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A b s t r a c t .  Radiation plays an important role, firstly in determining the structure 
of stars through the dominant role radiation plays in the energy balance (in some 
objects also in the momentum balance), secondly because we diagnose astrophysical 
plasma through the emitted electromagnetic radiation. 

These lectures discuss the diagnostic use of optically thick spectral lines and con- 
tinua with special emphasis on the Sun. Modern methods to solve the equations of 
radiative transfer and statistical equilibrium are outlined. We stress the importance 
of solving self-consistently for the coupling between radiation and hydrodynamics 
for understanding the dynamic outer atmosphere of the Sun and review some results 
from such radiation hydrodynamics simulations. 

1 I n t r o d u c t i o n  

To infer the physical conditions of stars and other astrophysical objects we 
are almost  exclusively restricted to an analysis of the photons tha t  escape 
from the medium.  Before the photons reach us they have interacted with the 
ma t t e r  so tha t  the information about  local conditions in the a tmosphere  has 
been convolved both in space and in time. The diagnostic deciphering of the 
information content in the radiation is made complicated by the fact tha t  
most  plasmas both emit  and absorb photons at the same time. In addition, 
photons can travel large distances thus coupling distant parts  of the plasma.  
I t  is therefore necessary to study the processes of emission, absorpt ion and 
radiat ive transfer in order to make proper inferences from observations of 
radiation. 

Radiat ion also plays an impor tan t  role in determining the s t ructure  of 
stars through the role of radiation in the energy balance and for some ob- 
jects also in the m o m e n t u m  balance. Velocity fields in the stellar a tmosphere  
Doppler shift the narrow absorption profiles of spectral  lines thus affecting the 
coupling between the radiation and the local the rmodynamic  propert ies of 
the plasma.  Radiat ive losses damp  the t empera ture  increase in the compres-  
sion phase of a hydrodynamic  disturbance. There is thus a strong coupling 
between the hydrodynamics  and the radiation in a dynamic  a tmosphere  and 
we have to t reat  this coupling self-consistently to gain an understanding of 
dynamic  phenomena in stellar atmospheres.  

The  outline of these lectures is as follows: In Section 2 we discuss basic 
concepts and the basic equation of radiative transfer, in Section 3 we discuss 
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the concept of height of formation in the context of the diagnostic use of spec- 
tral information. In the absence of Local Thermodynamic  Equilibrium (LTE) 
the condition of statistical equilibrium can be used to determine the popu- 
lation densities. These equations are set up in Section 4, a general method 
of solving non-linear equations is outlined in Section 5 and the particular 
application to the equations of statistical equilibrium and radiative transfer 
is given in Section 6. Finally, the equations of radiative transfer and popula- 
tion rate equations are combined with the hydrodynamic equations into the 
equations of radiation hydrodynamics in Section 7 with special emphasis on 
recent results for the Solar chromosphere. 

2 Equat ion  of  Radiat ive  Transfer 

We assume a general familiarity with basic radiative transfer theory and will 
just  give an incomplete summary in order to define notat ion and highlight 
important  aspects. For an excellent and more complete discussion we refer 
to Mihalas (1978). Furthermore, we restrict the discussion to the case of a 
one-dimensional plane-parallel atmosphere (all quantities are constant on a 
plane at a given height in the atmosphere). 

Along a ray we look at how the monochromatic  specific intensity Iv(s) 
(normally only called the intensity) changes: 

d Z . ( s )  = - ( 1 )  

where rl,(s ) is called the emissivity, X~(s) the opacity (sometimes called ex- 
tinction or absorption) and ds is the geometrical distance along the ray. Note 
that  the number of photons removed from the ray is proportional to the opac- 
ity but  also to the intensity itself. The direction dependence enters mainly 
through the dependence of ds on direction for a given height difference. Both 
rl, and X, are often direction independent in the absence of velocity fields. 
However, the opacity can be very direction dependent in the presence of 
velocity fields. 

If we introduce the geometrical height, z, along the normal increasing 
outwards, the angle between the ray and the normal of the atmosphere, 0, 
and the directional cosine, # = cos 0, we get one standard form of the equation 
of radiative transfer: 

d I ~ ( z )  _ ~ ( . )  _ ~(z)Z~,(z)  (2) 
# dz 

The right hand side give the source (7,) and sink (X~I,~) of photons. Since 
all quantities depend on height the positional coordinate (z) is implicit and 
normally dropped from the equations. 

The emissivity tends to be roughly proportional to the opacity and it is 
therefore useful to use the ratio of the two instead of the emissivity itself. This 
ratio is called the source function, S~ = q~/X,. Furthermore, it is useful to use 
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an "optical distance" instead of the geometrical distance. For the radiative 
transfer a long geometrical distance with small opacity is equivalent to a short 
geometrical distance with large opacity. The useful quanti ty is therefore the 
product  of the two. We define the optical depth, v~, from 

d ~  = - x . d ,  (3) 

Note that  the optical depth increases downwards along the normal, the geo- 
metrical height has opposite direction and we therefore get a minus sign in 
the equation above. 

With these definitions we get the one-dimensionM equation of radiative 
transfer in its standard form: 

# dI~u =- I~t, - S~, (4) 
dT~ 

Note that  the source term (S~) is now negative and the sink term (L,u) is 
positive. This is because the optical depth scale has a direction opposite of 
the normal. For a ray directed towards us (out of the atmosphere) we get a 
positive value of/~ but a negative dry. 

