Hale COLLAGE 2017 Lecture 21

Radiative processes from energetic particles II: Gyromagnetic radiation

Bin Chen (New Jersey Institute of Technology)
Previous lectures

1) Magnetic reconnection and energy release
2) Particle acceleration and heating
3) Chromospheric evaporation, loop heating and cooling

Following lectures:
How to diagnose the accelerated particles and the environment?
• What?
• Where?
• When? → How?
Outline

• Radiation from energetic particles
 • Bremsstrahlung → Previous lecture
 • Gyromagnetic radiation (“magnetobremsstrahlung”) → This lecture
• Other radiative processes → Briefly in the next lecture
 • Coherent radiation, inverse Compton, nuclear processes

• Suggested reading:
 • Synchrotron radiation: Chapter 5 of “Essential Radio Astronomy” by Condon & Ransom 2016
 • Gyroresonance radiation: Chapter 5 of Gary & Keller 2004
 • Gyrosynchrotron radiation: Dulk & Marsh 1982

• Next two lectures: Diagnosing flare energetic particles using radio and hard X-ray imaging spectroscopy
Radiation from an accelerated charge

Larmor formula:
\[
\frac{dP}{d\Omega} = \frac{q^2}{4\pi c^3} a^2 \sin^2 \theta \quad P = \frac{2q^2}{3c^3} a^2
\]

Relativistic Larmor formula:
\[
\frac{dP}{d\Omega} = \frac{q^2}{4\pi c^3} \frac{(a_\perp^2 + \gamma^2 a_\parallel^2)}{(1 - \beta \cos \theta)^4} \sin^2 \theta
\]
\[
P = \frac{2q^2}{3c^3} \gamma^4 (a_\perp^2 + \gamma^2 a_\parallel^2)
\]

Radio and HXR/gamma-ray emission in flares:
• Acceleration experienced in the Coulomb field: bremsstrahlung
• Acceleration experienced in a magnetic field: gyromagnetic radiation
Gyromagnetic radiation

• Gyromagnetic radiation (sometimes called “gyroemission”) is due to the acceleration experienced by an electron as it gyrates in a B field due to the Lorentz force.

• Acceleration is perpendicular to v_e
Gyroemission from a single electron

- Let’s start from Larmor’s formula:

\[
\frac{dP}{d\Omega} = \frac{q^2}{4\pi c^3} a^2 \sin^2 \theta \quad P = \frac{2q^2}{3c^3} a^2
\]

- Perpendicular acceleration: \(a_\perp = \omega_{ce} v_\perp \), where \(\omega_{ce} \) is the (angular) electron gyrofrequency

\[
\omega_{ce} = 2\pi v_{ce} = \frac{eB}{m_e c} \approx 2\pi \cdot 2.8B \text{ MHz}
\]

- (Direction integrated) Larmor’s equation becomes:

\[
P = \frac{2e^2}{3c^3} \omega_{ce}^2 v_\perp^2
\]

- Relativistic case:

\[
P = \frac{2e^2}{3c^3} \gamma^4 \omega_B^2 v_\perp^2, \text{ with } \omega_B = \frac{eB}{\gamma m_e c} = \frac{\omega_{ce}}{\gamma}
\]
Radiation pattern: non-relativistic

• Larmor’s Equation

\[\frac{dP}{d\Omega} = \frac{q^2}{4\pi c^3} a^2 \sin^2 \theta \]

Dipole pattern

Null at \(\theta = 0 \)

Observer
Radiation pattern: relativistic

- Relativistic case ($\gamma \gg 1$)
 - In the rest frame of the electron

 $$\frac{dP'}{d\Omega'} = \frac{q^2}{4\pi c^3} a^2 \sin^2 \theta'$$

- In the observer’s frame, radiation pattern found from Lorentz transform from the electron rest frame

 Null occurs at $\theta = \pm \arccos(1/\gamma)$

Strongly beamed forward along the direction of the electron!
Relativistic gyroemission: sharply pulsed radiation

\[\Delta t_p \propto \frac{1}{\gamma^3 \omega_B} = \frac{1}{\gamma^2 \omega_{ce}} \]

\[\Delta t_p = t \text{ (end of pulse)} - t \text{ (start of pulse)} \]

\[= \frac{\Delta x}{v} + \frac{x - \Delta x}{c} - \frac{x}{c} = \frac{\Delta x}{v} \left(1 - \frac{v}{c} \right) \ll \frac{\Delta x}{v} = \Delta t \]
Power spectrum \(P(\nu) \)

