
Demo: SGCode: A Flexible Prompt-Optimizing System
for Secure Generation of Code

Khiem Ton*
Nhi Nguyen*
kt477@njit.edu

yennhi1908hcm@gmail.com
New Jersey Institute of Technology

Newark, New Jersey, USA

Mahmoud Nazzal
Abdallah Khreishah

mn69@njit.edu
abdallah@njit.edu

New Jersey Institute of Technology
Newark, New Jersey, USA

Cristian Borcea
NhatHai Phan∗
borcea@njit.edu
phan@njit.edu

New Jersey Institute of Technology
Newark, New Jersey, USA

Ruoming Jin
Kent State University

Kent, Ohio, USA
rjin1@kent.edu

Issa Khalil
Qatar Computing Research Institute

Doha, Qatar
ikhalil@hbku.edu.qa

Yelong Shen
Microsoft Azure AI

Redmond, Washington, USA
yelong.shen@microsoft.com

Abstract
This paper introduces SGCode, a flexible prompt-optimizing sys-
tem to generate secure code with large language models (LLMs).
SGCode integrates recent prompt-optimization approaches with
LLMs in a unified system accessible through front-end and back-
end APIs, enabling users to 1) generate secure code, which is free of
vulnerabilities, 2) review and share security analysis, and 3) easily
switch from one prompt optimization approach to another, while
providing insights on model and system performance. We popu-
lated SGCode on an AWS server with PromSec, an approach that
optimizes prompts by combining an LLM and security tools with a
lightweight generative adversarial graph neural network to detect
and fix security vulnerabilities in the generated code. Extensive
experiments show that SGCode is practical as a public tool to gain
insights into the trade-offs between model utility, secure code gen-
eration, and system cost. SGCode has only a marginal cost compared
with prompting LLMs. SGCode is available at: SGCode.

CCS Concepts
• Security and privacy → Software security engineering; Vul-
nerability management; • Computing methodologies→Natural
language generation.

Keywords
Demonstration system, Prompt optimization, Secure code, LLMs

ACM Reference Format:
Khiem Ton*, Nhi Nguyen*, Mahmoud Nazzal, Abdallah Khreishah, Cris-
tian Borcea, NhatHai Phan, Ruoming Jin, Issa Khalil, and Yelong Shen.
2024. Demo: SGCode: A Flexible Prompt-Optimizing System for Secure

∗Corresponding author; Khiem Ton and Nhi Nguyen are co-first authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3691367

Generation of Code. In Proceedings of the 2024 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’24), October 14–
18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3658644.3691367

1 Introduction
Ground-breaking developments of LLM-powered code generation
commercial tools, such as Microsoft GitHub Copilot and Amazon
CodeWhisperer, have significantly improved software developer
productivity [3]. However; recent studies show that these tools
frequently inherit security flaws from their open-source training
data, leading to vulnerabilities such as common weakness enumera-
tions (CWEs) in the generated code [1, 7, 9]. In real-world systems,
attackers can exploit such code vulnerabilities, potentially leading
to cyberattacks, data breaches, and degraded performance. There-
fore, there is an urgent need for reliable approaches and systems to
identify and fix vulnerabilities in LLMs-powered code generation.

Recent approaches, including PromSec [6] and SafeCoder [4],
have shown great potential in optimizing prompts toward gener-
ating secure, free of vulnerabilities code. Yet, the lack of a flexible,
deployable system limits our understanding of the trade-offs be-
tween secure prompt optimization, code utility, security analysis,
and system performance. To bridge this gap, we propose SGCode,
a flexible system for deploying and evaluating various prompt op-
timization methods. This tool enables users to gain insights into
the trade-offs between code utility, security analysis, and system
performance, ultimately aiding in the development of more secure
approaches while minimizing system costs. For example, analyzing
different CWEs and their associated costs in computation, com-
munication, and prompting LLMs allows us to refine our model to
better address these vulnerabilities and reduce overall costs.