Since this is a first order ordinary differential equation we need one bound- 
ary condition. Normally we know, or can approximate,  the intensity incident 
on each boundary. This means that  the boundary condition is given at one 
boundary for all positive values of # and at the other boundary for negative 
values of #. This fact complicates the solution of the equation. If the atmo- 
sphere has an upper boundary but the lower boundary is the interior of the 
sun we call this a semi-infinite atmosphere and normally use the boundary 
conditions I~-(0) = 0, I+(Tma×) = S~(Tma×) where superscripts denote the 
sign of #. We then get the following solution: 

-ff fr~ S"(t) e-(t-~")/"dt i f #  > 0 

I~,(r~) = _@foVS~,(t)e-('~-t)/(-U)dt i f #  < 0 (5) 

Note the use of ( - # )  for # < 0 to get a positive quantity. 
The interpretation of the solution is that  we get a contribution to the 

outgoing intensity from a given depth, t, over a given small distance along 
the ray, dt/p (where the factor 1/# accounts for the projection of the distance 
dt along the normal to the distance along the ray) which is equal to the source 
function there exponentially at tenuated with the optical distance from t to the 
point where we are evaluating the intensity, r~,. This optical distance equals 
the optical distance along the normal ( t -  r , )  projected to the direction of the 
ray (the factor 1/p in the exponential). These contributions are summed up 
(the integral) from all depths below the evaluation point. The  interpretat ion 
of the solution for the incoming radiation is equivalent. 

This solution is called the formal solutzon because the source function has 
to be known (in addition to the opacities giving the optical depth scale). In 
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the solar outer a tmosphere the source function depends on the intensity itself 
such tha t  a direct integration as in (5) is not possible. We then have to use an 
iterative method  to find the solution. In all such iterative methods  we need 
to evaluate the formal solution in each iterative step. It  is thus impor tan t  to 
find efficient methods for the formal solution even when we do not know the 
source function a priori. 

One s tandard method for the evaluation of the formal solution is the 
Feautrier method  (Feautrier 1964). The method is efficient, stable, accurate 
and gives the intensity at all points along the ray in one step. For more 
accurate versions of the Feautrier method see Kunasz & H u m m e r  (1974), 
Auer (1976) and Rybicki & H u m m e r  (1991). 

The opacity can be split into an absorption par t  and a scattering part .  
Absorption can consist of excitation of an a tom by absorption of a photon 
followed by a collisional de-excitation. The net effect is then the destruction 
of a photon converting the energy to local thermal  energy. If the de-excitat ion 
instead is radiative we end up with the photon jus t  changing direction and no 
coupling to the local conditions. Such a process is called a scattering event. 
The distinction between absorption and scattering becomes more problemat ic  
if a toms with more than two levels are considered but the two-level case is 
still instructive. Us'ing this distinction and assuming isotropic scattering we 
get an emissivity consisting of a thermal  part  and a scattering part:  

= + (6) 

where K~ is absorption, c~ scattering, X~ = n~ + ¢~, B~ the Planck function 
and J~ the mean intensity: 

1 f l  I~,(z)d~ (7) &(z) = -~ 1 

The source function can then be written as 

S~ - R----L---" B ,  + e-----L--" J ,  (8) 
~u -}- O'u ~;~ q- O'u 

It is the scattering part  that  introduces a global coupling in the source 
function through the dependency on the mean intensity. 

3 H e i g h t  o f  F o r m a t i o n  

3.1 C o n t r i b u t i o n  F u n c t i o n s  

For the diagnostic use it is of interest to find the depth of format ion of the 
observed quantity. From equation (5) it is obvious tha t  the intensity is formed 
over a range of depths. I t  is useful to define a contribution function to the 
intensity, CI, with the property:  
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I.~(o) = / C,(~)d~ (9) 

Note that  two quantities enter into the definition of the contribution func- 
tion; the contribution to a given observable quanti ty (in this case the inten- 
sity) on a given depth-scale (here denoted with x). The integration is per- 
formed over the whole atmosphere. Since many different integrands give the 
same integrated quanti ty we need additional constraints in our definition, see 
Magain (1986) for a discussion. Using the integrand from the formal solution 
is an appropriate choice. If we use monochromatic  optical depth as the depth 
variable we get from equation (5): 

c,(~.) = ~s~(~.)e -~ / "  (lO) 

The monochromatic  optical depth-scale is not very useful when comparing 
the formation depth at different wavelengths. To transform the contribution 
function to another depth-scale we use: 

Cx(x)d~ = C~(T.)d~. (11) 

Some useful contribution functions are the contribution function to the 
intensity on a geometric height-scale (z), a standard optical depth-scale (7o, 
where X0 is the opacity at a standard wavelength, usually 500nm) and the 
logarithm of the standard optical depth (lg~-0): 

Cr(z) : L S . (T.)e-~ ' /~ 'X~ (12) 
# 

(13) 

Cr(lg~-0) = in 10S~(7_ )e_~/uX~ _ ° (14) 
# X0 

Note that  these contribution functions give information on where the 
intensity is formed. If we are interested in where the absorption is formed we 
cannot use the contmbutwn function to the intensity but need to consider the 
contribution function to the relative absorptzon defined as: 

R~ - & - I~______~. (15) 
& 

where I¢ is the continuum intensity. Note that  R~, is zero for the continuum 
and is negative for an emission line. 

To deduce the contribution function for the relative absorption we need 
to write the transfer equation for the relative absorption, find the formal 
solution and identify the integrand as the contribution function; all steps 
analogous to how the contribution function to the intensity was found. See 
Magain (1986) for details. 
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The relative absorption is typically formed higher than the intensity. In 
extreme cases the absorption may  be formed at a very different place than  
the intensity (e.g. telluric absorption lines where the intensity is formed in 
the Sun and the absorption in the Ear th ' s  atmosphere) .  

