Phys 321: Lecture 11 The Big Bang Theory

Prof. Bin Chen, Tiernan Hall 101, bin.chen@njit.edu

SUWALI

Phil Plait's Crash Course

The Big Bang Theory

- The prevailing cosmological model for the Universe
- Main evidence
 - The Hubble's Law
 - The cosmic microwave background radiation (CMB)
 - The abundance of light elements

Hubble's Law and the Expansion of Space

Can be explained by expansion of space + cosmological principle: the Universe is homogeneous and isotropic on a large enough scale

Cosmological Redshift

Cosmological Redshift results from the expansion of space itself

Let R be the scaling factor of the space when the light is emitted, with $R_0 = 1$ at present day t_0

$$Z = \frac{\lambda_0 - \lambda}{\lambda} = \frac{R_0 - R}{R}$$

$$R = R_0 / (1+z) = 1/(1+z)$$

E.g., Looking back at galaxies at z = 6, the space is 7 times closer

The cosmic microwave background

- In 1948, Ralph Alpher and Robert Herman predicted a "leftover heat" of the big bang has a blackbody temperature of ~5 K.
- Due to the expansion of the space as well as redshift of the light
- In 1964, Arno Penzias and Robert Wilson discovered a 3 K blackbody background in microwave wavelengths using the Holmdel Horn Antenna

The cosmic microwave background

CMB: The most-precisely measured black body spectrum in nature

- About 377,000 years after the big bang (redshift of z = 1100), the universe cooled enough for lots of protons and electrons combined to form neutral atoms (~3,000 K – recall the Saha Equation)
- At that moment the Universe becomes transparent (optically thin)
- Photons decouple from matter and stream freely in space. They come off the surface of last scattering
- When we receive the photons today, they become highly redshifted, resulting in the much cooler 2.725 K blackbody radiation—the CMB

The CMB: A derivation

Let R be the scaling factor of the (expanding) space, with $R_0 = 1$ at present day

Recall energy density of radiation field is $u = aT^4$

Energy conservation says $uV = u_0V_0$

Which gives
$$R^3 a T^4 = a T_0^4$$

However, the energy of each photon we receive is redshifted:

$$(\lambda_0 - \lambda) / \lambda = (R_0 - R) / R = z$$
 or $R = R_0 / (1+z) = 1/(1+z)$

A photon with λ_0 at present time has a wavelength $\lambda = R\lambda_0$ at other times. So we need another factor of R on the left

$$R^4 a T^4 = a T_0^4$$
 So $T_0 = RT = T / (1+z)$

T = 3,000 K when the universe becomes transparent, z = 1,100

All-sky CMB Observations

- CMB observations tell us the cosmological principle is correct: the Universe is highly isotropic.
- The figure above shows anisotropies of the CMB at 1/100,000 level, possibly generated by tiny quantum fluctuations of matter during the earlier expansion of the universe

Big Bang Nucleosynthesis

- Between about 3-20 minutes after the Big Bang, the temperature and pressure of the universe allow nuclear fusion to occur
- Big Bang produces about 1 neutron for every 7 protons
- Nucleosynthesis results in 75% hydrogen and 25% helium by mass, which is the amount we find today from old galaxies!

