Phys 321: Lecture 7 Stellar Evolution

Stellar Evolution

- Formation of protostars (covered in Phys 320; briefly reviewed here)
- Pre-main-sequence evolution (this lecture)
- Evolution on the main sequence (this lecture)
- Post-main-sequence evolution (this lecture)
- Stellar death (next lecture)

Formation of protostars

 Clouds of gas and dust collapse and form Young Stellar Objects (YSOs)

Condition for spontaneous collapse to occur:

$$M_c > M_J$$
 Where $M_J \simeq \left(\frac{5kT}{G\mu m_H}\right)^{3/2} \left(\frac{3}{4\pi \rho_0}\right)^{1/2}$ is the **Jeans mass**

For a typical dense molecular H₂ cloud with T = 10 K and $n_{H_2} = 10^{10} \text{ m}^{-3}$, $M_1 \approx 8 \text{ Msun}$

This is the consequence of the virial theorem:

For a system in **equilibrium**: 2K + U = 0

Internal energy is too low -> pressure For a system to **collapse**: 2K < |U|can not support against gravity

Formation of protostars

 Once spontaneous collapse occurs, the time scale is set by the free-fall time

Free-fall time, or the time takes for a particle to fall from any point of the cloud freely:

$$t_{\rm ff} = \left(\frac{3\pi}{32} \frac{1}{G\rho_0}\right)^{1/2}.$$

Again for the dense molecular H_2 cloud with T = 10 K and $n_{H2} = 10^{10}$ m⁻³

$$t_{\rm ff} = 3.8 \times 10^5 \, \rm yr$$

This is a very rapid process

Pre-main-sequence evolution

- The free-fall process is ended when a quasi-static protostar is formed, i.e., it is now under hydrostatic equilibrium
- The rate of evolution is now controlled by the rate at which the star can **thermally** adjust to the contraction
- Gravitational potential energy is released over time and is the source of the protostar's luminosity

What is the time scale for the pre-main-sequence evolution of an one solar mass protostar?

Note this answers below are just orders of magnitude estimates

- A. 1 kyr
- B. 0.1 Myr
- **C.** 10 Myr
- D. 1 Gyr
- E. 10 Gyr

This time scale is just the **Kelvin-Helmholtz** timescale discussed in the previous lecture: Time for the gravitational potential energy to liberate by the contraction

Pre-main-sequence contraction times

Initial Mass (M _☉)	Contraction Time (Myr)
60	0.0282
25	0.0708
15	0.117
9	0.288
5	1.15
3	7.24
2	23.4
1.5	35.4
1	38.9
0.8	68.4

The Hayashi track

Protostar contracts

Gravitational potential energy liberates

Effective temperature steadily increases

Some electrons are ionized from heavier elements

Opacity increases due to H- ion

Temperature gradient required for energy transfer by radiation becomes too large

A large portion of the protostar becomes **convective**

Evolution follows the nearly vertical Hayashi Track

- Slightly increasing effective temperature
- Quickly decreasing luminosity

Pre-main-sequence evolutionary tracks

Evolution tracks

- A plot of the location of an object on an H-R diagram at different times during its lifetime is called an evolutionary track
- Evolutionary tracks for pre-main-sequence (PMS) objects depend on the initial mass of the protostar
- They reach the main sequence at different points

Pre-main-sequence Evolution

Evolution stages for solar mass stars

- Protostar collapse with a large convection envelope: Hayashi track
- Deuterium burning starts
- Rising temperature increases ionization and decreases opacity -> radiation core develops and gradually encompasses more of the star's mass
- More energy is released into the convective envelop, increases the luminosity
- Effective temperature continue to increase as the star is still contracting
- Temperature at the center becomes high enough for nuclear reactions to begin -> enters the main sequence

Zero-age main-sequence stars (ZAMS)

H-R diagram of stars in the solar neighborhood

- Timescale governed by nuclear reactions
 - ~10¹⁰ years for the Sun
 - Stars

$$t_{star} / t_{sun} \approx (M_{star} / M_{sun})^{-2.3}$$

- 80–90% of all stars in the solar neighborhood are main-sequence stars
- Width of the main sequence
 - Small, but nonzero
 - Possible causes:
 - Observational errors
 - Differing chemical compositions
 - Varying stages of evolution

Main-sequence evolution

- Hydrogen burns into helium
- Mean molecular weight μ increases in the core
- If nothing else changes, what does the pressure do?

$$P_t = \frac{\rho kT}{\mu m_H} + \frac{1}{3}aT^4$$
. Decrease!

- Insufficient pressure to support overlying layers
- Core gets slowly compressed
- Virial theorem: half of the gravitational energy goes into heat
- Core temperature increases
- More efficient nuclear reaction
- Both luminosity and effective temperature increase

Evolution off the main sequence I

- Star uses up its initial supply of H in the core
- Core contracts, temperature and density in the region around the core increases and ignites H burning in a shell

Hydrogen shell burning

- Helium core steadily increases in mass but the temperature is not high enough to ignite helium nuclear reaction
- Eventually the helium core cannot support the outer layers (Schönberg-Chandrasekhar limit) and contract rapidly on the Kelvin-Helmholtz timescale
- Gravitational energy released, envelop of the star expands, effective temperature decreases

Subgiant branch (SGB)

 \leftarrow Log₁₀ (T_e)

