# **STELLAR FLARES**

### Adam Kowalski (CU/NSO/LASP)

With significant contributions from Suzanne Hawley & Rachel Osten



Recommended reading: Hawley & Pettersen 1991, Osten et al. 2016, ApJ 832, 174

# TYPES OF STARS THAT FLARE: AN OVERVIEW

#### Stellar flares ~10<sup>28</sup> erg to 10<sup>38</sup> in radiated energy

- ▶ The Sun would not be a 'flare star' at a distance: largest few x 10<sup>32</sup> erg, 250 x10<sup>-6</sup> in white-light
- Rapidly rotating, young G-type, K-type stars
  - EK Dra, Superflare stars in Kepler, AB Dor
- Active binaries (RS CVn) tidally locked, main sequence early-type star (BV-GV) and later type sub-giant (KIV) star
  - Il Peg, HR1099, UX Ari, Algol (eclipsing), CC Eri
- Some single red clump giants
- > Pre-main sequence stars (T Tauri), some of which are in eccentric binary and flare at periastron (active accretion)
  - V773 Tau, DQ Tau
- Active late-type main sequence stars in tidally locked binary
  - BY Dra, YY Gem
- M dwarf stars, not tidally locked, but most are probably young, rapidly rotating, and main-sequence / non-accreting
  - > YZ CMi, AD Leo, EV Lac, UV Ceti, CN Leo, EQ Peg, DT Vir, AU Mic, Proxima Centauri

# TYPES OF STARS THAT FLARE: AN OVERVIEW

Stellar flares ~10<sup>28</sup> erg to 10<sup>38</sup> in radiated energy

- ▶ The Sun would not be a 'flare star' at a distance: largest few x 10<sup>32</sup> erg, 250 x10<sup>-6</sup> in white-light
- Rapidly rotating, young G-type, K-type stars
  - EK Dra, Superflare stars in *Kepler*, AB Dor
- Active binaries (RS CVn) tidally locked, main sequence early-type star (BV-GV) and later type sub-giant (KIV) star
  - Il Peg, HR1099, UX Ari, Algol (eclipsing), CC Eri
- Some single red clump giants
- > Pre-main sequence stars (T Tauri), some of which are in eccentric binary and flare at periastron (active accretion)
  - V773 Tau, DQ Tau
- Active late-type main sequence stars in tidally locked binary
  - BY Dra, YY Gem
- M dwarf stars, not tidally locked, but most are probably young, rapidly rotating, and main-sequence / non-accreting
  - YZ CMi, AD Leo, EV Lac, UV Ceti, CN Leo, EQ Peg, DT Vir, AU Mic, Proxima Centauri
- Share the property of convection in outer layers or fully convective, and can be enhanced by binarity

# THE ACTIVE M DWARFS

- By "active" we mean H alpha in emission when not flaring
  - most are rapidly rotating, near fully convective regime (M3-M6)
  - most are near saturated activity regime (L<sub>X-ray</sub> / L<sub>Bol</sub> ~ 0.001)



# THE ACTIVE M DWARFS

- By "active" we mean H alpha in emission when not flaring
  - most are rapidly rotating, near fully convective regime (M3-M6)
  - most are near saturated activity regime (L<sub>X-ray</sub> / L<sub>Bol</sub> ~ 0.001)
  - average surface magnetic field strength ~4 kG with 50% coverage fraction ("filling factor", f or X)



## M DWARFS HAVE 2–3.5X HIGHER GRAVITY THAN THE SUN

M dwarf vs. G dwarf (semi-empirical models)



Reid and Hawley (1995)

Also have hotter, denser non-flaring coronae (e.g., Osten et al. 2006)

## Active M Dwarf Chromospheres

#### The dM3e star AD Leo



Hawley & Pettersen 1991

## SO WHAT?

- larger B (but: what is the B-field environment in the corona of an M dwarf?), higher coronal density: more energy released into the footpoints, more NT particles if  $n_{NT}/n_0 \sim 1$  (Kowalski et al. 2015)
- Lecture 22: from Prof. Chen:

#### Alternative view: ALT HXR source is the primary acceleration site

Krucker & Battaglia 2014: above-the-loop-top -180 thorma footpoint 1000.0 -200 **RHESSI** imaging keV 100.0 -220 spectroscopy to infer density of accelerated un -240 10.0 electrons: n<sub>nt</sub>~10<sup>9</sup> cm<sup>-3</sup> -260 1.0 -280 SDO/AIA DEM analysis to HESSI 30-80 keV 0.1 -300 determine ambient 900 920 940 960 980 1000 energy [keV] X (arcsecs) thermal density n<sub>o</sub>  $\rightarrow$  ratio n<sub>nt</sub>/n<sub>o</sub> is close to 1  $\rightarrow$  bulk acceleration takes place within the ALT HXR source?

