

where T6 is a dimensionless expression of temperature in units of 106 K (or T6 ≡ T/106 K).
fpp = fpp(X, Y, ρ, T ) ≃ 1 is the pp chain screening factor, ψpp = ψpp(X, Y, T ) ≃ 1 is a
correction factor that accounts for the simultaneous occurrence of PP I, PP II, and PP III,
and Cpp ≃ 1 involves higher-order correction terms.1

When written as a power law (e.g., Eq. 35) near T = 1.5 × 107 K, the energy
generation rate has the form

ϵpp ≃ ϵ′
0,ppρX2fppψppCppT 4

6 , (47)

where ϵ′
0,pp = 1.08 × 10−12 W m3 kg−2. The power law form of the energy generation rate

demonstrates a relatively modest temperature dependence of T 4 near T6 = 15.

The CNO Cycle

A second, independent cycle also exists for the production of helium-4 from hydrogen. This
cycle was proposed by Hans Bethe (1906–2005) in 1938, just six years after the discovery
of the neutron. In the CNO cycle, carbon, nitrogen, and oxygen are used as catalysts, being
consumed and then regenerated during the process. Just as with the pp chain, the CNO cycle
has competing branches. The first branch culminates with the production of carbon-12 and
helium-4:

12
6C + 1

1H → 13
7N + γ (48)

13
7N → 13

6C + e+ + νe (49)
13

6C + 1
1H → 14

7N + γ (50)
14

7N + 1
1H → 15

8O + γ (51)
15

8O → 15
7N + e+ + νe (52)

15
7N + 1

1H → 12
6C + 4

2He. (53)

The second branch occurs only about 0.04% of the time and arises when the last reaction
(Eq. 53) produces oxygen-16 and a photon, rather than carbon-12 and helium-4:

15
7N + 1

1H → 16
8O + γ (54)

16
8O + 1

1H → 17
9F + γ (55)

17
9F → 17

8O + e+ + νe (56)
17

8O + 1
1H → 14

7N + 4
2He. (57)

1 Expressions for the various correction terms are given in the stellar structure code StatStar, described in 
Appendix:
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correction factor that accounts for the simultaneous occurrence of PP I, PP II, and PP III,
and Cpp ≃ 1 involves higher-order correction terms.1

When written as a power law (e.g., Eq. 35) near T = 1.5 × 107 K, the energy
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where ϵ′
0,pp = 1.08 × 10−12 W m3 kg−2. The power law form of the energy generation rate

demonstrates a relatively modest temperature dependence of T 4 near T6 = 15.

The CNO Cycle

A second, independent cycle also exists for the production of helium-4 from hydrogen. This
cycle was proposed by Hans Bethe (1906–2005) in 1938, just six years after the discovery
of the neutron. In the CNO cycle, carbon, nitrogen, and oxygen are used as catalysts, being
consumed and then regenerated during the process. Just as with the pp chain, the CNO cycle
has competing branches. The first branch culminates with the production of carbon-12 and
helium-4:
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The second branch occurs only about 0.04% of the time and arises when the last reaction
(Eq. 53) produces oxygen-16 and a photon, rather than carbon-12 and helium-4:
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1 Expressions for the various correction terms are given in the stellar structure code StatStar, described in 
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with	

Correction	factors	~1	

Temperature	in	106	K	

CNO	cycle	

The energy generation rate for the CNO cycle is given by

ϵCNO = 8.67 × 1020ρXXCNOCCNOT
−2/3

6 e−152.28T
−1/3

6 W kg−1, (58)

where XCNO is the total mass fraction of carbon, nitrogen, and oxygen, and CCNO is a higher-
order correction term. When written as a power law centered about T = 1.5 × 107 K (see
Eq. 35), this energy equation becomes

ϵCNO ≃ ϵ′
0,CNOρXXCNOT 19.9

6 , (59)

where ϵ′
0,CNO = 8.24 × 10−31 W m3 kg−2. As shown by the power law dependence, the

CNO cycle is much more strongly temperature-dependent than is the pp chain. This property
implies that low-mass stars, which have smaller central temperatures, are dominated by the
pp chains during their “hydrogen burning” evolution, whereas more massive stars, with
their higher central temperatures, convert hydrogen to helium by the CNO cycle. The
transition in stellar mass between stars dominated by the pp chain and those dominated
by the CNO cycle occurs for stars slightly more massive than our Sun. This difference in
nuclear reaction processes plays an important role in the structure of stellar interiors, as will
be seen in the next section.