Evolution off the main sequence II

- Stellar envelope further expands, effective temperature further decreases
- Opacity increases due to the additional contribution of the H⁻ ion

$$dT/dr = -\frac{-3\kappa(r)\rho(r)}{4acT^3} \frac{L(r)}{4\pi r^2}$$

- Temperature gradient required for energy transport by radiation is large enough for convection to kick in
- Convection zone develops throughout the stellar interior
- Evolution follows the Hayashi track of the pre-main-sequence star, but upwards!
- Star rapidly expands and in the meantime, cools down

 \leftarrow Log₁₀ (T_e)

Evolution off the main sequence III

- For low-mass stars (<~ 1.8 M_{sun}), the helium core continues to collapse during evolution to the tip of the RGB branch
- Temperature and density continue to increase in the helium core
- Electrons are forced to occupy the lowest energy levels possible.
 - Electrons are fermions, and they cannot all occupy the same quantum state
 - They stacked into progressive higher energy states, and the core becomes electrondegenerate
 - Pressure of a completely degenerate electron gas is $P_e = K \rho^{5/3}$.
- Ultimately the temperature/density become high enough to ignite helium burning (10⁸ K)
- Temperature rapidly increases, yet the pressure of the degenerate electron gas does not increase -> no expansion to dissipate the energy -> more efficient helium burning -> explosive energy release!

Evolution off the main sequence IV

- Helium core flash "lifts" the degenerate electron gas in the core
- Dramatic changes in the stellar interior
- Helium core burning stabilizes

Helium-core-burning "main sequence"

But the lifetime is much shorter

 When helium is exhausted in the core, the star begins to burn He in a shell around the now carbon core (resulted from the triple alpha process) -> evolution is very similar to the hydrogen burning SGB and RGB branch

Asymptotic Giant Branch

- He shell burning during the AGB phase is highly temperature dependent and unstable, and intermittent helium shell flashes occur
- AGB stars have extremely low surface gravity and suffer high mass loss

 \leftarrow Log₁₀ (T_{ϱ})

Superwind and formation of planetary nebulae

Planetary Nebulae

Planetary nebulae

- Formed by the expanding gas around a white dwarf progenitor
- Got the name as they look like giant gaseous planets when viewed through a small telescope in the 19th century
- Owes the appearance to the ultraviolet light emitted by the hot, condensed central star
- UV light absorbed by the gas sounding the star, causing atoms to become excited/ionized
- Excited electrons cascade back to lower energy levels, making the nebula glow in visible light

Death of low-mass stars

Crash course by Phil Plait

Evolution of stars with intermediate mass

Observations of massive stars: Luminous Blue Variables (LBVs)

η Carinae: an 120-solar-mass star surrounded by a large nebula consisting of two lobes, each ~0.1 pc across

Historical visual magnitude of η Carinae

Observations of massive stars: Wolf-Rayet Stars

- Very hot, massive stars
- Effective temperature 25,000 K to 100,000 K
- Extreme mass loss ~10⁻⁵ solar mass per year with powerful stellar winds
- The most massive star known to date, R136a1, is a Wolf-Rayet star, estimated to be ~315x solar mass

WR 31a, surrounded by a blue bubble nebula from powerful stellar wind impacting surrounding material

Evolution of massive stars

All massive stars with >~8 solar mass probably end their life in a supernova explosion

Stellar clusters

- Very useful in studying stellar evolution, as the stars are
 - o at the same distance
 - born as the same time and with the same composition
- Can be used to find out distance and age of the cluster

B-V

Fate of massive stars

Fate of massive stars: Supernovae

The classification of supernovae

 Type II, Type Ib, and Type Ic supernovae are core-collapse supernovae associated with the death of massive stars

Core-collapse supernovae mechanism

- Recall Fe is located at the peak of the binding energy per nucleon curve, nuclear fusion stops to release energy at iron
- The core has very high T, supported by thermal electron degeneracy pressure, and electrons in the core have extremely high energies – but no additional energy input
- Under this extreme conditions, two processes occur

$$^{56}_{26}$$
Fe + $\gamma \rightarrow 13^{4}_{2}$ He + $4n$
 $^{4}_{2}$ He + $\gamma \rightarrow 2p^{+} + 2n$.

Neutron formation

$$p^+ + e^- \to n + \nu_e.$$

- Photodisintegration removes thermal pressure;
 Neutron formation removes electron degeneracy
 pressure nothing supports the entire envelop of the star!
- Core goes through homologous free-fall collapse in a very short time!

The onion-like interior of an evolved massive star through core silicon burning

Core-collapse supernovae: Energy release

- During the collapse, speeds can reach 70,000 km/s (~0.2 c)
- Within <1 s, a volume of the size of Earth can been compressed down to ~50 km, ~size of Rhode Island
- Releases energy of ~10⁴⁶ J (homework problem) in days/months, equivalent to the total output of the 100 Sun-like stars for its entire lifetime, 10 billion years!

Supernova Explosion

- Catastrophic core collapse results in a blast wave sweeping outward as a shock
- Shock encounters the infalling outer material and becomes an accretion shock
- The accretion shock continues to march through the star's envelope, drive the materials outward, and heats them up
- When the materials become optically-thin, a tremendous optical display results, with a peak (visible) luminosity of 10⁹x solar luminosity, capable of competing with the brightness of the entire galaxy!

Supernova lightcurves

Supernova Remnants

Crab Nebula (SN 1054A)

Cassiopeia A (SN 1671A?)

SN 1987A (in LMC)

Supernova Remnants

Cassiopeia A

