Phys 321: Lecture 12 Large-Scale Structures

Prof. Bin Chen, Tiernan Hall 101, bin.chen@njit.edu

Outline

- 27.1 The Extragalactic Distance Scale
- 27.2 The Expansion of the Universe
- 27.3 Cluster of Galaxies

Parallax

$$d = \frac{1}{p''} \text{ pc.}$$

- 1 pc ≈ 3.262 light year
- Measured parallax angle of 1" gives a distance of 1 pc
- Smaller parallax angle -> larger distance

The Gaia Space Telescope

Gaia Data Release #2

→ HOW MANY STARS WILL THERE BE IN THE SECOND GAIA DATA RELEASE?

position & brightness on the sky

1 692 919 135

surface temperature 161 497 595 1 383 551 713

red colour

blue colour

1 381 964 755

parallax and proper motion

14 099 Solar System

variable sources

radial velocity 224 631

1 331 909 727

amount of dust along the line of sight

87 733 672

radius & luminosity 76 956 778

→ GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM

Even Gaia can only go up to ~50 kpc — Galactic scale. How about further distances?

Climbing the Cosmic Distance Ladder

Cepheid variables

- For a class of variable stars, there is a tight relationship in absolute magnitude and periods
- Can be used as a standard candle

$$M_{\it Cepheids} \approx -1 {
m to} -7$$

Type la Supernovae

- Type Ia Supernovae has a welldetermined absolute magnitude at maximum light, can be used a standard candle at greater distances
- An inverse correlation between maximum brightness and the rate of decline of its light curve

$$M_{SNIa} \approx -19.3 \pm 0.03$$

For Novae

$$M_V^{\text{max}} = -9.96 - 2.31 \log_{10} \dot{m}$$

Secondary Distance Indicators: Luminosity Functions I

Globular Cluster Luminosity Function

Planetary Nebula Luminosity Function

Secondary Distance Indicators: Luminosity Functions II

Luminosity function of Galaxy Clusters

Secondary Distance Indicators: Galactic Kinematics

Tully-Fisher Relation for spirals

D-σ relation for ellipticals (modified version of the Faber-Jackson relation but tighter)

Distance Indicators: A Summary

	Uncertainty for	Distance to	
	Single Galaxy	Virgo Cluster	Range
Method	(mag)	(Mpc)	(Mpc)
Cepheids	0.16	15 - 25	29
Novae	0.4	21.1 ± 3.9	20
Planetary nebula luminosity function	0.3	15.4 ± 1.1	50
Globular cluster luminosity function	0.4	18.8 ± 3.8	50
Surface brightness fluctuations	0.3	15.9 ± 0.9	50
Tully-Fisher relation	0.4	15.8 ± 1.5	> 100
D – σ relation	0.5	16.8 ± 2.4	> 100
Type Ia supernovae	0.10	19.4 ± 5.0	> 1000

Hubble's Law of Universal Expansion

$$v = H_0 d$$

The Expansion of Space

The larger the distance, the faster it expands!

The Cosmological Redshift

The cosmological redshift

The Cosmological Distance

Non-relativistic

$$d = \frac{cz}{H_0}$$

Relativistic

$$d \simeq \frac{c}{H_0} \frac{(z+1)^2 - 1}{(z+1)^2 + 1}$$

Hubble's Constant

$$H_0 = 100h \text{ km s}^{-1} \text{ Mpc}^{-1}.$$

$$[h]_{\text{WMAP}} = 0.71^{+0.04}_{-0.03}.$$

In conventional units:

$$H_0 = 3.24 \times 10^{-18} h \text{ s}^{-1}$$

$$[H_0]_{\text{WMAP}} = 2.30 \times 10^{-18} \text{ s}^{-1}$$

The Hubble Time

Assuming the expansion remains to have a constant velocity

$$d = v t_H = H_0 d t_H$$

and so the **Hubble time** is

$$t_H \equiv \frac{1}{H_0} = 3.09 \times 10^{17} h^{-1} \text{ s} = 9.78 \times 10^9 h^{-1} \text{ yr}.$$

Using WMAP values,

$$t_H = 4.35 \times 10^{17} \text{ s} = 1.38 \times 10^{10} \text{ yr}.$$

The Local Group

Virgo Cluster

- The Milky Way is part of the Local Group which is part of the Virgo Cluster
- Located in the direction of constellation Virgo
- 1300 galaxies in this group

Local Supercluster