When hydrogen is converted into helium by either the pp chain or the CNO cycle, the
mean molecular weight µ of the gas increases. If neither the temperature nor the density
of the gas changes, the ideal gas law predicts that the central pressure will necessarily
decrease. As a result, the star would no longer be in hydrostatic equilibrium and would
begin to collapse. This collapse has the effect of actually raising both the temperature and
the density to compensate for the increase in µ When the temperature and density become
sufficiently high, helium nuclei can overcome their Coulomb repulsion and begin to “burn.”

The Triple Alpha Process of Helium Burning

The reaction sequence by which helium is converted into carbon is known as the triple
alpha process. The process takes its name from the historical result that the mysterious
alpha particles detected in some types of radioactive decay were shown by Rutherford to
be helium-4 (4

2He) nuclei. The triple alpha process is

4
2He + 4

2He ! 8
4Be (60)

8
4Be + 4

2He → 12
6C + γ . (61)

In the triple alpha process, the first step produces an unstable beryllium nucleus that will
rapidly decay back into two separate helium nuclei if not immediately struck by another
alpha particle. As a result, this reaction may be thought of as a three-body interaction, and
therefore, the reaction rate depends on (ρY )3. The nuclear energy generation rate is given
by

ϵ3α = 50.9ρ2Y 3T −3
8 f3αe

−44.027T −1
8 W kg−1, (62)

.
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where ϵ′
0,CNO = 8.24 × 10−31 W m3 kg−2. As shown by the power law dependence, the
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by the CNO cycle occurs for stars slightly more massive than our Sun. This difference in
nuclear reaction processes plays an important role in the structure of stellar interiors, as will
be seen in the next section.
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mean molecular weight µ of the gas increases. If neither the temperature nor the density
of the gas changes, the ideal gas law predicts that the central pressure will necessarily
decrease. As a result, the star would no longer be in hydrostatic equilibrium and would
begin to collapse. This collapse has the effect of actually raising both the temperature and
the density to compensate for the increase in µ When the temperature and density become
sufficiently high, helium nuclei can overcome their Coulomb repulsion and begin to “burn.”

The Triple Alpha Process of Helium Burning

The reaction sequence by which helium is converted into carbon is known as the triple
alpha process. The process takes its name from the historical result that the mysterious
alpha particles detected in some types of radioactive decay were shown by Rutherford to
be helium-4 (4

2He) nuclei. The triple alpha process is

4
2He + 4

2He ! 8
4Be (60)

8
4Be + 4

2He → 12
6C + γ . (61)

In the triple alpha process, the first step produces an unstable beryllium nucleus that will
rapidly decay back into two separate helium nuclei if not immediately struck by another
alpha particle. As a result, this reaction may be thought of as a three-body interaction, and
therefore, the reaction rate depends on (ρY )3. The nuclear energy generation rate is given
by

ϵ3α = 50.9ρ2Y 3T −3
8 f3αe

−44.027T −1
8 W kg−1, (62)
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with	
Helium	burning	

The energy generation rate for the CNO cycle is given by

ϵCNO = 8.67 × 1020ρXXCNOCCNOT
−2/3

6 e−152.28T
−1/3

6 W kg−1, (58)

where XCNO is the total mass fraction of carbon, nitrogen, and oxygen, and CCNO is a higher-
order correction term. When written as a power law centered about T = 1.5 × 107 K (see
Eq. 35), this energy equation becomes

ϵCNO ≃ ϵ′
0,CNOρXXCNOT 19.9

6 , (59)

where ϵ′
0,CNO = 8.24 × 10−31 W m3 kg−2. As shown by the power law dependence, the

CNO cycle is much more strongly temperature-dependent than is the pp chain. This property
implies that low-mass stars, which have smaller central temperatures, are dominated by the
pp chains during their “hydrogen burning” evolution, whereas more massive stars, with
their higher central temperatures, convert hydrogen to helium by the CNO cycle. The
transition in stellar mass between stars dominated by the pp chain and those dominated
by the CNO cycle occurs for stars slightly more massive than our Sun. This difference in
nuclear reaction processes plays an important role in the structure of stellar interiors, as will
be seen in the next section.