Similar findings were reported for partially occulted flares (Krucker et al. 2010)



## High spatial resolution footpoint "kernels" have inferred beam energy fluxes of $3x10^{11}$ $5x10^{12}$ erg s<sup>-1</sup> cm<sup>-2</sup> (3F11-5F12)

Krucker et al. 2011 (with Hinode), Kleint et al. 2016 (with IRIS)





Should consider higher beam fluxes (larger F-numbers) for M dwarf flares  $rac{1}{5}$  F13 (Kowalski + 2015, 2016, 2017)









# WHITE LIGHT A PROXY OF IMPULSIVE PHASE HEATING

- white-light: observed continuum radiation from near-UV through optical (sometimes far-UV, IR)
  - proxy for white-light on Sun is optical intensity at 6173Å (SDO/HMI)
  - proxy for white-light on M dwarfs is the Johnson U-band, but also have broad wavelength coverage spectra for detailed characterization



The Neupert Effect



Solar flare from Martinez-Oliveros et al. 2012



Gudel et al. 2002 (flare on dM5.5e Proxima Centauri)

### The Neupert Effect

Impulsive phase (U-band is white-light, proxy for hard X-rays), 10,000 K "footpoints"



Solar flare from Martinez-Oliveros et al. 2012



Gudel et al. 2002 (flare on dM5.5e Proxima Centauri)

### The Neupert Effect



Gudel et al. 2002 (flare on dM5.5e Proxima Centauri)

### The Neupert Effect



Gudel et al. 2002 (flare on dM5.5e Proxima Centauri)

▶ Note: this flare ~10<sup>32</sup> erg in radiated energy

Solar flare from Martinez-Oliveros et al. 2012

RHESSI 30-80

0.15

## **NEUPERT EFFECT IN STELLAR FLARES**

- Microwave (gyrosynchrotron), HXR, or white-light proportional to SXR derivative
- Hawley et al. 1995, Gudel et al. 1996, ....
- Observed in flares with energies > 10<sup>36</sup> erg!

The Neupert Effect: when is the heating?

Neupert (1968), "Comparison of Soft X-ray Line Emission with Microwave Emission During Solar Flares", states that the time integral of microwave burst corresponds best to X-ray line emission from rise to maximum. The Astrophysical Journal, Vol. 153, July 1968

> COMPARISON OF SOLAR X-RAY LINE EMISSION WITH MICROWAVE EMISSION DURING FLARES

> > WERNER M. NEUPERT Goddard Space Flight Center, Greenbelt, Maryland Received April 18, 1968; revised June 3, 1968



Mitra-Kraev et al. 2005 M dwarfs

## **NEUPERT EFFECT EVEN IN VERY LARGE FLARES**

 From the relatively small flares of Proxima Centauri to giant flares of DG CVn



Fuhrmeister et al. 2011; medium-sized flare on Prox Cen



Osten et al. 2016; the soft X-ray lags the optical and HXR peak by ~40 seconds (Caballero-Garcia et al. 2015); superflare on DG CVn

#### STELLAR FLARES

## LIKE FOR THE SUN, THERE ARE ALSO INTERESTING EXCEPTIONS

- But very little statistics! See Prof. Qiu Lecture 12: about 20% of solar flares don't exhibit Neupert-like correlations
- Great amounts of X-ray / EUV data for the Sun, great amounts of optical data for M dwarfs



- Multi-wavelength data in NUV continuum (Uband), soft X-rays (Chandra), and microwave (VLA 3.6 cm, 6 cm) from Osten et al. 2005
- Neupert effect not always observed in stellar flares
  - One possibility: deep heating with a high low-energy cutoff does not cause (observable) evaporation (e.g., Warmuth e al. 2009, Kowalski et al. 2017, Ayres 2015)
  - Why?

