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Lectures 7-8 outline

* Gyrosynchrotron CME
* Type IV radio bursts

e CME-driven shocks

* White light/EUV imaging, UV spectroscopy, and in situ signatures
e type Il radio bursts



Preliminaries

* Specific intensity

dE = 1, cos 0do dC dt dv
* Flux density

S, = / I, (0, @) cos 8dQ
° Units source
* Flux density S,,: ergs cm™ st Hz'!
e 1Jy=102%ergscm?stHz?
* 1 solar flux unit (sfu) = 10% Jy
* Specific intensity I,,: ergs cm? st Hz! sr? /% /
* Sometimes radio images have units of Jy/beam Detector

 Total flux: ergs cm2 s
*CGS unit throughout this lecture




Radiative Transfer

* In the absence of emission, absorption, or
scattering (the “free space”), the specific intensity
I, along a ray does not change.

* However, if emission and absorption occurs, we use

the radiative transfer equation

dl, ,
E = —Kyl, +J,

where k,, is the absorption coefficient (units cm)

and j,, is the emission coefficient (units ergs cm=3 s
Hz ! srt).



Radiative Transfer

* Defining the optical depth 7, = k,,ds (no unit) and
the source function §,, = j, /K, the transfer

equation can be written as:
dl, S
dTV - YV 1%
* For an isolated and homogeneous source the
solution is
L,(t,) =S,(1—e"™)
* When 7, > 1, the source is optically thickand I, = §,,
* When 7, < 1, the source is optically thinand I, = 1,,5,,



Brightness Temperature

* While specific intensity | T TS

can be expressed in units ~~ PlenckFunction
of Jy/beam or SFU/beam, |
a simple and intuitive
alternative is brightness
temperature, which has
units of Kelvin.



Brightness Temperature

Note that at radio wavelengths

!kl <<1 — th/kT—1z1+h—V_1:h_V

kT kT

The Planckian then simplifies to the Rayleigh-Jeans Law.

2hv' 1 2v°
B,(T)= 2 ehv/kT_lz 2 kT

It is useful to now introduce the concept of brightness
temperature T, which is defined by

2
I,=B,(T,) =24,
C



Rewriting the Radiative Transfer Equation

 Similarly, we define the effective temperature as
2v%
Sv —_ C_ZkTeff

* Using our definitions of brightness temperature
and effective temperature, the transfer equation
can be rewritten

Al _ To + T
dr,  ° 2

* Optically thick source, T, > 1, Tp = T,sf
* Optically thin source, T, K 1, Tg = T, Tesy



Relevant Radio Emission
Mechanisms: An Introduction

Bremsstrahlung Gyromagnetic Radiation Plasma Radiation




Bremsstrahlung Radiation

* Acceleration experienced in the
Coulomb field

* At radio wavelengths, thermal
bremsstrahlung radiation is from
virtually everywhere: quiet Sun,
active regions, flares, and CMEs

* Nonthermal bremsstrahlung is
relevant to X-ray and gamma-ray
emission from flares




Gyromagnetic radiation

* Acceleration experienced in the magnetic field

* Gyroresonance radiation from thermal
electrons. Relevant in places with strong B
field: e.g., active regions

* Gyrosynchrotron radiation from relativistic
electrons. Relevant when high energy
electrons are present: e.g., flares and CMEs

* Electron gyrofrequency: one “natural
frequency” of the solar corona

f., = —— ~ 2.8B MHz

2TTmeC




Plasma Radiation

* Plasma oscillation, also known as “Langmuir wave”,
occurs near the plasma frequency, another
important natural frequency in the solar corona

2

nee
foe = |~ ~ 8980y, Hz
V e

* Plasma radiation arises when Langmuir waves are
converted to (transverse) electromagnetic waves
via wave-wave interactions.



let’s do some derivation...

bt — F—— i+ - t+— +— -
+—+—+—+-— ARl — + — +— —
+—t— +—+— iy e
bt f—f— [) [ (————.
+—4—+—4- R s T el
+—+—+—+- T o T

* Electric Coulomb force acts as the restoring force

* Gauss’s Law: V - E = 4mp. Integral form §p E - Aids = 4nQ

4T 4TTpAx
. SoF =2¢_ i = 4men, x
A A
d?x .
* Newton’s 2" law: me——3 = —eE = —4mn,e?x, which has

the form of a simple harmonic oscillator:

.o 2 _
X+ wpex =0,

4N e?

where w,, = = 2T fye is the plasma frequency

me



Plasma frequency: typical values

Listen to plasma oscillations
when Voyager enters the local ISM

Voyager 1 Plasma Wave Science

Plasma n, (cm3) fpe (MHz)
Environment

0.05 0.003 o g
=
lonosphere 10° 3 >
Low corona 1010 900 5

Copper 1023 2.8%x10°

N




Radio Observations in General

A 4

Thermal

* Emission Mechanisms

A 4

Non-Thermal

A 4

Chromosphere (~100 GHz)