Typical  contribution functions to the intensity on a geometric height-scale 
(note the specification of both the quanti ty (intensity) and the depth-scale) 
are shown in Fig. 1. 
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Fig. 1. Typical contribution functions to the intensity on a height scale at different 
frequencies from continuum (lowest height) to the line center for a Solar atmosphere. 
Note a typical width of about 200 km. 

3.2 R e s p o n s e  F u n c t i o n s  

We are often interested in deducing the bulk velocity f rom the Doppler-shift  
of a line or the t empera ture  change f rom the change of intensity. In these cases 
we should use the response functzon instead of a contribution function. The  
response function gives how a given observed quanti ty changes (e.g. Doppler- 
shift of line-center) when we change a physical paramete r  in the a tmosphere  
(e.g. velocity) as a function of depth. There are thus three defining quantit ies 
in a response function. From this definition we get: 

AV=JRAv, v(x)v(x)dx (16) 
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where AV is the Doppler-shift of line-center and v(x) is the vertical ve- 
locity. The Doppler-shift response function to bulk-velocity is often similar 
to the contribution function to the relative absorption. The width of the re- 
sponse function makes it impossible to measure velocity variations that  have 
shorter typical length-scales. Specifically, it is not possible to detect high 
frequency waves (with a wavelength shorter than the width of the response 
function) in a stellar atmosphere. Waves with a wavelength not much longer 
than the width of the response function will give Doppler-shift amplitudes 
that  are substantially smaller than the velocity amplitude of the wave. This 
is illustrated in Fig. 2. 
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Fig. 2. Upper panel: Response function to line-center Doppler-shift for a typical 
spectral line in the solar atmosphere (solid) and three sinusoidal velocity fields 
with frequency 5 mHz (.solid), 20 mHz (dotted) and 50 mHz (dashed). Lower panel: 
Amplitude of Doppler-shift compared to amplitude of the sinusoidal wave as func- 
tion of frequency. Waves with a frequency of 23 mHz give a Doppler-shift of only 
half the amplitude of the wave due to the width of the response function. 



170 Mats Carlsson 

4 S t a t i s t i c a l  E q u i l i b r i u m  

We here give a slightly simplified, phenomenological, picture of what is in- 
volved in radiative transfer problems in order to give a feel for what it is all 
about.  For a more rigorous t reatment  the reader is again referred to s tandard 
textbooks like Mihalas (1978). 

In order to calculate the specific intensity from the formal solution (Equa- 
tion 5) we need to know the source function, ,~  and the monochromatic  op- 
tical depth, T,. The latter can be calculated if we know the monochromatic  
opacity, .g,. The opacity for a given process is equal to the cross-section for 
the process at a given frequency multiplied by the number density of the 
particle. The total opacity at a given frequency is the sum of the opacities of 
the processes that  can take place at that  frequency. To calculate the opacity 
we thus need cross-sections which, at least in principle, are available from 
atomic physics and we need population densities. 

If we assume Local Thermodynamic  Equilibrium (LTE) the populat ion 
density of a given energy level of an atom is given by the Saha and Boltz- 
mann equations. The ratio of the population density to the mass density is 
then given by the abundance of the element and the local values of the elec- 
tron density and the temperature.  With a given temperature structure as a 
function of height we can calculate the mass density and the electron den- 
sity from the hydrostatic equilibrium and charge conservation equations (see 
e.g., Gray 1992). If we in addition assume that  the source function is given 
by the Planck function we can calculate all we need for the formal solution. 
Radiative transfer under the assumption of LTE is thus trivial in principle. In 
practice the calculation of a spectrum from a stellar atmosphere with given 
temperature  structure is still non-trivial due to the need for atomic data  (line 
strengths, broadening parameters) for millions of lines. 

If we cannot assume LTE the problem becomes much more complex. The 
source functions will no longer be given by the Planck function and the pop- 
ulation densities will not be given by the Saha and Boltzmann equations. In 
a s ta t ic  atmosphere we get the necessary extra equations from demanding 
that  the population density of a given energy level shall be constant in time. 
We end up with the equations of statistical equilibrium: 

r~l n l  

n / E  P/J - E nj Pji = 0 (17) 
j # i  3¢i 

where n~ is the population density of energy level i, Pij is the transition 
probability of a transition from energy level i to energy level j and nl is the 
number of energy levels considered. The first term thus gives the number of 
transitions per unit t ime from energy level i to all other energy levels and the 
second term gives the number of transitions into energy level i. Statistical 
equilibrium requires these rates to be equal. We have one such equation for 
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each energy level considered. This set is linerarly dependent and we have to 
replace one of the equations with the condition of particle conservation, 

n l  

E . j  (is) 
j=l  

where l~to t is the total number of particles of that  element. 
To solve this coupled set of equations we only need to know the transition 

probabilities since the total number of particles of a given element is given 
by the abundance and the mass density. The problem lies in the fact that  the 
transition probabilities in general depend on the radiation field. We have 

P~3 = Rij + Cij (19) 

with Cij being the collisional transition probability (in principle known from 
atomic physics) and Rij the radiative transition probability. For transitions 
between lower bound state i and upper bound state j we have: 

Rs~ = Aj~ + Bj~J~ (20) 
Rij = Bi3 ffij 

with Aj, ,  Bij and Bji the Einstein coefficients for spontaneous emission, ab- 
sorption and stimulated emission, respectively. All these are given by atomic 
physics. Jij is the absorption profile (¢~u) weighted integrated mean inten- 
sity: 

1 o o  1// 
J~j = -~ ¢~uI~,udud # (21) 

- 1  0 

For transitions between two bound states the opacity and emissivity are 

X ~  = ,~c + ~ B i ~ ¢ ~ ( n ,  - g~nj) (22) 
~ 7 7  93 

huz9 
~, ,  = ~,c + ~ - ¢ ~ , u A j i n j  (23) 

where subscript c indicates background processes that  do not depend on the 
population densities. 9~ and 9j are the statistical weights for the lower and 
upper levels, respectively. The line opacity is related to the upward radiative 
rate. The last term in the line opacity comes fi'om the t reatment  of stimulated 
emission as negative absorption. 

