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RADIATIVE-HYDRODYNAMIC (RHD) MODELING

▸ Suggested reading (on Prof Longcope's website): 

▸ Allred et al. 2015 ApJ 

▸ Carlsson 1998



DYNAMICS WITH NT PARTICLES

RADIATIVE-HYDRODYNAMIC (RHD) MODELING

▸ Goals for today's lecture: 

▸ Motivate modeling the chromosphere 

▸ Introduce the essentials of radiative-hydrodynamics 

▸ On Monday:  will do an IDL-based lab with RADYN 
(Carlsson & Stein 1997 ApJ) model output  

▸ analyze the physics of chromospheric evaporation and 
condensation resulting from electron beam heating
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OBSERVATIONAL MOTIVATION FOR MODELING THE RADIATIVE TRANSFER

▸ White-light continuum radiation 

▸ chromospheric?  photospheric?  A combination? 

▸ T ~ 9000 - 10,000 K blackbody(-like) in optical and NUV

Hawley & Fisher (1992)
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OBSERVATIONAL MOTIVATION FOR MODELING THE DYNAMICS
▸ Redshifts in H𝛂 in solar flares: signatures of chromospheric 

condensation (heated, downflowing compressions)

Ichimoto & Kurokawa 1984: 
40-140 km/s redshifts in Hα

...Sometimes blueshifts observed tooCanfield et al. 
1990
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OBSERVATIONAL MOTIVATION FOR MODELING THE DYNAMICS
▸ Redshifts in Mg II (and other singly ionized chromospheric 

lines from IRIS data) in solar flares

Evaporation flows Condensation flows

Mg II

▸ In hard X-ray phase:  Can we understand these processes 
with electron beam heating?

Graham & Cauzzi 2015
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INGREDIENTS FOR RADIATIVE-HYDRODYNAMIC FLARE MODELING

▸ 1D model atmosphere with photosphere, chromosphere, 
transition region, and corona. 

▸ Solve the radiative-transfer, rate, and charge conservation 
equations simultaneously with the equations of mass, 
momentum, and energy conservation. 

▸ Flare heating prescription from solving the Fokker-Planck 
equation, as appropriate for partially ionized 
chromosphere.
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1D PLANE-PARALLEL MODELING

▸ All motion confined to vertical (z-direction), so what are we 
assuming?

The magnetic pressure is much greater than the gas pressure

The center of a strong magnetic flux tube



***For this lecture z=0 is at top of atmosphere; for lab z=0 is at photosphere
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TERMINOLOGY: THE HYDROGEN ATOM
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TERMINOLOGY:  LTE VS. NON-LTE

▸ LTE:  local thermodynamic equilibrium 

▸ level populations determined by temperature (collisions) 

▸ When collisional rates are high (density is high), can make use of Saha-
Boltzmann 

▸ The ratio of emissivity to opacity is the Planck function 

▸ non-LTE: 

▸ level populations affected by the radiation field (which can originate 
from somewhere else in the atmosphere) 

▸ scattering of radiation changes levels from their Saha-Boltzmann values
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RADIATIVE-HYDRODYNAMIC (RHD) MODELING
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INITIAL MODEL ATMOSPHERE (1D)
▸ Adaptive grid (Dorfi & Drury 1987) to resolve transition 

region and steep pressure gradients / shocks during flare.
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EQUATIONS OF RHD
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OPTICALLY THIN RADIATIVE LOSS FUNCTION
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OPTICALLY THIN RADIATIVE LOSS FUNCTION



TEXT
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EQUATION OF RADIATIVE TRANSFER AND PLANE-PARALLEL GEOMETRY
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EQUATION OF RADIATIVE TRANSFER AND PLANE-PARALLEL GEOMETRY
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THE CONTRIBUTION FUNCTION

▸ Integrating the contribution function over height gives 
emergent intensity 

▸ Integrating (via Gaussian quadrature sum) the emergent 
intensity over μ gives the emergent radiative flux:



DYNAMICS WITH NT PARTICLES

THE CONTRIBUTION FUNCTION:  WHY DO WE CARE?

▸ Compare emergent flux from a flare atmosphere to 
observations. 

▸ Use contribution function to determine the atmospheric 
parameters.
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OPTICALLY THICK VS. OPTICALLY THIN
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OPTICALLY THICK VS. OPTICALLY THIN
Q:  What happens in 
the energy equation if 
one assumes that all 
losses are optically 
thin?
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OPTICALLY THICK VS. OPTICALLY THIN
Q:  What happens in 
the energy equation if 
one assumes that all 
losses are optically 
thin?
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OPTICALLY THICK RADIATIVE TRANSFER: OPACITY

Rutten 2003 (lecture notes) pg. 65-67

SOURCES
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OPTICALLY THICK RADIATIVE TRANSFER: OPACITY

▸ free-free  

▸ bound-bound 

▸ bound-free 

*alpha is the respective cross section in cm2 (see Rutten 2003 lecture notes)

Mihalas 1978 (Stellar Atmospheres, 2nd Ed.)

