
CryptGNN: Enabling Secure Inference for Graph Neural Networks

ABSTRACT
We present CryptGNN, a secure and effective inference solution
for third-party graph neural network (GNN) models in the cloud,
which are accessed by clients as ML as a service (MLaaS). The main
novelty of CryptGNN is its secure message passing and feature
transformation layers using distributed secure multi-party compu-
tation (SMPC) techniques. CryptGNN protects the client’s input
data and graph structure from the cloud provider and the third-
party model owner, and it protects the model parameters from the
cloud provider and the clients. CryptGNN works with any number
of SMPC parties, does not require a trusted server, and is provably
secure even if P − 1 out of P parties in the cloud collude. Theoreti-
cal analysis and empirical experiments demonstrate the security
and efficiency of CryptGNN.

CCS CONCEPTS
• Do Not Use This Code→ Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:
. 2018. CryptGNN: Enabling Secure Inference for Graph Neural Networks.
In Proceedings of Make sure to enter the correct conference title from your
rights confirmation email (Conference acronym ’XX). ACM, New York, NY,
USA, 22 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Unleashing the power of Graph Neural Networks (GNNs) [16, 21,
37] requires large amounts of training data and computing re-
sources, which are not available to small businesses or individuals.
A promising way to democratize access to large-scale GNN models
is to make them available in the form of MLaaS [29]. In MLaaS,
third-party owners can monetize their trained models, and clients
can perform inference by uploading data to the ML service.

Many types of applications can benefit from GNN models made
available as MLaaS, in domains such as pharmaceuticals, finance,
software engineering, cybersecurity, and IoT. In pharmaceuticals,
a company may offer a cloud-based GNN model trained on a pro-
prietary collection of organic compound data to help researchers
and small start-ups screen out unqualified molecules in the drug

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

discovery process. In finance, transaction networks can also be mod-
eled as graphs, where user accounts are represented as nodes with
features such as account age, transaction frequency, and reputation
score, and edges represent financial transactions. GNNs trained on
these graphs can be used to detect fraudulent activity. In software
engineering, GNNs trained on codebase represented as program de-
pendence graphs (PDGs) [24] can support automated code analysis,
allowing developers to upload code-derived graphs for inference.
In cybersecurity, control flow graphs (CFGs) generated from binary
executables can serve as inputs to GNNs for effective malware de-
tection. In IoT networks, devices and their interconnections can
be represented as graphs, where nodes correspond to devices and
edges capture communication links or physical layout, and infer-
ence on these graphs enables system fault detection.

However, operating GNN models in MLaaS settings faces two
major privacy concerns. First, the input graph data (such as molec-
ular graphs, financial transactions, source code as PDGs, binary
executables as CFGs, or IoT topologies) submitted by clients often
contains highly sensitive or proprietary information that must be
protected from both the cloud provider and the model owner. Sec-
ond, the GNN model parameters trained on valuable proprietary
datasets need to be protected from both the cloud provider and
the clients to prevent model theft or leakage. This paper addresses
these two privacy challenges for GNN inference in the cloud. We
do not address training privacy, as we assume the model is trained
in the private infrastructure of its owner.

Existing protocols for privacy-preserving ML inference [10, 19,
23, 28] use cryptographic techniques such as homomorphic en-
cryption (HE), trusted execution environment (TEE), and secure
multi-party computation (SMPC). Applying these solutions for se-
cure inference over graph-structured data is difficult, because we
need to protect not only the features of the graph nodes, but also the
graph structure that contains the relationships between the nodes.
Protecting the graph structure is especially challenging for GNNs
that use message passing layers (MPL) [11, 21] (i.e., the majority
of GNNs) because the structure needs to be exploited to exchange
messages through edges. Furthermore, it is challenging to design
an efficient algorithm to secure the computations in the feature
transformation layers (FTL) in GNN, which is required to protect
the intermediate and final results, thereby safeguarding the model
parameters and node features.