The radiative rates introduce a 91obal coupling since the intensity depends 
on conditions throughout the atmosphere, see Equation 5. In order to find 
the population densities we have to know the intensities and in order to find 
the intensitites we need the population densities. The equations of statisti- 
cal equilibrium and radiative transfer constitute a coupled set of non-local, 
non-linear equations that  have to be solved simultaneously. A strategy for 
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solving sets of non-linear equations is by linearization. The general technique 
is outlined in Section 5 with the particular application to the coupled set of 
statistical equilibrium and radiative transfer equations given in Section 6. 

5 L i n e a r i z a t i o n  

A classical method to solve a non-linear equation or a set of non-linear 
equations is the Newton-Raphson method. We may formulate this iterative 
method as a perturbat ion method and will illustrate the procedure by first 
applying it to a simple non-linear equation: 

x 2 = 2 (24) 

At the n ' th  stage in an iterative method we do not have the exact solution 
x but instead an approximation to the solution, x(~). When this approxima- 
tion is inserted in the equation we do not get the right hand side exactly but  
have an error, E(~): 

(x(~)) 2 = 2 + E (~) (25) 

We look for an addition to the current approximation that  will fulfill the 
equation: 

(x ('~) + 5x) 2 = 2 (26) 

Expanding the parenthesis we get 

(x(~)) ~ + 2 x ( ~ ) &  + & ~  = 2 (27) 

The essence of linearization consists of neglecting non-linear terms in the 
perturbat ion (the term 5x 2) and defining an approximate correction, 5x("), 
from the resulting equation: 

(x(~)) ~ + 2x(" )& (") = 2 (28) 

Subtracting Equation 25 results in an equation for the approximate cor- 
rection: 

2x('05x (~) = - E  ('~) (29) 

The iterative procedure thus starts by calculating the error from the cur- 
rent estimate of the solution (Equation 25), continues by calculating the ap- 
proximate correction (Equation 29) and adding that  correction to get the 
next estimate of the solution: 

E ( . )  : ( . (~) )2  _ 2 (30) 
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E(~) 
5 x  ('~) - (31) 

2 x ( ~ )  

X(n+l) = X(n) J-SX(n) (32) 

To start  the iteration we need a starting approximation. Start ing with 
x (1) = 1 we get the following values: 

n x(') lg lx-  E l  
1 1 -0.4 
2 1.5 -1.1 
3 1.416 -2.6 
4 1.414216 -5.7 
5 1.414213562 -11.8 

The convergence is rapid with about double the number of significant 
figures per iteration - -  the convergence is quadratic. One may also note tha t  
the equation has two solutions but  we get convergence only to one; which one 
depends on the starting approximation. 

Linearization is a very general and powerful technique. Instead of one 
equation we may have a system of equations (like the statistical equilibrium 
equations). We may very easily add more constraints or equations to the 
system (like an energy equation instead of assuming a given temperature  
stratification). In the linearization step (defining the approximate correc- 
tion, Equations 27-28) we may introduce additional approximations (like an 
approximate t reatment  of the radiative transfer). However, if additional ap- 
proximations are introduced we lose the property of quadratic convergence. 

The approximations introduced do n o t  affect the accuracy of the method,  
only the convergence rate (or lack thereof). The accuracy is only set by the 
accuracy with which we can calculate the error from a given approximation.  
In the next section we will show how these methods can be used to solve the 
coupled equations of statistical equilibrium (SE) and radiative transfer (RT). 

6 L i n e a r i z a t i o n  o f  t h e  S E  a n d  R T  E q u a t i o n s  

Following the steps of the previous section we introduce a current approxi- 
mat ion in the statistical equilibrium equations (Equation 17): 

j # i  j # i  

We perturb the population densities and all variables that  depend on the 
population densities: 

+ (34) 
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and require 

P,<') : ,~2)+ <~o' 

r~ t ft I 

nl n+l) ~ ]O(n '{-1)  W ~ ( n ~ - l )  D(n-~- i  ) 0 
~3 r J  z -- 

jCi a¢~ 

Expansion, linearization and subtraction gives 

(as) 

(a6) 

nl  ~1 n t  

~ ¢°)E~,5°~ +.I°)Z<(;) E~4°)P}:) n/ 
j ¢ i  j ¢ i  j#~  

r~ t 
- V" ~(~)ap!. ~) = -E}') 

a 3 z 

(at) 

j¢{ 

with the perturbed rates given by Einstein coefficients and per turbed 
intensities. For an upward bound-bound rate we get 

:/7 1 1 ~#(~I~nl* )d l2d# ~P~)  = , , ,aj}; ' )  = , , , ~  1 (as) 

since the collisional rates and profile functions do not depend on the popu- 
lation densities and we assume the electron density and temperature  to be 
given. 