When hydrogen is converted into helium by either the pp chain or the CNO cycle, the
mean molecular weight µ of the gas increases. If neither the temperature nor the density
of the gas changes, the ideal gas law predicts that the central pressure will necessarily
decrease. As a result, the star would no longer be in hydrostatic equilibrium and would
begin to collapse. This collapse has the effect of actually raising both the temperature and
the density to compensate for the increase in µ When the temperature and density become
sufficiently high, helium nuclei can overcome their Coulomb repulsion and begin to “burn.”

The Triple Alpha Process of Helium Burning

The reaction sequence by which helium is converted into carbon is known as the triple
alpha process. The process takes its name from the historical result that the mysterious
alpha particles detected in some types of radioactive decay were shown by Rutherford to
be helium-4 (4

2He) nuclei. The triple alpha process is

4
2He + 4

2He ! 8
4Be (60)

8
4Be + 4

2He → 12
6C + γ . (61)

In the triple alpha process, the first step produces an unstable beryllium nucleus that will
rapidly decay back into two separate helium nuclei if not immediately struck by another
alpha particle. As a result, this reaction may be thought of as a three-body interaction, and
therefore, the reaction rate depends on (ρY )3. The nuclear energy generation rate is given
by

ϵ3α = 50.9ρ2Y 3T −3
8 f3αe

−44.027T −1
8 W kg−1, (62)
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Hydrogen	Burning	

Triple	alpha	process	

where T8 ≡ T/108 K and f3α is the screening factor for the triple alpha process. Written
as a power law centered on T = 108 K (see Eq. 35), it demonstrates a very dramatic
temperature dependence:

ϵ3α ≃ ϵ′
0,3αρ

2Y 3f3αT
41.0

8 . (63)

With such a strong dependence, even a small increase in temperature will produce a large
increase in the amount of energy generated per second. For instance, an increase of only
10% in temperature raises the energy output rate by more than 50 times!

Carbon and Oxygen Burning

In the high-temperature environment of helium burning, other competing processes are also
at work. After sufficient carbon has been generated by the triple alpha process, it becomes
possible for carbon nuclei to capture alpha particles, producing oxygen. Some of the oxygen
in turn can capture alpha particles to produce neon.

12
6C + 4

2He → 16
8O + γ (64)

16
8O + 4

2He → 20
10Ne + γ (65)

At helium-burning temperatures, the continued capture of alpha particles leading to progres-
sively more massive nuclei quickly becomes prohibitive due to the ever higher Coulomb
barrier.

If a star is sufficiently massive, still higher central temperatures can be obtained and
many other nuclear products become possible. Examples of available reactions include
carbon burning reactions near 6 × 108 K,

12
6C + 12

6C →

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

16
8O + 2 4

2He ***

20
10Ne + 4

2He

23
11Na + p+

23
12Mg + n ***

24
12Mg + γ

(66)

and oxygen burning reactions near 109 K,

16
8O + 16

8O →

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

24
12Mg + 2 4

2He ***

28
14Si + 4

2He

31
15P + p+

31
16S + n

32
16S + γ

(67)
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Very	strong	temperature	dependence!	E.g.,	a	10%	
increase	in	temperature	raises	the	energy	rate	by	
more	than	x	50!	

Temperature	in	108	K	



Outstanding questions 

• What	supports	the	stars	(from	
collapsing)?	
• What	powers	the	stars?	
• What	determines	the	internal	structure	
of	the	stars?	



Energy transport mechanisms 

• Radiation	allows	energy	produced	by	nuclear	
reactions	and	gravitation	to	be	carried	to	the	
surface	via	photons	
• Convection,	with	hot,	buoyant	mass	elements	
carrying	excess	energy	outward	while	cool	
elements	fall	inward	
• Conduction	transports	heat	via	collisions	between	
particles	



Energy transport: Radiation 
Radiation	Flux	 F =σT 4

Flux	through	a	thin	spherical	shell	of	thickness	dr	with	temperature	difference	dT	