Contributions.We develop SGCode with two integrated com-
ponents: (1) Back-end Services, which seamlessly integrate Code
Security Analysis Tools, such as Bandit [2] and CodeQL [5], and
commercial LLMs, such as GPT-4o, to generate optimal prompts
for secure code generation and send the results, including the code,
security analysis, and system performance report, to the user front-
end; (2) User front-end, a web-based interface that enables users
to query prompt-optimizing systems, display code, view and share
security analysis and performance reports. SGCode is deployed on

http://3.131.141.63:8501/
https://doi.org/10.1145/3658644.3691367
https://doi.org/10.1145/3658644.3691367


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Khiem Ton et al.

an AWS lightweight server, and extensive experiments show min-
imal system cost (CPU, memory, and latency) compared to the
high cost of LLM code generation. In addition, SGCode allows users
to easily switch prompt-optimizing approaches [4, 6]. SGCode of-
fers a portable and lightweight solution to gain insights into the
trade-offs between code utility, secure code generation, and system
performance cost.

2 Prompt-Optimizing Secure Code Generation
Two recently developed secure code generation approaches are
PromSec [6] and SafeCoder [4]. The key idea of PromSec is lever-
aging a graph generative adversarial neural network (gGAN) to
mitigate code vulnerabilities by altering the code’s graph represen-
tations. These altered representations are translated into prompt
adjustments using LLMs. PromSec trains the gGAN model using
a differentiable contrastive objective, which seamlessly integrates
code security analysis tools, LLMs, and the gGAN’s generator to-
gether, ensuring secure code generation.

An alternative solution is SafeCoder [4], an instruction tuning
approach to resolve code vulnerabilities in two steps: (1) Curating a
dataset consisting of standard instructions and a code vulnerability
dataset consisting of GitHub commits for fixing code vulnerabilities;
and (2) Instruction tuning that minimizes the language modeling
loss Lstd if the data point is in the instruction dataset; otherwise,
the loss isLsec+Lvul if the data point is in the vulnerability dataset.
Lsec is the likelihood loss that aligns the LLM model toward the
secured tokens in 𝒐sec, whereas Lvul is the unlikelihood loss that
helps to reduce the probability of generating vulnerable tokens in
𝒐vul. The fine-tuned LLM is used to generate secure code.

3 SGCode System
We develop SGCode (Figure 1a) as an API-accessible service and
a web application for users to access our system on the web or
integrate our API into their applications. The system design focuses
on simplicity to optimize system costs, extensibility to customize
the API, and maintainability with our modular architecture.

SGCode’s back-end is powered by FastAPI [8]. It receives instruc-
tions to generate code from the users and then utilizes a pipeline
consisting of three main components: (1) an interchangeable se-
curity analysis component, (2) a gGAN model from PromSec, and
(3) an easily modifiable LLM. This design allows users to generate
secure code with customization in mechanisms such as PromSec
or SafeCoder. Users can use gGAN with an LLM for PromSec, or
they can simply change the LLM to the SafeCoder-tuned LLM as
in [4] to enable SafeCoder standalone or even combine the two
approaches. Our system employs a NoSQL database to store the
generated code for shareable security reports.

Before performing security analysis, the back-end processes the
request from the front-end. If the payload instructs code generation,
it is fed to the LLM component to produce the code. The generated
code is then analyzed for vulnerabilities using Bandit or CodeQL.

If no vulnerability is found in the code or if the SafeCoder stan-
dalone is selected, the system returns the code to the user since the
code is secure. Otherwise, the vulnerable code is sent to the gGAN
module from PromSec for further processing and then passed to
the LLM component.

The LLM plays a pivotal role in generating code that aligns with
users’ instructions and performs prompt optimization in PromSec.
Our design allows users to modify the LLM by supporting any API
servers that are OpenAI API-compatible. As a result, users can use
our OpenAI model connections, connect via their personal OpenAI
account, or implement self-hosted LLMs. This approach also helps
facilitate the integration of SafeCoder into our system.