We still have to write the perturbed intensities in terms of perturbat ions 
in population densities and it is here we need the equations of radiative 
transfer. 

We therefore take the transfer equation 

d/-(~) 
" dz "" -- -':("):'". :(~)". + '¢;) (39) 

add perturbations, linearize and subtract the transfer equation to obtain 

# d---5I('~) = -,~('~)5I ~'~) - [('nS,~('~) + 5rl(,,~ ) (40) 

We introduce an equivalent source function perturbat ion from 

6S('~ ) 5 -(~)/',( '~) - I(~)6>(~)/v (~) (41) ' 1~#  / A t ,  l, ~l* ,~ , l*  /:vz:l* 

and define a monochromatic optical depth along the ray from 

dT(~) ('Odz (42) = --X.l* /I ~ 

We can then write a transfer equation for the perturbatwns:  

d ~ ; )  SI(;)  = 5I(~ ) - 6S(,~ ) (43) 



Radiative Transfer and Radiation Hydrodynamics 175 

Through the formal solution of the transfer equation the intensity per- 
turbat ion can be written as an integral over depth of the equivalent source 
function perturbation.  This perturbation can be expressed in terms of the 
opacity and emissivity perturbations (using Equations 22-23) and since these 
depend on the population density perturbations we have achieved our goal of 
writing everything in terms of population density perturbations.  We have a 
coupled set of equations for the population density corrections; one equation 
for each atomic energy level for each depth in the atmosphere. We thus have a 
mat r ix  equation of order nlnT where n~ is the number of depth-points.  This 
mat r ix  is in principle full because the intensity per turbat ion at one depth 
depends on the population density perturbations at all other depths through 
the transfer equation. Calculating the matr ix  is t ime-consuming because we 
need to calculate on the order of ( h i n t )  2 exponentials in the formal solu- 
tion. Solving the matr ix  equation is also time consuming since the coefficient 
matr ix  is full. 

In order to have a more efficient method we should find additional approx- 
imations that  contain the basic physics (in order to keep a decent convergence 
rate) but lead to savings in the time it takes to construct the matr ix  and also 
in the solution time. 

One such approximation was found by Scharmer (1981) who extended the 
Eddington-Barbier relation by replacing the formal solution integral with a 
one-point quadrature formula. The intensity at one point is thus approxi- 
mated by the source function in another point multiplied by some weight, 

I .~ (T . , )  = w S . ~ ( < , )  (44) 

By demanding that  the formula shall be exact for a linear source function 
Scharmer arrived at the following quadrature points and weights: 

{~. = w. + i, ~ = i, ~ > o 
(45) T~# l_e_r~ .T~" _ 1, w = 1 _ e_T., , # < 0  

For the outgoing intensity these relations say that  the intensity is equal 
to the source function one unit of optical depth further down along the ray. 
This one-point quadrature formula is exact for a linear source function but  
is also a rather good approximation when the source function is not a linear 
function of optical depth because of the rather narrow contribution function 
to the intensity. Since the aI)proximation is only used in the calculation of 
the approximate correction and not in the calculation of the error it will only 
affect the convergence rate and not the accuracy of the result. 

Experience has shown that the Scharmer operator is close to the optimal 
choice for the convergence rate. For the outgoing intensity we need no expo- 
nentials at all and for the incoming intensity we need only nt nT exponentials 
thus reducing the work needed to construct the matr ix  by a large factor. 
The resulting matr ix  is also close to a banded structure with large portions 
identically zero. The quadrature point for the incoming intensity approaches 
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c~u/2 for small values of r .  u. With seven grid-points per decade of optical 
depth this corresponds to just two points higher up in the atmosphere. We 
thus get only two sub-diagonals with non zero elements below the diagonal 
of the matrix.  This fact leads to large savings in the solution time. 

The main draw-back of the Scharmer operator is closely related to the ad- 
vantages. The operator takes explicitly into account the non-local nature of 
the radiative transfer and this leads to good convergence properties. However, 
the generalization to multi-dimensional radiative transfer is almost impossi- 
ble when the t reatment  of the radiative transfer is non-local. The methods of 
choice for multi-dimensional radiative transfer problems are therefore the lo- 
cal methods developed by Olson et al. (1986) and Rybicki & Hummer  (1991). 
See Hubeny (1992) for a review. A schematic illustration of the different ra- 
diative transfer operators is shown in Fig. 3 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

/ / /  Olson, Auer, auchler (1986) 

/ 1 

Global, one-point 
Scha mer (1981) 

Global, formal solution 

Fig. 3. Schematic illustration of different radiative transfer operators. The formal 
solution writes the intensity at optical depth 7-~, along the ray as an integral over 
depth and is thus global. The Scharmer operator replaces the integral over depth 
with a one-point quadrature formula. Since the quadrature point is non-local the 
operator is still global. The OAB operator is completely local. 
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7 Radiation Hydrodynamics  

The previous discussion on how to solve for the outgoing intensity assumed 
that the atmosphere was given, in particular the variation of electron density 
and temperature throughout the atmosphere. This is called the forward solu- 
tion of the &agnostic problem. However, the structure of the atmosphere, 
including the bulk velocity, density, electron density and temperature, is 
affected by the radiation. To solve for these four additional quantities in 
a one-dimensional plane-parallel atmosphere we need four additional equa- 
tions. These are the equations of conservation of momentum, mass, charge 
and energy. The momentum equation may have a significant contribution 
from radiation pressure but in the solar case this radiative term can be ne- 
glected. The energy equation will be dominated by the radiative terms since 
the energy transport in stellar atmospheres often is dominated by radiation. 
The other dominant term in the energy equation may be energy transport 
by convection. In outer parts of the atmosphere we may have large terms in 
the energy balance from waves and shocks. 