Fin	

Fout	

dr,	dT	

dF =σT 3dT

Temperature	drops	as	we	go	out	from	the	center	
because	the	gas	absorbs	energy.	The	absorption	is:	

dF = −κ (r)ρ(r)F(r)dr

Combining	the	two	equations	above,	and	using																																				,	we	have	F(r) = L(r) / 4πr2

L(r) = −[16πr2σT 3 /κ (r)ρ(r)]dT / dr

More	careful	analysis	results	in	an	additional	factor	of	4/3,	so	temperature	gradient		

dT / dr = −−3κ (r)ρ(r)
4acT 3

L(r)
4πr2

with	radiation	constant	 a = 4σ / c



Energy transport: Radiation 

dT / dr = −−3κ (r)ρ(r)
4acT 3

L(r)
4πr2

•  Required	temperature	gradient	dT/dr	for	transporting	all	energy	via	
radiation	becomes	steeper	(more	negative)	as	flux,	density,	opacity	
increase,	or	temperature	decreases	

•  Under	some	circumstances	dT/dr	becomes	too	steep	for	energy	
transport	by	radiation	->	convection	kicks	in	



Energy transport: Convection 
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FIGURE 10 A convective bubble traveling outward a distance dr . The initial conditions of
the bubble are given by P

(b)
i , T

(b)
i , and ρ(b)

i , for the pressure, temperature, and density, respectively,
while the initial conditions for the surrounding gas at the same level are designated by P

(s)
i , T

(s)
i , and

ρ
(s)
i , respectively. Final conditions for either the bubble or the surrounding gas are indicated by an f

subscript.

of the bubble is less than that of its surroundings (ρ(b)
i < ρ

(s)
i ), it will begin to rise. Now,

the buoyant force per unit volume exerted on a bubble that is totally submersed in a fluid
of density ρ(s)

i is given by

fB = ρ
(s)
i g.

If we subtract the downward gravitational force per unit volume on the bubble, given by

fg = ρ
(b)
i g,

the net force per unit volume on the bubble becomes

fnet = −g δρ, (91)

where δρ ≡ ρ
(b)
i − ρ

(s)
i < 0 initially. If, after traveling an infinitesimal distance dr , the

bubble now has a greater density than the surrounding material (ρ(b)
f > ρ

(s)
f ), it will sink

again and convection will be prohibited. On the other hand, if ρ(b)
f < ρ

(s)
f , the bubble will

continue to rise and convection will result.
To express this condition in terms of temperature gradients, assume that the gas is initially

very nearly in thermal equilibrium, with T
(b)
i ≃ T

(s)
i and ρ(b)

i ≃ ρ
(s)
i . Also assume that the

bubble expands adiabatically and that the bubble and surrounding gas pressures are equal at
all times, P

(b)
f = P

(s)
f . Now, since it is assumed that the bubble has moved an infinitesimal

distance, it is possible to express the final quantities in terms of the initial quantities and
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•  Initially	a	Bubble	is	rising	due	to	buoyancy	because	
the	bubble	is	less	dense	than	its	surroundings	

•  If	after	a	infinitesimal	distance	dr,	the	bubble	now	has	
a	greater	density	than	its	surroundings	

•  If		the	bubble	is	still	less	dense	than	its	surroundings	
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i , respectively. Final conditions for either the bubble or the surrounding gas are indicated by an f

subscript.

of the bubble is less than that of its surroundings (ρ(b)
i < ρ
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i ), it will begin to rise. Now,

the buoyant force per unit volume exerted on a bubble that is totally submersed in a fluid
of density ρ(s)

i is given by

fB = ρ
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i g.

If we subtract the downward gravitational force per unit volume on the bubble, given by

fg = ρ
(b)
i g,

the net force per unit volume on the bubble becomes

fnet = −g δρ, (91)

where δρ ≡ ρ
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i − ρ
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again and convection will be prohibited. On the other hand, if ρ(b)
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of the bubble is less than that of its surroundings (ρ(b)
i < ρ

(s)
i ), it will begin to rise. Now,

the buoyant force per unit volume exerted on a bubble that is totally submersed in a fluid
of density ρ(s)

i is given by

fB = ρ
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i g.

