Part II @rinit ;initialize the IDL session for RADYN readradyn ; reads RADYN output with the default name 'radyn_out.cdf readradyn, 'radyn_out.F11_d4_Ec25_10s.cdf' ; reads RADYN output file with specific name readradyn,'radyn_out.cdf', dt_interval=1.0 ; reads that RADYN output file but only reading every 1 s. readradyn help ; list all the RADYN variables help, z1t, timet, ndep print,interpol(taut[*,0],z1t[*,0],0.) help,z1t,cmass1t,tg1t,d1t,ne1t,vz1t,n1t,pg1t ; some of the most useful hydrodynamic help,bheat1t,bmom1t,f20t ; a few flare specific variables. plot,timet,f20t ; plots the injected beam flux as a function of time. plot,timet,tg1t[0,*] ; Plot the temperature at the top of the corona as a function of time *Quesiton 9* mxmovie, z1t*1e-5, tg1t, /ylog, id = timet ; animated plot of temperature as a function of height ***If this previous command does not work, and if you are running XQuartz 2.7.11 run these commands in the Terminal: sudo mv /opt/X11/lib/libXt.6.dylib{,.bak} sudo cp /opt/X11/lib{/flat_namespace,}/libXt.6.dylib mxmovie, z1t*1e-5, tg1t, yr=[3000,100000], id = timet ; zoom-in on chromospheric temperatures mxmovie, z1t*1e-5,alog10(tg1t),z1t*1e-5,bheat1t/2000 + 3.5,/ps, id=timet ; plot temperature and beam heating rate as a function height print,timet[78] interpol(tg1t[*,78],z1t[*,78]/1e5, 900.) interpol(tg1t[*,0],z1t[*,0]/1e5, 900.) mxmovie, z1t*1e-5, n1t[*,8,2,*]/totnt[*,2,*], id = timet ; plot the ionization fraction He III / (He I + He II + He III) *Question 15* rad2plot rad2plot, z1t*1e-5, alog10(tg1t), bheat1t, 6.5 ; plot temperature and beam heating rate at 6.5 s on same plot rad2plot, z1t*1e-5, alog10(tg1t), bheat1t, 6.5, /oplot_t0,xr=[-100,2000] rad2plot, z1t/1e5, trl1t, bheat1t, 6.5, xr=[-100,1500],yr=[0,1.5e4],y2r=[0,1.5e4] rad2plot, z1t/1e5, trl1t + coolt1t, bheat1t, 6.5, xr=[-100,1500],yr=[0,1.5e4],y2r=[0,1.5e4] for i =0,40 do print,irad[i],jrad[i],ielrad[i],alamb[i],coolt[114,i,78] print,tg1t[114,78], ne1t[114,78] mxmovie, z1t*1e-5, vz1t*1e-5,id=timet ;; look at evolution of gas rad2plot,z1t/1e5,vz1t/1e5,alog10(pg1t),1.,xr=[-100,1500],yr=[-5,150],y2r=[0,6],/oplot_t0 rad2plot,z1t/1e5,vz1t/1e5,alog10(tg1t),1.,xr=[-100,1500],yr=[-20,150],y2r=[3,7] rad2plot,z1t/1e5,vz1t/1e5,alog10(tg1t),1.,xr=[-100,1500],yr=[-20,150],y2r=[3,7] rad2plot,z1t/1e5,vz1t/1e5,alog10(tg1t),6.5,xr=[-100,1500],yr=[-20,150],y2r=[3,7] rad2plot,z1t/1e5,vz1t/1e5,alog10(pg1t),9.9,xr=[-100,1500],yr=[-5,150],y2r=[1,6],/oplot_t0 *Question 21* rad2plot,z1t/1e5,vz1t/1e5,alog10(pg1t),0.2,xr=[-100,1500],yr=[-5,120],y2r=[.1,6],/oplot_t0 ad2plot,z1t/1e5,vz1t/1e5,alog10(tg1t),0.1,xr=[800,1500],yr=[-5,120],y2r=[3.5,6],/oplot_t0 *Question 23a* rad2plot,z1t/1e5,vz1t/1e5,alog10(pg1t),9.9,xr=[-100,1500],yr=[-5,100],y2r=[1,6],/oplot_t0 rad2plot,z1t/1e5,vz1t/1e5,alog10(d1t),6.5,xr=[-100,1500],yr=[-5,100],y2r=[-15,-7],/oplot_t0 rad2plot, z1t*1e-5, alog10(tg1t), bheat1t, 6.5,xr=[-100,1500] ; plot temperature and beam heating rate at 6.5 s on same plot *Question 26* rad_thinline_intensity,'Fe_XXI_1354', intensity1354, contrib1354 