For a static atmosphere we neglect all variations with time and set the 
bulk velocity to zero. The above four equations then reduce to three: hy- 
drostatic equilibrium, conservation of charge and energy. If we in addition 
assume LTE we have reduced the radiation hydrodynamics problem to the 
standard "classical" model atmosphere problem where we assume 

- one dimensional geometry (either plane parallel or spherical) 
- hydrostatic equilibrium (no systematic velocities and no change in time) 
- convective-radiative equilibrium 
- Local Thermodynamic Equilibrium (LTE) 

Convective energy transport is in the classical models described with a 
mixing-length phenomenotogical formalism (e.g., Mihalas 1978). 

The assumption of LTE means that the distribution of population den- 
sities over energy states can be calculated from the Boltzmann and Saha 
equations using local values of the temperature and electron density restrict- 
ing the effects of the potentially global coupling from the radiation. This is an 
enormous simplification of the problem. There is often no a priori justifica- 
tion for the use of this assumption other than the reduction of computational 
effort. 

The above assumptions lead to only three parameters describing the stel- 
lar atmosphere: the effective temperature, the acceleration of gravity and the 
abundances of the elements. These few parameters all have a clear physical 
meaning. The fact that such classical stellar atmosphere models Call. repro- 
duce observed spectra to some detail is one of the major success stories in 
modern astrophysics. Additional fudge parameters are, however, often needed 
to cover-up for the inaccuracy of the assumptions potentially masking im- 
portant aspects of the physics. Such fudge parameters include the so-called 
microturbulence (giving additional line broadening) and macroturbulence. 



178 Mats Carlsson 

In the outer parts of stellar atmospheres it is clear that  LTE is a bad 
approximation. It is possible to replace this assumption with the statistical 
equilibrium equations and still solve the static model atmosphere problem. 
See Auer & Mihalas (1969, 1970, 1972), Mihalas & Auer (1970), Werner 
(1986, 1987, 1989), Anderson (1985, 1989, 1991), Dreizler & Werner (1992, 
1993) and Hubeny 8z Lanz (1995) for examples. 

For other trends in stellar atmosphere modelling see Carlsson (1995). 
In the next sections we look at some specific aspects of the radiation 

hydrodynamics problem. We set the scene by deriving the simple condition 
of radiative equilibrium in Section 7.1, discuss some numerical problems and 
how they can be overcome in Sections 7.2-7.3, outline how the equations can 
be solved in Section 7.4 and discuss results in Section 7.5. 

7.1 Radiative Equilibrium 

If the only mode of energy transport is through radiation we get the condi- 
tion of radiative equilibrium as our energy equation in a static atmosphere. 
Integrating the RT equation (2) over angle we get 

jf_l 
dF~, = 27r X ~ , ( S ~ ,  t, - I ~ , , ) d #  (46) 
d z  1 

where Fv is the monochromatic radiation flux density. Integrating over fre- 
quency we get the total flux divergence: 

dE f0 /_ 1 = 27r ~ , , ( S ~ , ,  - I , , , ) d # d u  = 0 
1 

(47) 

with the last equality being the condition of radiative equilibrium. 
This energy equation only specifies that  the total radiation flux density 

does not change with height but does not specify the value of the flux density. 
We therefore have to specify the flux density at least at one height in addition 
to using the above equation: 

F = crT~ff (48) 

with cr being the Stefan-Boltzmann constant and T~ff the effective tempera- 
ture of the star. 

If the opacity and source functions are isotropic (not unreasonable for 
stationary atmospheres) we can perform the integration over angle in (47): 

dF ]0 - -  = 4rr X~,(S~,  - J ~ ) d v  = 0 (49) 
d z  
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7.2 Preconditioning 

One problem in implementing the condition of radiative equilibrium in a code 
is that  the driving term is the difference between the mean intensity and the 
source function. At large optical depths these quantities are almost equal and 
the difference may be lost in the numerical truncation errors. If possible one 
should then precon&tion the equations by analytically taking out the large 
terms that  almost cancel, see Rybicki (1972) and Scharmer ~; Carlsson (1985) 
for examples. 

7.3 T r e a t m e n t  o f  Mi l l i ons  o f  S p e c t r a l  L ines  

In an ordinary star there are millions of spectral lines such that  a s tandard 
discretization, adequatly sampling the variations in opacity and mean in- 
tensity, would require an enormous nmnber of frequency points. Two basic 
methods exist to overcome this problem. 

In O p a c i t y  S a m p l i n g  (OS) a large number of points are distributed 
over the spectrum. Each individual spectral line is not properly sampled but  
if the number of points is large enough the stat,stical properties are properly 
sampled and the flux divergence is adequately represented. The calculated 
spectrum is, however, undersampled and can not be compared directly to an 
observed spectrum. For cool stars on the order of 10 4 frequency points are 
needed. 

In the O p a c i t y  D i s t r i b u t i o n  F u n c t i o n  (ODF) approach the opacities 
are redistributed within narrow wavelength bins (typically 50 ~)  to create 
a smoother function of opacity as a function of wavelength. This smoother  
function can be sampled with fewer fi'equency points than the original opacity 
distribution, see Fig. 4. On the order of 500 points may be needed, a factor 
of 20 fewer than with the opacity sampling method. One disadvantage is tha t  
high opacities are lined up in depth and this may be unphysieal because dif- 
ferent spectral lines may dominate the opacity at different depths, mainly 
because of differences in temperature and therefore ionization balance. An- 
other disadvantage is that  the calculation of the opacity distribution functions 
is t imeconsuming and has to be redone if the abundances are changed. 