If we subtract the downward gravitational force per unit volume on the bubble, given by
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the net force per unit volume on the bubble becomes
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where δρ ≡ ρ
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bubble now has a greater density than the surrounding material (ρ(b)
f > ρ
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f ), it will sink

again and convection will be prohibited. On the other hand, if ρ(b)
f < ρ

(s)
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To express this condition in terms of temperature gradients, assume that the gas is initially
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It	will	sink	again	
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very nearly in thermal equilibrium, with T
(b)
i ≃ T

(s)
i and ρ(b)

i ≃ ρ
(s)
i . Also assume that the

bubble expands adiabatically and that the bubble and surrounding gas pressures are equal at
all times, P

(b)
f = P

(s)
f . Now, since it is assumed that the bubble has moved an infinitesimal

distance, it is possible to express the final quantities in terms of the initial quantities and
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No	convection	

It	will	still	rise		 Convection	

The	condition	is		

is the condition for the gas bubble to keep rising. Finally, since dT /dr < 0 (the temperature
decreases as the stellar radius increases), taking the absolute value of the equation again
requires that the direction of the inequality be reversed, or

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

act
>

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

ad
. (94)

If the actual temperature gradient is superadiabatic, convection will result, assuming that µ

does not vary.
Equation ( 93) may be used to find another useful, and equivalent, condition for con-

vection. Since dT /dr < 0 and 1/γ − 1 < 0 (recall that γ > 1),

T

P

(

dT

dr

)−1
dP

dr
< − 1

γ−1 − 1
,

which may be simplified to give

T

P

dP

dT
<

γ

γ − 1
,

or, for convection to occur,

d ln P

d ln T
<

γ

γ − 1
. (95)

For an ideal monatomic gas, γ = 5/3 and convection will occur in some region of a star
when d ln P/d ln T < 2.5. In that case the temperature gradient (dT /dr) is given approx-
imately by Eq. ( 89). When d ln P/d ln T > 2.5, the region is stable against convection
and dT /dr is given by Eq. (68).

By comparing Eq. ( 68) for the radiative temperature gradient with either Eq. ( 89)
or Eq. ( 90), together with the condition for convection written in terms of the tempera-
ture gradient, Eq. ( 94), it is possible to develop some understanding of which conditions
are likely to lead to convection over radiation. In general, convection will occur when
(1) the stellar opacity is large, implying that an unachievably steep temperature gradient
(|dT /dr|act) would be necessary for radiative transport, (2) a region exists where ioniza-
tion is occurring, causing a large specific heat and a low adiabatic temperature gradient
(|dT /dr|ad), and (3) the temperature dependence of the nuclear energy generation rate is
large, causing a steep radiative flux gradient and a large temperature gradient. In the at-
mospheres of many stars, the first two conditions can occur simultaneously, whereas the
third condition would occur only deep in stellar interiors. In particular, the third condition
can occur when the highly temperature-dependent CNO cycle or triple alpha processes are
occurring.

The Mixing-Length Theory of Superadiabatic Convection

It has already been suggested that the temperature gradient must be only slightly superadi-
abatic in the deep interior in order for convection to carry most of the energy. We will now
justify that assertion.
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Actual	temperature	gradient	 Adiabatic	temperature	gradient	



Energy transport: Convection 
Differentiating and rewriting, we obtain

dP

dr
= γ

P

ρ

dρ

dr
. (87)

If we assume for simplicity that µ is a constant, Eqs. ( 85) and ( 87) may be combined
to give the adiabatic temperature gradient (designated by the subscript ad)

dT

dr

∣

∣

∣

∣

ad
=
(

1 − 1
γ

)

T

P

dP

dr
. (88)

Using Eq. (6) and the ideal gas law, we finally obtain

dT

dr

∣

∣

∣

∣

ad
= −

(

1 − 1
γ

)

µmH

k

GMr

r2
. (89)

It is sometimes helpful to express Eq. ( 89) in another, equivalent form. Recalling that
g = GMr/r2, k/µmH = nR, γ = CP /CV , and CP − CV = nR, and that n, CP , and CV

are per unit mass, we have

dT

dr

∣

∣

∣

∣

ad
= − g

CP

. (90)

This result describes how the temperature of the gas inside the bubble changes as the bubble
rises and expands adiabatically.