plot,timet,intensity1354 rad2plot,z1t*1e-5,contrib1354,vz1t*1e-5,6.5 radxdetailed radxdetailed, user_mu=4, continuum, line1, line2 help,line1,/str mxmovie, line1.lam, line1.int, line1.int0, xr= [6560,6566] device,decom = 0 loadct,39 nlam = n_elements(line1.lam[*,0]) time_index = 78 ; t=6.5s print,timet[78] contour,line1.contribf[*,*,time_index],z1t[*,time_index]*1e-5,line1.lam[*,time_index],/fill,nlev = 256, xr = [0,2000],yr = [6566,6560],ytitle='Wavelength (A)',xtitle='Height (km)',xmargin=[10,10], ystyle=1+8 loadct,0,/silent oplot,line1.int[*,time_index]*2000./(max(line1.int[*,time_index])),line1.lam[*,time_index],color=150,linestyle=2,thick=3 oplot,[0,2000],6562.95 + [0,0],linestyle=1 loadct,39,/silent oplot,z1t[*,time_index]/1e5,vz1t[*,time_index]/cc * 6562.95 * (-1.0) + 6562.95,color=255,thick=3,linestyle=0 axis,yaxis=1,yr=[3,5],/save,ytitle='log_10 Temperature' oplot,z1t[*,time_index]*1e-5,alog10(tg1t[*,time_index]),thick=3,color=255,linestyle=3 mxmovie,continuum.lam,continuum.int,continuum.int0,/xlog,/ylog,id=timet plot,continuum.lam[*,78],continuum.int[*,78]-continuum.int0[*,78],xr=[3200,5200],psym=-1,yr=[0,1e6],/ystyle,/xstyle,xtitle=’wavelength (angstroms)’, ytitle=’intensity mu=0.95 (erg/s/cm2/sr/Ang)’ print,interpol(continuum.int[*,78]-continuum.int0[*,78],continuum.lam[*,78],3600.)/interpol(continuum.int[*,78]-continuum.int0[*,78],continuum.lam[*,78],4170.) ***Part III*** readradyn,'radyn_out.3.5f11.cdf',dt_int=0.1,/ebal mxmovie, z1t*1e-5,alog10(tg1t),z1t*1e-5,bheat1t/6000 + 3.5,/ps, id=timet loadct,39 & device,decomp=0 emovie,id=timet,xr=[-0.1,1.5],yr=[-1e15,1e15] mxmovie,z1t/1e5,vz1t/1e5,id=timet,yr=[-100,100] rad2plot,z1t/1e5,vz1t/1e5,alog10(d1t),1.,xr=[-100,1500],yr=[-100,100],y2r=[-14,-6],/oplot_t0 rad2plot,z1t/1e5,vz1t/1e5,alog10(d1t),6.5,xr=[-100,1500],yr=[-100,100],y2r=[-14,-6],/oplot_t0 rad2plot,z1t/1e5,alog10(tg1t),alog10(d1t),1,xr=[-100,1500],yr=[3,7],y2r=[-14,-6],/oplot_t0 rad2plot,z1t/1e5,alog10(tg1t),alog10(d1t),6.5,xr=[-100,1500],yr=[3,7],y2r=[-14,-6],/oplot_t0 rad2plot,z1t/1e5,alog10(tg1t),alog10(pg1t),6.5,xr=[-100,1500],yr=[3,7],y2r=[1,4],/oplot_t0 plot,z1t[*,10]/1e5,tg1t[*,10],yr=[2500,1e7],/ylog,xr=[-100,1500],/xstyle,/ystyle oplot,z1t[*,65]/1e5,tg1t[*,65],linestyle=2 print,interpol(alog10(cmass1t[*,10]), tg1t[*,10],9500) ; t=1s print,interpol(alog10(cmass1t[*,65]), tg1t[*,65],9500) ; t=6.5s print,interpol(z1t[*,65]/1e5, tg1t[*,65],1e5) print,interpol(z1t[*,65]/1e5, tg1t[*,65],9500.) print,interpol(z1t[*,10]/1e5, tg1t[*,10],1e5) print,interpol(z1t[*,10]/1e5, tg1t[*,10],9500.) loadct,39 & device,decomp=0 emovie Part II: The high beam flux simulation: readradyn,'radyn_out.f11.cdf' readradyn dem = rdem(t) plot, alog10(t), dem[*,78],/ylog, xr = [4.5,5.1] dem_tarr =dem*0. for i =0,n_elements(timet)-1 do dem_tarr[*,i]=t mxmovie, alog10(dem_tarr),dem,yr=[1e22,1e24],xr=[4,8] radxdetailed radxdetailed, user_mu=4, continuum, line1, line2 help,line1,/str mxmovie, continuum.lam, continuum.int,/xlog,/ylog mxmovie, continuum.lam, continuum.int - continuum.int0, xr= [0,8000] mxmovie, line1.lam, line1.int, line1.int0, xr= [6560,6566] bj_ratio =fltarr(n_elements(timet)) for i =0,n_elements(timet)-1 do begin bj_ratio[i]=interpol(continuum.int[*,i]-continuum.int0[*,i],continuum.lam[*,i],3500.) /interpol(continuum.int[*,i]-continuum.int0[*,i],continuum.lam[*,i],4170.) halpha_lc = fltarr(n_elements(timet)) & heii304_lc = fltarr(n_elements(timet)) for i =0,n_elements(timet)-1 do halpha_lc[i] = tsum(line1.lam[*,i],line1.int[*,i]) for i =0,n_elements(timet)-1 do heii304_lc[i] = tsum(line2.lam[*,i],line2.int[*,i]) plot,timet,heii304_lc/max(heii304_lc) oplot,timet,(halpha_lc-halpha_lc[0])/max(halpha_lc-halpha_lc[0]),linestyle=2 ;;plot,line1.lam[*,30],line1.int[*,30],xr = [6560,6566] & oplot,line1.lam[*,30],line1.int0[*,30],linesty = 2 device,decom = 0 loadct,39 nlam = n_elements(line1.lam[*,0]) time_index = 78 ; t=6.5s print,timet[78] ;contour,line1.contribf[*,*,time_index]*(dzt[*,time_index]#replicate(1,nlam)),z1t[*,time_index]*1e-5,line1.lam[*,time_index],/fill,nlev = ;256, xr = [0,2000],yr = [6560,6566],ytitle='Wavelength (A)',xtitle='Height (km)',xmargin=[10,10], ystyle=1+8 ;axis,yaxis=1,yr=[3,5],/save,ytitle='log_10 Temperature' ;oplot,z1t[*,time_index]*1e-5,alog10(tg1t[*,time_index]),thick=3,color=255 contour,line1.contribf[*,*,time_index],z1t[*,time_index]*1e-5,line1.lam[*,time_index],/fill,nlev = 256, xr = [0,2000],yr = [6560,6566],ytitle='Wavelength (A)',xtitle='Height (km)',xmargin=[10,10], ystyle=1+8 loadct,0,/silent oplot,line1.int[*,time_index]*2000./(max(line1.int[*,time_index])),line1.lam[*,time_index],color=150,linestyle=2,thick=3 oplot,[0,2000],6562.95 + [0,0],linestyle=1 loadct,39,/silent oplot,z1t[*,time_index]/1e5,vz1t[*,time_index]/cc * 6562.95 * (-1.0) + 6562.95,color=255,thick=3,linestyle=0 axis,yaxis=1,yr=[3,5],/save,ytitle='log_10 Temperature' oplot,z1t[*,time_index]*1e-5,alog10(tg1t[*,time_index]),thick=3,color=255,linestyle=3 Now, load in the 3.5F11 model (higher heating rate): readradyn,'../runs/radyn_out.3.5F11_d4_Ec25.finished.cdf',dt_int=0.1,/ebal loadct,39 & device,decompose=0 rad2plot, z1t/1e5, trl1t+coolt1t, bheat1t, 0.4, xr=[-100,1500],yr=[0,2e4],y2r=[0,2e4] 3.5F11: Identify where beam heating is greater than radiative lossess at early time use emovie to identify Which detailed element important? There's one that clearly dominates the others. What downward velocity then develops? What is its maximum downward velecity (when, what temperature, and what density?) What is the column mass at 10,000 K? Follow the evolution of the downward velocity). When does it reach ~10,000 K? What is the density now? What is the column mass at 10,000 K? Look at Ca II K. What is the Over the summer: Calculate the FeXXI spectra as a function of time for each model and compare to observations. Look at detailed radation in CC, what are the dominant radiative losses in detail? LTE pops in CC? n1t vs. nstart The beam hits at what height? Does beam heating go to photosphere? Then look at photosphere with emovie. What is contributing to the heating in teh photosphere. This is called radiative backwarming.