In LTE one may even sample ODFs over the whole spectrum if the vari- 
ation of the Planck function is taken into account. In this way one may 
approximately calculate the radiative flux divergence with only a handful 
of frequency points. This is the approch chosen to treat the radiative en- 
ergy transport  in the 3D radiat ion-hydrodynamic simulations by Nordlund 
~; Stein, see Nordlund (1982) for details. 

7.4 Complete Linearization 

Treating the forward diagnostic problem we ended up with one equation for 
each energy level considered (see Section 6). The full radiation hydrodynam- 
ics problem is not much more complicated from a methodological point of 
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i 
Fig.4.  Opacity distribution function method. Left panels: The original opacity as 
a function of wavelength within a narrow band. Right panels: The same opacities 
but now sorted with all the high opacities at one end of the wavelength band. The 
lines between the bottom panels show how every second of the ten largest opacities 
have been moved in the sorting process. Only a handful of points is needed to well 
approximate the right hand distribution while the original distribution demands a 
large number of points (upper panels). 

view. We need four extra equations for the four extra variables bulk velocity, 
density, electron density and temperature: conservation of momentum,  mass, 
charge and energy. Taking into account the time-variation means the statis- 
tical equilibrium equations are replaced by the rate equations. They state 
that the net rate into an energy level no longer is zero but is equal to the 
time derivative plus an advection term giving the net inflow into a volume 
element: 

c~n~ ~ ,u nl 
+ Oz (niv) = ~ n jPj i -  ni ~ Pij (50) 8t j~i  j•i 

The method of linearization can still be used. The difference in the rate 
equations is that  we get many more terms. The 5Pij terms in Equation (37) 
now get contributions also from (~Cij since the collisional rates depend on 
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both electron density and temperature .  We also get terms f rom the profile 
functions. From the 5X. ,  term we used to have only 5ni and 5nj t e rms  but  
we now need the whole expression: 

Ox~, 5x (51) 
X 

n l  with x being all the variables we solve for ({ni}l , v, p, n, ,  T).  All per turba-  
tions thus have to be expanded into per turbat ions of the variables we solve 
for. In the diagnostic problem the radiative transfer equation was incorpo- 
rated into the statistical equilibrimn equations through the use of Scharmer 's  
operator.  We got expressions of an equivalent source function per turba t ion  
5 S , ,  tha t  could be written in te rms of 5n, and ~rtj through the expressions 
for X , ,  and ~ . , .  In the radiation hydrodynamics  problem we get the same ex- 
pressions but with per turbat ions in all variables we solve for through the new 
expressions for 5X. , and 5~.~. In the energy equation we t reat  the radiat ive 
transfer in the same way as in the rate equations. 

In the diagnostic problem we could treat  one atomic species at a t ime but 
here we need to include all the energy levels of all the elements tha t  contr ibute  
to the energy balance or the electron density. With  a six-level model for 
hydrogen and a six-level model for ionized calcium (taking into account the 
most  impor tan t  energy levels for the Solar chromosphere) we end up with 
10 rate equations, 2 particle conservation equations and 4 hydrodynamic  
equations per depth-point .  With  100 depth-points  we total  1600 equations 
in 1600 unknowns. This set has to be solved for each t ime-step.  To enable 
the t rea tment  of shocks it is an advantage to formulate  the equations on an 
adaptive depth-grid. This means tha t  the grid is neither fixed relative to the 
solar center (Eulerian grid) nor relative to the moving fluid (Lagrangian grid) 
but something in between. The grid locations are solved for together with the 
other variables and we add one equation that  describes where we want the 
grid-points to be. One may choose to set the grid density to be proport ional  
to gradients in the variables. See Dorfi L: Drury (1987) for details. 

7.5 D y n a m i c s  

The classical assumption of hydrostatic equilibrium means there are no sys- 
temat ic  velocity fields in the atmosphere.  The balance between the pressure 
gradient and the gravity leads to an exponentially decreasing density with 
height. In the absence of damping,  any acoustic waves excited are therefore 
bound to rapidly increase in ampli tude and form shocks in the outer a tmo-  
sphere; weak shock theory predicts this to happen at about  1Mm above the 
visible solar surface (Stein 8z Schwartz 1972). Any classical model a tmosphere  
will therefore fail to describe the outer a tmosphere - -  dynamic  phenomena  
will quickly dominate  and it will be meaningless to use mean quantit ies to 
describe the atmosphere.  
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There is a large li terature on acoustic waves in stellar atmospheres,  see 
reviews by Narain & Ulmschneider (1990, 1996) for references. 

To properly describe the behaviour of waves in the chromosphere it is 
necessary with a fully consistent coupling between non-LTE radiat ion and 
the hydrodynamics.  Such a consistent t rea tment  was achieved only rather  
recently (Carlsson ~ Stein 1992, 1994, 1995, 1997a, 1997b) The equations 
were formulated along the lines given in the previous section. The  s tar t ing 
a tmosphere  was taken from a static convective-radiative equilibrium model  
thus having no chromospheric tempera ture  rise. As bo t t om boundary  condi- 
tion was taken a velocity field deduced from observations of the Doppler shift 
of an iron line formed around 280 km height (Lites et al. 1993). We will here 
only summarize  some of the conclusions. For details, the reader is referred to 
the original papers.  