If the star’s actual temperature gradient (designated by the subscript act) is steeper than
the adiabatic temperature gradient given in Eq. (89), or
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dr

∣
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∣
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>

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

ad
,

the temperature gradient is said to be superadiabatic (recall that dT /dr < 0). It will be
shown that in the deep interior of a star, if |dT /dr|act is just slightly larger than |dT /dr|ad,
this may be sufficient to carry nearly all of the luminosity by convection. Consequently,
it is often the case that either radiation or convection dominates the energy transport in
the deep interiors of stars, while the other energy transport mechanism contributes very
little to the total energy outflow. The particular mechanism in operation is determined
by the temperature gradient. However, near the surface of the star the situation is much
more complicated: Both radiation and convection can carry significant amounts of energy
simultaneously.

A Criterion for Stellar Convection

Just what condition must be met if convection is to dominate over radiation in the deep
interior? When will a hot bubble of gas continue to rise rather than sink back down after
being displaced upward? Figure 10 shows a convective bubble traveling a distance dr

through the surrounding medium. According to Archimedes’s principle, if the initial density
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If	energy	is	mainly	carried	out	by	convection,	the	established	
temperature	gradient	is	very	close	to	the	adiabatic	temperature	
gradient	

Differentiating and rewriting, we obtain

dP

dr
= γ

P

ρ

dρ

dr
. (87)

If we assume for simplicity that µ is a constant, Eqs. ( 85) and ( 87) may be combined
to give the adiabatic temperature gradient (designated by the subscript ad)

dT

dr

∣

∣

∣

∣

ad
=
(

1 − 1
γ

)

T

P

dP

dr
. (88)

Using Eq. (6) and the ideal gas law, we finally obtain

dT

dr
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= −

(

1 − 1
γ

)

µmH

k

GMr

r2
. (89)

It is sometimes helpful to express Eq. ( 89) in another, equivalent form. Recalling that
g = GMr/r2, k/µmH = nR, γ = CP /CV , and CP − CV = nR, and that n, CP , and CV

are per unit mass, we have

dT

dr

∣

∣

∣
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ad
= − g

CP

. (90)

This result describes how the temperature of the gas inside the bubble changes as the bubble
rises and expands adiabatically.

If the star’s actual temperature gradient (designated by the subscript act) is steeper than
the adiabatic temperature gradient given in Eq. (89), or
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the temperature gradient is said to be superadiabatic (recall that dT /dr < 0). It will be
shown that in the deep interior of a star, if |dT /dr|act is just slightly larger than |dT /dr|ad,
this may be sufficient to carry nearly all of the luminosity by convection. Consequently,
it is often the case that either radiation or convection dominates the energy transport in
the deep interiors of stars, while the other energy transport mechanism contributes very
little to the total energy outflow. The particular mechanism in operation is determined
by the temperature gradient. However, near the surface of the star the situation is much
more complicated: Both radiation and convection can carry significant amounts of energy
simultaneously.

A Criterion for Stellar Convection

Just what condition must be met if convection is to dominate over radiation in the deep
interior? When will a hot bubble of gas continue to rise rather than sink back down after
being displaced upward? Figure 10 shows a convective bubble traveling a distance dr

through the surrounding medium. According to Archimedes’s principle, if the initial density
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Using	hydrostatic	equilibrium	and	ideal	gas	law,	it	can	be	re-written	as		



Radiation or Convection? 

Schematic	diagram	of	the	
solar	interior	

TABLE 1 Central Conditions in the Sun. (Data from Bahcall, Pinsonneault, and Basu, Ap. J.,
555, 990, 2001.)

Temperature 1.570 × 107 K
Pressure 2.342 × 1016 N m−2

Density 1.527 × 105 kg m−3

X 0.3397
Y 0.6405

Cool, dark

sinking gas

Hot, brightrising gas
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FIGURE 2 A schematic diagram of the Sun’s interior.

solar model, and a schematic diagram of the model is shown in Fig. 2. According to
the evolutionary sequence leading to this model, during its lifetime the mass fraction of
hydrogen (X) in the Sun’s center has decreased from its initial value of 0.71 to 0.34, while
the central mass fraction of helium (Y ) has increased from 0.27 to 0.64. In addition, due
to diffusive settling of elements heavier than hydrogen, the mass fraction of hydrogen near
the surface has increased by approximately 0.03, while the mass fraction of helium has
decreased by 0.03.