« Range of Observations

A 4

Aurora (KHz)

» Types of radio data

I NOV 93 23:09 GBSRBS 20040824

2 40
o
: + =
B “
: 4 o
el |
>
E
(3]
. - hS
™ o
- 3
Nobeyama 1 7 GHz images IS
E
]

Nobeyama Radioheliograph 17 GHz



Solar radio bursts types from 1960s

Microwave Decimetric
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Type I: short duration, narrow band, non-drifting bursts. Origin unknown.
Type Il: CME-driven shock (~1000 km/s)

Type llI: fast electron beams (~0.3c), rapid frequency drift

Type IV: close magnetic structure -- CME body, post-CME reconfiguration

Type V: extended phase of type Il



Examples from the Green Bank Solar
Radio Burst Spectrometer (GBSRBS)

* http://www.astro.umd.edu/~white/gb/
* Located in the Green Bank Radio Quiet Zone, operating in
18-70 MHz, 70-300 MHz, 300-1000 MHz

Credit of following images: Stephen White
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Type lll burst: fast-drift electron beam (4 mins)

GBSRBS 20040120
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Frequency (MHz)
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Type |l followed by Type IV (2 hours)

GBSRBS 20040818
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Type V: extended phase of Type lll (6 mins)

? GBSRBS 20050607
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Type | bursts (3 hours)
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FST Dynamic Spectrum
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Decimetric radio bursts associated with

flare termination shock
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y (arcsec)

Radio bursts associated with propagating wave
packets
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A nice illustration of solar radio emission
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Okay, let’s apply these to coronal mass ejections!




Standard Flare-CME Model
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From Angelos Vourlidas

From Lecture 5 (Prof. Jiong Qiu)



White light emission: Thomson scattering

* Not too far away from the solar
disk, white light emission is

dominated by Thomson " lectron motion
scattering off free electrons (“K- radial” component of N
CO rO n a ) incident electric field Scattering Volume

* The corona is extremely optically
thin, the white Iight brightness is e

— "radial” component of
Iv ~ vadTv — f O-TS @ scattered electric field

Y
v Observer

% Thomson cross-section g; = ?re ~ 6.65x1072°cm?

¢ Source function S, is related to the incident intensity
from the photosphere and the viewing angle

See Prof. Steven Cranmer’s lecture 6 of COLLAGE 2016 for more details




Review of CME White Light Observation

* White light emission is due
to Thomson scattering,
which goes as n,dl

* We can see a bright WL
emission because:

* |t has more mass than the
ambient

* It is extended along the LOS Streamers: (o

* |t is close to the plane of
maximum scattering




White Light CME

“Ice cream cone” model brightness

LASCO/C2 observed brightness

The “ice cream cone” model

From Sarah Gibson



Thermal radio emission from CME

* CME body also produces thermal
bremsstrahlung radio emission

* Coulomb “collisions” involve both ions
and electrons

* Radio intensity I, < [ nynydl o< ngl,
known as “emission measure”

e Radio intensity weakens much faster
at larger distance, however relatively Nucleus
more straightforward for modeling

e Possible to see thermal radio CMEs
against the disk (no occulter)



Detectability of thermal radio CME

* Well, no problem for dense and cool prominences

I, fnenpdl x n2l
Bremsstrahlung radiation

~1/2
K, XT, /

02:10:00

250000 km

18—APR—02 Q5:55:01UT

NoRH 17 GHz

1992 Nov 23: 17 GHz RRH movie



Thermal radio detectability of CME body

e Contrast of CM E/QS ~1:10 Simulated free-free radio spectra
in meter & dm range, but M |
much smaller at higher 100

frequencies

* Susceptible to be “blinded
out” by intense plasma .
radiation and/or nonthermal -
gyrosynchrotron radiation

Decimeter—A

* Possible to detect with an
instrument with large FoV ol
and sufficient dynamic range

Below lonospheric Cutoff

0.001 0.010 0.100 1.000 10.000100.000
Frequency (GHz)

From Bastian & Gary 1997




Simulation from a toy CME model

(a) Early CME

{b) Late CME

From Bastian & Gary 1997

This is from an ideal
radio telescope

In reality, detection using
this difference imaging
technique would
inevitably suffer from
confusion due to
uncleaned sidelobes



A close-to-reality case

dt =5 min
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Some (rare) examples of thermal

* Gopalswamy & Kundu 1992.
Observation made in 1986
using Clark Lake
Radioheliograph at 73.8
MHz.

* Tg cup = 1X10° K
% n,~95x%x10%°cm™3
& Moy = 2.7 X101 g




Another example

* White light CME

ARC MIN

Ramesh, Kathiravan & Sastry 2003,
from Gauribidanur Radioheliograph in
India at 109 MHz
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