I t  was found that  statistical equilibrium at the instantaneous values of the 
hydrodynamic  variables was a bad approximation.  At t imes of compression 
in a wave the instantaneous values would give increased hydrogen ionization 
with the energy increase absorbed by an increase of the hydrogen ionization 
energy with only a small tempera ture  increase as a consequence. Because of 
the long timescales for hydrogen ionization and recombinat ion this is not a 
realistic picture. Hydrogen does not have t ime to ionize in the compression 
phase above about  500 km height and the energy therefore goes into increased 
t empera tu re  instead of into hydrogen ionization energy. This leads to a much 
sharper  tempera ture  increase over shock fronts than would be the case with 
infinitely fast ionizat ion/recombinat ion rates. See Carlsson ~z Stein (1992) 
for details. 

Another  conclusion from the simulation work is that  our tradit ional  pic- 
ture of stellar chromospheres has to be radically rethought.  Carlsson ~ Stein 
(1994, 1995) find that  the tempera ture  rise exhibited in semiempirical  models 
of the non-magnet ic  solar chromosphere is mainly  a result of non-linear aver- 
aging of a shock dominated atmosphere.  It is here impor tan t  to stress tha t  any 
dynamic  atmosphere will lead to an overestimate of the mean tempera ture  
when mean intensities in the blue are used as diagnostics. The simulations 
show a mean gas tempera ture  that  does not increase with height giving mean  
intensities that  give a semi-empirical tempera ture  rise (Fig. 5). The  simula- 
tions do not claim to contain the full picture of the Solar chromosphere; e.g., 
they lack the effect of an incident radiation field from the corona and high 
frequency waves from the photosphere. Both of these effects will favour a 
slow tempera ture  increase. The essential conclusions are, however: 

- a mean tempera ture  structure can not be deduced from mean  intensities 
in the blue part  of the spectrum. 
in a dynamic chromosphere the mean tempera ture  is not only difficult 
to deduce but is also a meaningless and even m~sleading quantity. The 
energy balance can only be deduced from a dynamical  model and not 
from any such mean model. 
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Fig. 5. Time average of the temperature in a dynamical simulation (Carlsson & 
Stein 1995), the range of temperatures in the simulation, the semiempirical model 
that gives the best fit to the time average of the intensity as a function of wavelength 
calculated from the dynamical simulation, the starting model for the dynamical 
simulation and the semiempirical model FALA (Fontenla et al. 1993). The maxi- 
mum temperatures are only reached in narrow shock spikes of short duration. The 
semiempirical model giving the same intensities as the dynamical simulation shows 
a chromospheric temperature rise while the mean temperature in the simulation 
does not. 

The diagnostics of the Solar chromosphere is made difficult by the lack of 
good observational diagnostics. In the optical region the continuum opacity 
is much too small and we thus need a large line opacity. This leaves lines orig- 
inating from the ground state of the dominant ionization stage of abundant  
elements. Most of these resonance lines lie in the UV region of the spectrum 
with the notable exception of the two resonance lines from singly ionized 
calcium, CaII .  These Fraunhofer H and K lines show very strong absorption 
with a slight emission as a chromospheric signature near line center. The 
emission is in the form of two emission peaks with absorption in between. In 
non-magnetic regions outside the chromospheric network the emission is as- 
symmetric with almost never a red emission peak and the violet peak (named 
H2v for the H-line and K2v for the K-line) only prominent at times with a 
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period of about  three minutes.  It  has turned out  tha t  this a s s y m m e t r y  and 
the t empora l  behaviour  is difficult to reproduce in theoret ical  models .  An- 
o ther  way of  seeing this difficulty is tha t  the feature is a good  diagnost ic  of  
the a tmospher ic  conditions.  

The  s imulat ions  ment ioned above do, however, reproduce the C a I I  H~v 
behaviour;  even in some detail, see Fig. 6. 
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Fig.  6. The computed Ca II H line intensity as a function of wavelength and time 
compared with observations for slit positions 106 and 110. To mimic effects of 
scattered light and seeing the simulations have been convolved with a Gaussian with 
FWHM of 5 kin/s, scattered light of 1% of the continuum intensity has been added 
and the sequence have been shifted in time with a random function sharply peaked 
at no shift. There is close correspondence between the simulated and observed grains 
after the initial startup period. From Carlsson ~z Stein (1997b). 
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The formation of the Ca II H2v grains is explained in detail in Carlsson 
& Stein (1997a). 

In the UV part  of the spectrum we have access to more spectral features 
formed in the Solar chromosphere. All continua shortward of 152 nm are 
formed above 500 km height. With the SUMER spectrograph on-board the 
SOHO spacecraft this wavelength region is accessible. First results show that  
the non-magnetic chromosphere is indeed very dynamic. Continuum inten- 
sity variations are similar to the predictions from simulations (see Carlsson 
et al. 1997) while line emission variations are not. Emission lines from neutral  
elements show emission all the time while they sometimes disappear in the 
simulations. These lines are formed higher than the Ca II resonance lines and 
one explanation for the discrepancy may be that  these layers are influenced 
by hotter  material in magnetic flux-tubes that  cross areas that  lower down 
only have weak magnetic fields. 

To further our understanding of the dynamics of the outer layers of the So- 
lar atmosphere we need detailed observations coupled with detailed radiation- 
hydrodynamics simulations. We may then get enough constraints to construct 
a meaningful dynamzc picture of the solar atmosphere. Anything short of a 
consistent dynamic picture has to be treated with utmost  caution. 
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