Because of the Sun’s past evolution, its composition is no longer homogeneous but
instead shows the influence of ongoing nucleosynthesis, surface convection, and elemental
diffusion (settling of heavier elements). The composition structure of the Sun is shown in
Fig. 3 for 1

1H, 3
2He, and 4

2He. Since the Sun’s primary energy production mechanism is
the pp chain, 3

2He is an intermediate species in the reaction sequence. During the conversion
of hydrogen to helium, 3

2He is produced and then destroyed again. At the
top of the hydrogen-burning region where the temperature is lower, 3

2He is relatively more
abundant because it is produced more easily than it is destroyed. At greater depths, the
higher temperatures allow the 3

2He–3
2He interaction to proceed more rapidly, and the 3

2He

Recall that much higher temperatures are required for helium–helium interactions than proton–proton interactions.

4

4

The Sun
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dT / dr = −−3κ (r)ρ(r)
4acT 3

L(r)
4πr2

Temperature	gradient	from	radiation		

Differentiating and rewriting, we obtain

dP

dr
= γ

P

ρ

dρ

dr
. (87)

If we assume for simplicity that µ is a constant, Eqs. ( 85) and ( 87) may be combined
to give the adiabatic temperature gradient (designated by the subscript ad)

dT

dr
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=
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)

T

P

dP

dr
. (88)

Using Eq. (6) and the ideal gas law, we finally obtain
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= −

(

1 − 1
γ

)

µmH

k

GMr

r2
. (89)

It is sometimes helpful to express Eq. ( 89) in another, equivalent form. Recalling that
g = GMr/r2, k/µmH = nR, γ = CP /CV , and CP − CV = nR, and that n, CP , and CV

are per unit mass, we have

dT

dr

∣

∣

∣

∣

ad
= − g

CP

. (90)

This result describes how the temperature of the gas inside the bubble changes as the bubble
rises and expands adiabatically.

If the star’s actual temperature gradient (designated by the subscript act) is steeper than
the adiabatic temperature gradient given in Eq. (89), or
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the temperature gradient is said to be superadiabatic (recall that dT /dr < 0). It will be
shown that in the deep interior of a star, if |dT /dr|act is just slightly larger than |dT /dr|ad,
this may be sufficient to carry nearly all of the luminosity by convection. Consequently,
it is often the case that either radiation or convection dominates the energy transport in
the deep interiors of stars, while the other energy transport mechanism contributes very
little to the total energy outflow. The particular mechanism in operation is determined
by the temperature gradient. However, near the surface of the star the situation is much
more complicated: Both radiation and convection can carry significant amounts of energy
simultaneously.

A Criterion for Stellar Convection

Just what condition must be met if convection is to dominate over radiation in the deep
interior? When will a hot bubble of gas continue to rise rather than sink back down after
being displaced upward? Figure 10 shows a convective bubble traveling a distance dr

through the surrounding medium. According to Archimedes’s principle, if the initial density
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Temperature	gradient	from	convection		

•  Temperature	gradient	steeper	than	adiabatic	value:	
convection	occurs	

•  Shallow	temperature	gradient:	radiation	dominates	



Computer models of stellar interiors 
A Summary of the Equations of Stellar Structure

For convenience, the basic time-independent (static) stellar structure equations are summa-
rized:

dP

dr
= −G

Mrρ

r2
(6)

dMr

dr
= 4πr2ρ (7)

dLr

dr
= 4πr2ρϵ (36)

dT

dr
= − 3

4ac

κρ

T 3

Lr

4πr2
(radiation) (68)

= −
(

1 − 1
γ

)

µmH

k

GMr

r2
(adiabatic convection) (89)

The last equation assumes that the convective temperature gradient is purely adiabatic and
is applied when

d ln P

d ln T
<

γ

γ − 1
. (95)

If the star is static, as assumed above, then ϵ = ϵnuclear. However, if the structure of the
stellar model is changing over time, we must include the energy contribution due to gravity,
ϵ = ϵnuclear + ϵgravity. The introduction of the gravitational energy term adds an explicit time
dependence to the equations that is not present in the purely static case. This can be seen by
realizing that the virial theorem requires that one-half of the gravitational potential energy
that is lost must be converted into heat. The rate of energy production (per unit mass) by
gravity is then dQ/dt . Therefore ϵgravity = −dQ/dt , the minus sign indicating that heat is
liberated from the material.