A FastAPI server manages all three modules, ensuring seamless
operation of the pipeline. In addition to managing the modules,
the server performs auxiliary tasks, such as saving the programs
with their corresponding security analysis to a NoSQL (MongoDB)
database and creating shareable reports. These tasks are background
processes, thus do not impact the pipeline’s performance.

3.1 Front-End Interface
The interface is built using Streamlit, an open-source Python frame-
work for creating interactive user interfaces (UI). The interface is
organized into two main screens: (1) AI Prompt UI, which facili-
tates user input (Figure 1b); and (2) Security Analysis Report screen,
which displays detailed results and insights (Figure 1c).

AI Prompt UI. Users configure preferences for security analysis
tools, code securing mechanisms, and LLMs. Once preferences are
set, users can initiate their work by entering a prompt into the input
box at the bottom of the screen. In addition, users can upload code
directly using the code upload button. The submitted data is then
sent to the back-end for processing. For every prompt for which
the back-end service returns a response, the generated code from
the LLM is displayed, and a button “Security Analysis” is provided
to generate the code’s security analysis report.

Security Analysis Report. The report page presents vulnera-
bilities in the code and provides data visualization. The right side
of the screen features a container divided into tabs that distinguish
between vulnerabilities in the original code (user input prompt) and
those in the secured code (generated by SGCode). Each tab displays
a detailed list of issue information. This comparison facilitates the
identification of modifications made to address vulnerabilities. On
the left side, the page includes a comprehensive visualization of
issue confidence counts in the original code, which reflects the
severity of vulnerabilities. A summary tab provides an overview of
detected vulnerabilities, detailing the number of identified, fixed,
and remaining issues, thus offering a rapid assessment of the code’s
security status. The page also features a line-by-line comparison of
the original and secured code to illustrate the changes implemented
and the effectiveness of the system’s fixes. Users can share the
security analysis as a PDF report or HTML link.
3.2 Deployment and Evaluation
We deploy SGCode on an AWS c7g.large virtual machine consisting
of 2 vCPUs of AWS Graviton3 ARM processor and 4 GiB memory.
We run the FastAPI with 4 workers and Streamlit on the same
machine. Our back-end connects to a MongoDB instance hosted via
MongoDB Atlas. We conduct three experiments using the test data
in [6]: (1) Evaluating SGCode’s resource usage with and without
PromSec; (2) Measuring SGCode’s latency given the number of
CWEs, CWE IDs, and the prompt length; and (3) Inspecting the
code security and code functionality using our Security Report.

First, we measure the resource usage by using the Python li-
braries psutil and sys. We select the back-end and front-end process



Demo: SGCode: A Flexible Prompt-Optimizing System
for Secure Generation of Code CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(a) Basic Architecture of SGCode. (b) Chat Interface (c) Report Analysis Interface

Figure 1: Front-end User Interface.

#Vulnerabilities gGAN time Security Analysis time LLM time Communication time Total time #Prompt Tokens #Output Tokens Time per Code line
2 0.01 0.97 40.28 0.62 41.89 426 355 0.66
3 0.007 0.78 23.17 0.59 24.56 310 264 0.53
4 0.004 0.52 11.19 0.56 12.28 318 217 0.34

Table 1: Performance metrics for different numbers of vulnerabilities (time is in seconds).
CWE ID gGAN time Security Analysis time LLM time Communication time Total time #Prompt Tokens #Output Tokens Time per Code line

20 0.015 1.46 55.14 0.60 57.21 365 379 1.04
78 0.007 0.77 22.30 0.58 23.65 310 256 0.52
89 0.008 0.78 25.06 0.59 26.43 357 294 0.52
259 0.008 0.79 25.52 0.59 26.92 339 279 0.54
327 0.005 0.58 13.26 0.58 14.43 313 228 0.37
703 0.002 0.40 6.59 0.59 7.58 236 207 0.22

Table 2: Performance metrics for different CWEs (time is in seconds).
Prompt Length gGAN time Security Analysis time LLM time Communication time Total time #Prompt Tokens #Output Tokens Time per Code line
LOW 0.006 0.63 15.58 0.57 16.79 282 231 0.41
HIGH 0.013 1.23 51.25 0.64 53.14 471 400 0.88

Table 3: Comparison of performance metrics for LOW and HIGH prompt length (time is in seconds).