SOURCES
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OPTICALLY THICK RADIATIVE TRANSFER: CONTINUUM OPACITY

*note:  this diagram for 
4170Å (blue) photons, pure 
hydrogen with Saha-
Boltzmann

Thomson scattering
hydrogen free-free  

H-minus bound-free

hydrogen bound-free

choices:  photosphere of O star, outer atmosphere of O star, photosphere of Vega, photosphere of the Sun
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OPTICALLY THICK RADIATIVE TRANSFER: CONTINUUM OPACITY
▸ For a flare atmosphere (open circles):

▸ A flare 
atmosphere 
has many 
sources of 
opacity
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OPTICALLY THICK RADIATIVE TRANSFER: CONTINUUM OPACITY
▸ "dissolved level continuum" opacity (see Tremblay & 

Bergeron 2009, ApJ) for hydrogen

Kowalski et al. 2015 SoPh

"dissolved level Balmer 
continuum"



DYNAMICS WITH NT PARTICLES

OPTICALLY THICK RADIATIVE TRANSFER: EMISSIVITY

▸ erg / s / cm3 / s.r. / Angstrom 

▸ bound-free for hydrogen (LTE):

(for a given principal quantum number n and temperature T)
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CONTINUUM FORMED AT T=10,000 K OVER LOW OR HIGH OPTICAL DEPTH?
▸ Photospheric-like or chromospheric-like? 

▸ Measure the Balmer jump ratio = F3600 / F4170 

▸ Measure a blue-to-red continuum ratio = F4170 / F6000

For hydrogen recombination 
radiation over low optical depth 
and T~10,000 K, Balmer jump 
ratio is close to 9-10

For hydrogen recombination 
radiation over high optical depth 
and T~10,000 K, Balmer jump 
ratio is ~2 or lower
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FLARE HEATING PRESCRIPTION IN RHD CODES

▸ Bright redshifts, bright white-light (optical) co-spatial and co-
temporal with hard X-ray emission:  nonthermal electron distributions 

▸ See Prof.  Chen's previous lecture on modeling hard X-ray emission to 
infer power-law index (ẟ), low energy cutoff (keV), and power in 
nonthermal electrons (erg / s). 

▸ In every flare loop, one must specify a nonthermal energy flux (erg / 
s / cm2) injected at the top of the loop: e.g., F11, 3.5F11, ... F13? 

▸ See Prof.  Longcope's lecture on stochastic and shock acceleration 
mechanisms;  radiative-hydro models do not model reconnection and 
initial particle acceleration/injection.
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See also Kleint et al. 2016, Kowalski et al. 2017



INPUT PARAMETERS TO RADYN
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Quite highly collimated / "beamed"



THE FOKKER-PLANCK EQUATION

▸ additional reading: 

▸ McTiernan & Petrosian 1990, Allred et al. 2015 

▸ https://hesperia.gsfc.nasa.gov/hessi/flarecode/efluxdoc.pdf 

▸ f(x, p, t) → f(z, E, mu), units of [number/cm3/keV/steradian] 

▸ time-independent solution to the Fokker-Planck equation  
where df(z,E,mu)/dt = 0 

▸ re-solved when the atmosphere has changed state
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https://hesperia.gsfc.nasa.gov/hessi/flarecode/efluxdoc.pdf


PARTIALLY IONIZED CHROMOSPHERE
▸ Energy loss rate due to elastic Coulomb collisions with 

ambient electrons and electrons bound to atoms.

▸ A ratio of about three (Hawley & Fisher 1994, Mott & Massey 1965)
*Electron beam heating [erg/s/cm3, left axis] here is at t=0s for Ec=25 keV, 5F11, ẟ=4.2
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CALCULATING BEAM ENERGY DEPOSITION RATES



TERMS CAN BE TURNED ON OR OFF IN NUMERICAL F-P SOLVER
The F-P solver in RADYN written by Joel Allred (NASA/GSFC)
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MOVIE OF ATMOSPHERIC EVOLUTION AND CONTRIBUTION FUNCTION

28
26
Å Chromospheric  

condensation28
26
Å

Simulation from Kowalski et al. 2017
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SUMMARY

▸ For modeling radiation from the chromosphere, need to include optical 
depth (absorption, scattering). 

▸ Many sources of opacity. 

▸ Modeling continuum opacity and emergent intensity provides an important 
and powerful diagnostic of the optical depth at T~10,000 K in flares. 

▸ On Monday:  will do an IDL-based lab with RADYN model output.  

▸ analyze the physics of chromospheric evaporation and condensation that 
result from electron beam heating. 

▸ Will look at a contribution function!