Entropy

As a note of interest, it is often useful to express the gravitational energy generation rate in
terms of the change in the entropy per unit mass (the specific entropy), defined by

dS ≡ dQ

T
. (101)

Then the energy generation rate is seen to be due to the change in entropy of the material,
or

ϵgravity = −T
dS

dt
. (102)

Although dQ is an inexact differential, it can be shown that the entropy is a state function.
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Set	of	equations	

sufficiently low densities and velocities. In these limits both distribution functions become
indistinguishable from the classical Maxwell–Boltzmann distribution function.

The Contribution Due to Radiation Pressure

using an identity for the distribution function, np dp = nν dν, the general pressure integral,
Eq. ( 8), now describes the effect of radiation, giving

Prad = 1
3

∫ ∞

0
hνnν dν.

At this point, the problem again reduces to finding an appropriate expression for nν dν.
Since photons are bosons, the Bose–Einstein distribution function would apply. However,
the problem may also be solved by realizing that nν dν represents the number density of
photons having frequencies lying in the range between ν and ν + dν. Multiplying by the
energy of each photon in that range would then give the energy density over the frequency
interval, or

Prad = 1
3

∫ ∞

0
uν dν, (18)

where uν dν = hνnν dν. But the energy density distribution function is found from the
Planck function for blackbody radiation Substituting into Eq. ( 18) and performing the
integration lead to

Prad = 1
3
aT 4, (19)

where a is the radiation constant
In many astrophysical situations the pressure due to photons can actually exceed by a

significant amount the pressure produced by the gas. In fact it is possible that the magnitude
of the force due to radiation pressure can become sufficiently great that it surpasses the
gravitational force, resulting in an overall expansion of the system.

Combining both the ideal gas and radiation pressure terms, the total pressure becomes

Pt = ρkT

µmH

+ 1
3
aT 4. (20)

Example 2.1. Using the results of Example 1.1, we can estimate the central tem-
perature of the Sun. Neglecting the radiation pressure term, the central temperature is found

continued
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Because photons possess momentum pγ = hv /c, they are capable of delivering an 
 impulse to other particles during absorption or reflection. Consequently, electro-
magnetic radiation results in another form of pressure. It is instructive to rederive the 
 expression for radiation pressure by making use of the pressure integral. Substituting 
the speed of light for the velocity v, using the expression for photon momentum, and
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Ideal	gas	law	and	radiation	pressure	

For a 90 M⊙ star, LEd ≃ 3.5 × 106 L⊙, roughly three times the expected main-sequence
value.

The fairly close correspondence between the theoretical and Eddington luminosities
implies that the envelopes of massive main-sequence stars are loosely bound at best. In fact,
observations of the few stars with masses estimated to be near 100 M⊙ indicate that they
are suffering from large amounts of mass loss and exhibit variability in their luminosities.

Variations of Main-Sequence Stellar Parameters with Mass

From theoretical models that are computed in the mass range of hydrogen burning, it is
possible to obtain a numerical relationship between M and L that agrees well with the

The range in main-sequence luminosities is from near 5 × 10−4 L⊙ to approximately
1 × 106 L⊙, a variation of over nine orders of magnitude, while the masses change by
only three orders of magnitude. Because of the enormous rate of energy output from upper
main-sequence stars, they consume their core hydrogen in a much shorter period of time
than do stars on the lower end of the main sequence. As a result, main-sequence lifetimes
decrease with increasing luminosity. Estimates of the range of main-sequence lifetimes are
left as an exercise.
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FIGURE 13 The locations of stellar models on a theoretical H–R diagram. The models were
computed using the stellar structure equations and constitutive relations. (Data from Schaller, et al.,
Astron. Astrophys. Suppl., 96, 269, 1992, and Charbonnel, et al., Astron. Astrophys. Suppl., 135, 405,
1999.
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observational mass–luminosity relation. It is also possible to locate each of the models 
on a theoretical H–Rdiagram (see Fig.  13). It can be seen that stars undergoing hydro-
gen burning in their cores lie along the observational main sequence!
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Models	of	stars	with	H	burning	
cores	lie	on	the	main	sequence!	

Hydrostatic	equilibrium	

Mass	conservation	

Luminosity	gradient	equation	