CPU (Percentage) Memory (MB)
PromSec 0.06 2,170.75
No PromSec 0.05 2,168.84

Table 4: Resource usage comparison

IDs and their child processes and run the test dataset on the front
end via Selenium. We evaluate our system until the test is finished
and report the average result in three runs. Table 4 shows that
utilizing PromSec has negligible CPU and memory usage.

Second, we measure the system’s total latency and the latency
of each component. We conduct the latency experiment on the
vulnerabilities count, different CWEs, and prompt lengths based
on the average number of tokens in the test dataset. In our dataset,
we consider “LOW” to be less than and “HIGH” to be larger than
the average number of tokens (i.e., 335.5). Tables 1-3 show that the
gGAN and the Security Analyzing component are lightweight com-
pared to the enormous latency introduced by the LLM component.
Also, longer prompts impose longer latency.

Third, manually inspecting the code functionality reveals that
utilizing a standalone gGANwith commercial LLMs, such as GPT3.5,
GPT4, and GPT4o, can cause code functionality deviation, that is,
users do not get secure code with desirable functionality given the
information loss incurred by the iterative process of optimizing
prompts with the LLMs. About 98% of the generated code has
partially or fully deviated functionality. Flexibly replacing the LLMs
with a SafeCoder-tuned LLM can potentially enhance the trade-off
between code functionality and security. However, these models
have been trained on relatively small datasets. Therefore, a more
rigorous study is needed to investigate this trade-off and SGCode
offers a practical tool for this purpose.

4 Conclusion and Future Works
We developed SGCode, a timely and flexible system that utilizes
prompt-optimizing mechanisms to generate secure code. SGCode
performs efficiently, even on a lightweight AWS virtual machine,
with negligible overhead from prompt-optimizing mechanisms. Our
future work will focus on: (1) Incorporating a feature that allows
users to define utility tests and automatically test their code; (2)
Further optimizing our system to reduce latency; and (3) Scaling
the model to handle larger data and more complex code.

Acknowledgement
This work is supported by the NSF under the grant CNS-1935928.

References
[1] Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mo-

hamed Amine Ferrag, and Lucas C Cordeiro. 2023. A New Era in Software Security:
Towards Self-Healing Software via Large Language Models and Formal Verifica-
tion. arXiv preprint arXiv:2305.14752 (2023).

[2] B. Developers. 2022. Welcome to Bandit — Bandit documentation. https://bandit.
readthedocs.io/en/latest/ [Online; accessed 1. June 2023].

[3] Github. 2023. Research: Quantifying GitHub Copilot’s impact on code quality.
https://github.com/features/copilot. [Online; accessed 17-June-2024].

[4] Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin Vechev. 2024. In-
struction Tuning for Secure Code Generation. In ICML.

[5] GitHub Inc. 2021. CodeQL Documentation. https://codeql.github.com/docs/
[Online; accessed 4-Dec-2023].

[6] Mahmoud Nazzal, Issa Khalil, Abdallah Khreishah, and NhatHai Phan. 2024.
PromSec: Prompt Optimization for Secure Generation of Functional Source Code
with Large Language Models (LLMs). In ACM CCS.

[7] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In IEEE S&P. 754–768.

[8] Sebastián Ramírez. 2024. FastAPI. https://fastapi.tiangolo.com
[9] Mohammed Latif Siddiq, Beatrice Casey, and Joanna Santos. 2023. A Lightweight

Framework for High-Quality Code Generation. arXiv:2307.08220 (2023).

https://bandit.readthedocs.io/en/latest/
https://bandit.readthedocs.io/en/latest/
https://github.com/features/copilot
https://codeql.github.com/docs/
https://fastapi.tiangolo.com

	Abstract
	1 Introduction
	2 Prompt-Optimizing Secure Code Generation
	3 SGCode System
	3.1 Front-End Interface
	3.2 Deployment and Evaluation

	4 Conclusion and Future Works
	References