- For a nonrelativistic electron, radiation field \(E(t) \) is a sinusoid with frequency \(\omega_{ce} \)
- Power spectrum is a single tone at the electron gyrofrequency
Power spectrum $P(\nu)$

- As the electron speed picks up, mild beaming effect takes place, $E(t)$ is non-sinusoidal
- Low harmonics of electron gyrofrequency show up in the power spectrum

Can you identify two effects in the $E(t)$ plot?
Power spectrum $P(\nu)$

- When the electron is relativistic $E(t)$ is highly pulsed
- The power spectrum shows contribution from many harmonics
Types of gyromagnetic radiation

- Gyromagnetic radiation behaves very differently with different electron distributions
- A precise general expression valid for all electron energies is *not* available. Instead, we use approximate expressions for various electron energy regimes

- Non-relativistic or thermal ($\gamma - 1 \ll 1$):
 Gyroresonance or cyclotron radiation
- Mildly relativistic ($\gamma - 1 \sim 1 - 5$):
 Gyrosynchrotron radiation
- Ultra-relativistic ($\gamma - 1 \gg 1$):
 Synchrotron radiation
Thermal gyroresonance radiation

• At a given B, thermal gyroresonance radiation is essentially a “spectral line” centered at $s\nu_{ce}$, where $s = 1, 2, 3 \ldots$ is the harmonic number

• Particularly relevant above active regions at microwave frequencies – Why?

• Spectral width of a given resonance line

 $$\Delta \nu / s\nu_{ce} \approx \sqrt{\frac{k_B T}{m_e c^2}}$$

 Very narrow in the corona (~1/3000)

• High opacity only at these “resonance layers”
Thermal gyroresonance opacity

- Two different wave modes: ordinary (o mode) and extraordinary (x mode, gyrates with the same sense of rotation as an electron)

\[\tau_{x,o}(s, \nu, \theta) = 0.0133 \frac{n_e L_B(\theta)}{\nu} \frac{s^2}{s!} \left(\frac{s^2 \sin^2 \theta}{2 \mu} \right)^{s-1} F_{x,o}(\theta) \]

Where \(F_{x,o}(\theta) \approx (1 - \sigma \cos \theta)^2 \) and \(\mu = m_e c^2 / k_B T \)

\(\sigma = -1 \) for x mode and 1 for o mode, \(L_B \) is the scale length of B

- Opacity for two different wave modes

Why?

Which mode has a larger opacity? Why?
Thermal gyroresonance opacity

Figure 5.1. The (integrated) optical depth of the $s = 2$, 3, 4 gyroresonance layers at 5 GHz (left, middle and right panels, respectively) as a function of the angle μ between the line of sight and the magnetic field direction. The temperature in the source is 3×10^{6} K, and the magnetic scale height L_B is 10^9 cm. In each panel the solid line is the optical depth of the layer in the x mode, and the dashed line is the optical depth in the o mode. The dotted lines show the optical depth obtained using the circularly-polarized mode approximation (2). The density used for this calculation was decreased as s increases to simulate the decrease of n_e with height: the values are shown in each panel.

- The opacity drops sharply towards small μ in both modes. At angles very close to $90 \pm \theta$, the o mode opacity dips sharply since it must be a factor of θ smaller than the x mode opacity exactly at $\mu = 90^\circ$ (e.g., Bornatici et al. 1983, Robinson 1991). By (1), the opacity is zero at $\mu = 0^\circ$ for $s > 1$.

- For each increase of s by 1, the opacity in a given mode at a given angle drops by slightly more than 2 orders of magnitude. This is largely due to the θ^s dependence of (1). The importance of this large change in opacity from one layer to the next is that a given harmonic layer is likely to be either optically thick over a wide range of angles μ, or else optically thin everywhere.

Typically, optically thick at $S=2$ (o-mode) and 3 (x-mode)

From White 2004
Gyroresonance emission of a sunspot

Figure 5.2. Plots of the gyroresonance layers of a dipole sunspot model (upper panel) and the predicted brightness temperatures resulting from an observation of such a spot (lower panel), viewed nearly vertically (actually $\pm 10^\circ$ off vertical). In the upper panel the thin solid lines are magnetic lines of force and the dotted lines are the $s=1, 2, 3, 4$ gyroresonance layers, with $s=4$ the highest and $s=1$ the lowest layer. Where the gyroresonance layers are optically thick (i.e., $\mu \approx 1$) in the o mode, they have been overplotted with a thick solid line. Except in the $s=1$ layer where the x mode does not propagate, a layer which is optically-thick in the o mode is also thick in the x mode. If a gyroresonance layer is optically thick in the x mode but not in the o mode, it is overplotted with a thick dashed line. In the lower panel, the x-mode brightness temperature is shown by a solid line and the o mode brightness temperature by a dashed line. The frequency is 5.0 GHz, the dipole is buried at a depth of 1.2×10^9 cm, and the maximum field strength at the surface is 2500 G. In the model temperature increases with radial height from 1.0×10^6 K at the base of the corona (zero height in this case) to 3.0×10^6 K at about 15000 km.