# NONTHERMAL PARTICLES IN STELLAR FLARES

- radio gyrosynchrotron (VLA): the best diagnostic of nonthermal electrons in stellar flares
  - must assume frequencies are optically thin to relate radio emission spectrum to nonthermal particle energy spectrum

(if peak not constrained)



- Hard X-ray emission (>25 keV) too faint except during largest "superflares" detected by Swift/BAT (Osten et al. 2007, 2010, 2016) or Chandra (Getman et al. 2008)
  - degeneracy in superhot (50-300 MK) thermal fit and nonthermal bremsstrahlung fit at E > 25 keV
  - thermal interpretation favored (see Osten et al. 2016)

#### STELLAR FLARES

## **SUB-THZ COMPONENT IN STELLAR FLARES**

V773 Tau



- Synchrotron emission often invoked to explain this emission in stellar flares
- Krucker et al. 2013: review article of the "sub-THz" component in solar flares; as many possibilities as for "Tabby's Star" (but not aliens!)

## FROM DECAY TIME OF X-RAYS, CAN OBTAIN LOOP LENGTHS



Loop lengths of several stellar radii!
see Reale et al. 1997 (VEM(t) vs. T(t))

 VEM 10<sup>54</sup> cm<sup>-3</sup> for large flares! (compared to 10<sup>50</sup> cm<sup>-3</sup> for solar flares)



300 MK flare from Osten et al. 2016

# **RED** DWARF FLARES ARE CONSPICUOUS IN THE BLUE

#### Flares on nearby active M dwarfs (dMe)



 <u>Flare visibility</u>: earlier spectral types have lower flare visibility. For the same fractional change, flares on early type stars have larger energy/ luminosity.



### The Great Flare on AD Leo

- 1) Broad hydrogen Balmer lines, 2) ~10% of the radiated energy compared to continuum, 3) U-band about 1/6 of continuum energy, 4) white-light continuum about 60-70% of total radiated energy.
- T~10,000 K blackbody roughly explains the continuum distribution from far-UV, near-UV, and optical



#### STELLAR FLARES

## **TIME EVOLUTION OF CHROMOSPHERIC LINES**

#### Emission line evolution in dMe flares

Continuum fastest to decay, then Balmer lines, then Ca II K



Kowalski et al. 2013

## SYMMETRIC BROADENING OF THE HYDROGEN LINES

Solar flare

M dwarf flare



## **SYMMETRIC BROADENING OF THE HYDROGEN LINES**

#### Broadening of Hydrogen Lines

Stark effect in hydrogen

-0.06 n = 14 -0.08 n = 13Electric -0.1 -n = 12 pressure -0.12 n = 11 broadening Energy [eV] of energy -0.14 n = 10 levels of -0.16 hydrogen n = 9 -0.18 -0.2 -0.22 n = 8 0.5 2.5 1.5 2 0 1 3 Electric field [V/m] x 10<sup>6</sup>

Figure credit: P.-E. Tremblay

# SYMMETRIC BROADENING OF THE HYDROGEN LINES

A. Thermal and turbulent broadening

B. Electric pressure broadening due to fluctuations in ambient charge density

- a. protons are quasi-static perturbers Unified theory of
- b. electrons are dynamic perturbers

Unified theory of pressure broadening: Vidal et al. 1971, 1973



#### DYNAMICS WITH NT PARTICLES

## **OPTICALLY THICK VS. OPTICALLY THIN**



### FILLING FACTOR OF WHITE-LIGHT

$$f_{\lambda,flare,Earth} = F_{\lambda,flare,surface} \frac{R_{flare}^2}{d^2}$$

$$X = f_1 \lim_{y \neq x} f_{actor} \qquad X_{flare} = \frac{\pi R_{flare}^2}{\pi R_{star}^2} \quad \text{one circular kernel}$$

$$= f_{racchon} y_{VRMe} \qquad X_{flare} = \frac{\pi R_{flare}^2}{\pi R_{star}^2} \quad \text{two circular kernels}$$

$$f_{\lambda,flare,Earth} = F_{\lambda,flare,surface} X_{flare} \frac{R_{star}^2}{d^2}$$

$$f_{\lambda,flare,Earth} = F_{\lambda,flare,surface} X_{flare} \frac{R_{star}^2}{d^2}$$

$$f_{\lambda,flare,Earth} = F_{\lambda,flare,surface} X_{flare} \frac{R_{star}^2}{d^2}$$

$$f_{\lambda,flare,Kearth} = F_{\lambda,flare,surface} X_{flare} \frac{R_{star}^2}{d^2}$$

$$f_{\lambda,flare,Kearth} = F_{\lambda,flare,surface} X_{flare} \frac{R_{star}^2}{d^2}$$

the Sun

## FILLING FACTOR OF WHITE-LIGHT

$$f_{\lambda,flare,Earth} = F_{\lambda,flare,surface} \frac{R_{flare}^2}{d^2}$$
  
X=filling factor
$$X_{flare} = \frac{\pi R_{flare}^2}{\pi R_{star}^2}$$
one kernel
$$x_{flare} = \frac{2\pi R_{flare}^2}{\pi R_{star}^2}$$
wo circular kernels
$$f_{\lambda,flare,Earth} = F_{\lambda,flare,surface} X_{flare} \frac{R_{star}^2}{d^2}$$

$$\Rightarrow \chi_{flare}: 0.005\% + 0.5\%$$

$$\Rightarrow while-light emilling$$
regims are compact  
line kernels on the Sun.
$$\int_{0}^{30} \int_{0}^{30} \int_{0}^{30}$$