We propose CryptGNN, a privacy-preserving inference system
for GNN models in the cloud, which protects the privacy of the
model parameters and the client data. Targeting privacy assurance
and high efficiency, we develop distributed SMPC [22, 32, 39] pro-
tocols that enable a set of mutually distrusting cloud providers
(parties) to compute a function on their secret inputs without dis-
closing each other’s inputs and outputs. Practically, we outsource
the encrypted GNN models across several honest-but-curious par-
ties, assuming P − 1 out of P parties can collude with each other.
The SMPC providers compute the forward pass of the model, while
CryptGNN protects the model parameters in additive secret-shared
format. To protect the client input graph, CryptGNN encrypts the

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

node features and the graph structure in an additive secret-shared
format before uploading the data to the SMPC parties.

CryptGNN consists of two novel distributed protocols to en-
able privacy-preserving inference of encrypted GNN models on
encrypted input graph data in the cloud. CryptMPL executes the
message-passing layer, while preserving the privacy of input data
(i.e., node features and graph structure). It employs novel opera-
tions that rotate and shift the input data to securely perform the
read and write steps in MPLs. These operations use a data prepro-
cessing step at the client, which helps the SMPC parties mask the
private data, thereby eliminating the need for any trusted servers.
CryptMUL executes the secure multiplication operations required
for evaluating the linear and nonlinear FTLs in GNN models. In
this protocol, the SMPC parties conduct offline preprocessing to
generate auxiliary data that allows them to execute matrix and
element-wise multiplications without expensive cryptographic op-
erations or relying on a trusted server. CryptMPL and CryptMUL
are invoked from the GNN models to guarantee the cloud providers
do not learn partial results of functions executed over secure inputs
or the final inference results.

Our theoretical analysis proves that CryptGNN is correct and
secure, as models using CryptGNN achieve the same accuracy as
plain-text models while protecting the input graph and the model
parameters. Our experiments demonstrate that CryptGNN and its
protocols achieve lower latency and overhead than baselines based
on CrypTen [22], SecGNN[34], and adjacency matrices for graph
representation. The main contributions of this paper are as follows:
• CryptGNN is the first system to enable secure inference for GNNs,
ensuring data privacy for both the model owner and the data
owner under a strong threat model while maintaining efficiency.
• We propose a novel algorithm, CryptMPL, for message-passing
in GNNs (Section 4) that eliminates the need for a trusted server
by using client-side noise for data masking and server-side data
transformations. This design works with an arbitrary number of
SMPC servers, offering stronger security guarantees compared
to prior approaches.
• CryptMPL proposes a novel graph structure representation, using
an edge list combined with SMPC and plaintext relative indexing.
This design allows for batch processing of edges, significantly
improving efficiency.
• We design novel CryptMUL protocols (Section 5) that integrate
existing SMPC techniques and leverage an input-independent
preprocessing step to enable secure matrix multiplication and
element-wise multiplication, which are essential for the linear
and non-linear layers of a GNN.
• CryptMUL exploits the fact that model parameters remain fixed
across all GNN inferences to optimize the protocol for linear
layers. It also leverages the fixed number of multiplications in the
GNN to generate auxiliary data offline, enabling efficient online
execution of element-wise multiplications in non-linear layers.
• We provide a security and overhead analysis (Section 6) and
demonstrate the efficacy and security of our proposed system
through experiments (Section 7) on benchmark graph datasets
using a well-known GNN architecture.
Overall, the novelty of our contributions lies in creating application-

specific protocols for GNN models that can have significant impact

in real-life. We utilize existing cryptographic primitives as founda-
tional building blocks to develop new secure and efficient protocols
for GNN inference.

2 BACKGROUND AND RELATEDWORK
This section covers background information and related work. As a
matter of notation: (i) 𝑥 $← Z𝐿 denotes that 𝑥 is uniformly randomly
sampled from Z𝐿 , where 𝐿 = 2𝑙 represents 𝑙-bit values; (ii) regular
and bold characters represent a scalar and matrix, respectively.