Temperature of order 10^5 K, which provides the outer boundary of the radio source.

From White 2004
Actual observation from the VLA

Q: Which polarization is the x-mode?

Made by B. Chen for AR 12158 (unpublished)
Nonthermal synchrotron radiation

- Ultra-relativistic \((\gamma - 1 \gg 1)\)
- From a single electron, adjacent "spikes" are separated in frequency by only \(\Delta \nu = \frac{\nu_{ce}}{\gamma}\)
- Fluctuations in electron energy, B strength, or pitch angle cause "broadening" of the spikes
- Spectrum is virtually continuous
Synchrotron spectrum $P(\nu)$ from a single electron

Most of the energy is emitted at $\nu \approx \nu_c$, where

$$\nu_c = \frac{3}{2} \gamma^2 \nu_{ce} \sin \alpha$$

is the critical frequency (α is the pitch angle)
Synchrotron spectrum of an optically thin source

• One electron of electron E nearly emits all energy at a single frequency $\nu \approx \gamma^2 \nu_{ce}$

• Optically thin source \rightarrow to get emissivity j_ν in $(\nu, \nu + d\nu)$, just add $P(\nu) = -dE/dt$ up from all electrons within $(E, E + dE)$:

$$j_\nu d\nu = -\frac{dE}{dt} f(E) dE$$

• Assume a power law electron energy distribution:

$$f(E) = C n_e E^{-\delta}$$

• The emissivity $j_\nu \propto \nu^{-(\delta - 1)/2}$
Synchrotron spectrum: optically thick regime

- Synchrotron brightness cannot be arbitrarily high → self-absorption becomes important at low frequencies
- The spectrum has a power law of slope $5/2$ for optically thick source
Gyrosynchrotron radiation

• From mildly relativistic electrons (~1 to several MeV)

• Expressions for the emission and absorption coefficient are much more complicated than the nonrelativistic (thermal gyroresonance) and ultra-relativistic (synchrotron) case

 “exact” approximate
 Ramaty 1969 Petrosian 1981
 Klein 1987
Spectrum is also more complicated

Klein (1987)
Variation with B

$\nu_{pk} \sim B^{3/4}$

$B=1000 \text{ G}$
$B=500 \text{ G}$
$B=200 \text{ G}$
$B=100 \text{ G}$

Arbitrary

Frequency (GHz)
$n_{\text{rel}} = 1 \times 10^7 \text{ cm}^{-3}$

$n_{\text{rel}} = 5 \times 10^6 \text{ cm}^{-3}$

$n_{\text{rel}} = 2 \times 10^6 \text{ cm}^{-3}$

$n_{\text{rel}} = 1 \times 10^6 \text{ cm}^{-3}$

$\nu_{\text{pk}} \sim n_{\text{rel}}^{1/4}$
\[q = 20 \]
\[q = 40 \]
\[q = 60 \]
\[q = 80 \]
\[n_{pk} \sim \theta^{1/2} \]

Variation with LOS

\(\theta = 80^\circ \)
\(\theta = 60^\circ \)
\(\theta = 40^\circ \)
\(\theta = 20^\circ \)
(Gyro)synchrotron spectrum

Schematic diagram from Dulk & Marsh 1982
Gyrosynchrotron in flares

Flare observed by SOHO, GOES, and Nobeyama Radioheliograph at 17 and 34 GHz
- Microwave: gyrosynchotron
- EUV/SXR: hot thermal plasma
A schematic model of a flare loop
Summary

- **Gyromagnetic radiation** results from electrons accelerated in the magnetic field.
- Three different regimes based on energy of the source electrons: gyroresonance, gyrosynchrotron, and synchrotron.
- **Gyroresonance** can be used to diagnose B fields in active regions.
- **Gyrosynchrotron** can be used to probe flare-accelerated electrons and diagnose B field in flare loops.
- **Synchrotron** is more relevant to cosmic sources, but still possible on the Sun (e.g., the mysterious sub-THz flare component).