Maurya & Ambastha 2009; optical flare kernels/ribbons on the Sun

## **RATE OF WHITE-LIGHT AREAL INCREASE**

 Areal coverage of white-light increases with color temperature approximately constant in the rise phase of stellar flares



A simplistic "expanding circle" model of separating flare ribbons



Kowalski et al. 2013

#### THE BALMER JUMP RATIO ( $\chi$ )



5000

Wavelength (A)

5500

\*Stellar atmospheres do not produce perfect blackbodies, even during flares.

# **BALMER JUMP RATIO TIME EVOLUTION**

#### ULTRACAM light curves of flares on YZ CMi



#### STELLAR FLARES

### **BALMER JUMP RATIO TIME EVOLUTION**



#### STELLAR FLARES

### **BALMER JUMP RATIO TIME EVOLUTION**



## **BALMER JUMP RATIO TIME EVOLUTION**



- In decay phase, there is a larger Balmer jump ratio and optical continuum is less blue
- In decay phase, the line flux / continuum flux is larger than at peak

# **DECAY PHASE SPECTRA OF LARGE FLARES**

- At any time during a stellar flare, observed flare flux is from a superposition of rising, peaking, and decaying regions; decay requires continued heating
- Multi-thread modeling (Warren 2006) on Sun-as-a-star light curves (GOES)

$$f_{\lambda,flare,Earth} = [F_{\lambda,flare_1} X_{flare_1} + F_{\lambda,flare_2} X_{flare_2}] \frac{R_{star}^2}{d^2}$$



## SUMMARY

- We study flare energy release in other atmospheric environments; generally observe similar correlations in radio, X-rays, optical.
- Flux ratio values of continuum constrain spectral predictions of RHD models.
- Evidence from observations for large optical depth at 10,000 K, increased charge density in chromosphere, variation in chromospheric conditions from peak to gradual phase.
- Large energy in M dwarf flares: larger flare area, larger flare energy fluxes? Some combination of both?

# FLARE STATISTICS (BRIEFLY)

- Flare frequency distributions (FFDs): require long monitoring times  $N(E)dE \propto E^{-lpha}dE$
- α > 2 can account for the quiescent coronal luminosity when extrapolated below the detection limit (Hudson 1991)
- Typically expressed as a cumulative FFD: number of flares / day > E.

• slope = 1-  $\alpha$ 

• typically  $\alpha \sim 2$ 



Silverberg et al. 2016, Davenport et al. 2014, Hawley et al. 2014

<u>Total flare energy / total monitoring time</u>

# FLARE STATISTICS (BRIEFLY)

Average flare energy and flare energy release rate is correlated with quiescent luminosity (bolometric and bandspecific).... for saturated-activity stars only?



## **STELLAR CMES (?)**

- 25% of excess non potential magnetic energy released as coronal mass ejection (80% of total event energy); Emslie+2012
- Not all X-class solar flares produce coronal mass ejections (October 2014 X-class flares NOAA 12192; Thalmann+2015)
- How to detect CME's from other stars: Ambient coronal (1-2 MK) emission line dimming (Harra+2016), type II radio bursts (Crosley+2016)



Harra et al. 2016

## THANKS!

- On behalf of Profs. Longcope, Qiu, Chen, I thank you for the opportunity to teach you about the exciting physics of flares and CMEs!
- Thanks to Profs. Longcope, Qiu, and Chen for all their hard work in pulling this together!
- Thanks to Prof. Cranmer for hosting the video lectures on his website!
- Thanks to Prof. Toomre for the use of the LCD for holding the lectures at CU!



## THANKS!

- On behalf of Profs. Longcope, Qiu, Chen, I thank you for the opportunity to teach you about the exciting physics of flares and CMEs!
- Thanks to Profs. Longcope, Qiu, and Chen for all their hard work in pulling this together!
- Thanks to Prof. Cranmer for hosting the video lectures on his website!
- Thanks to Prof. Toomre for the use of the LCD for holding the lectures at CU!