2.1 Background on GNN and Cryptographic
Primitives

Message-passing layer (MPL) in GNN. This key operation is
executed on graph data G = (X, S,D). X ∈ R𝑁×𝐾 represents the
node features as a matrix, where 𝑁 is the number of nodes in the
graph and 𝐾 is the number of features for each node. The graph
structure is often stored via edges, represented as source/destination
indices S and D, where (S[𝑗],D[𝑗]) represents the 𝑗-th edge. We
consider the most common MPL, where the features of neighboring
nodes are aggregated at each node. For the 𝑖-th node, the MPL
processing is expressed as in Eq. 1, where N(𝑖) is the neighbor set
of node 𝑖 , x′𝑖 is the aggregated feature vector, and x𝑗 is the current
feature vector of node 𝑗 . A GNN model often consists of multiple
MPLs, with FTLs in between.

x′𝑖 =
∑︁

𝑗∈N(𝑖)
x𝑗 (1)

Feature transformation layers (FTLs) in GNN.AGNNmodel
incorporates several FTLs, which can involve linear operations, non-
linear activations, and other operations that modify the feature
representations of the nodes. Below, we describe some common
types of FTLs in GNNs. We use × and ⊗ symbols for scalar and
matrix multiplication, respectively.

Linear Layers.A linear layer uses learned parameters (weight ma-
trixH and bias matrix B) to transform intermediate feature matrices
during inference. Mathematically, it involves matrix multiplication
and addition operations:

X′ = X ⊗ H + B (2)
Non-linear Layers. A non-linear layer modifies the input rep-

resentation by applying a non-linear function to each element of
the input. For instance, a sigmoid layer applied to the vector X
computes the sigmoid function for each element in X. Non-linear
functions can be implemented using standard approximations [22].

Batch Normalization Layer. During inference, a batch normaliza-
tion layer utilizes learned parameters, including mean and variance
calculated from the training data, along with model-specific param-
eters (e.g., 𝜖 , 𝛾 , and 𝛽), to normalize an input value 𝑥 to the value 𝑦
as defined in Equation 3.

𝑦 =
𝑥 − E[𝑥]√︁
Var[𝑥] + 𝜖

∗ 𝛾 + 𝛽 (3)

Cryptographic primitives. A secret sharing [30] scheme shares
a secret 𝑥 among P parties, s.t. the parties can collectively recon-
struct the secret, while learning nothing about the secret. We use
P-out-of-P secret sharing schemes, which require the shares of

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Comparison between CryptGNN and Related Work

Number of
SMPC
Parties

Does not
require a

trusted party

Protects
Model

Parameters

Protects
Node

Features

Protects
Graph

Structure

Supports
heterogeneous

graphs

Supports
weighted

directed edges

CryptoGCN [26] − ✓ × ✓ × × ✓
SecGNN [34] 2 × ✓ ✓ ✓ × ✓
CryptGNN Any ✓ ✓ ✓ ✓ × ✓

all P parties to reconstruct the data. We denote the parties by 𝐶𝑃𝑖 ,
𝑖 ∈ {1, . . . ,P}.

Additive secret sharing (A-SS): In our work, we primarily use
A-SS approach. In A-SS, the secret value and its shares are defined
over the ring Z𝐿 . A real value 𝑥𝑅 ∈ R is represented using a fixed-
point encoding with a scaling factor 𝐵 to obtain 𝑥 = ⌊𝐵𝑥𝑅⌋ ∈
[−2𝑙−1, 2𝑙−1), where 𝐵 = 2𝑓 for a given precision of 𝑓 bits. 𝑥 can be
decoded as 𝑥𝑅 ≈ 𝑥

𝐵
. We denote the shares of 𝑥 across the parties by

J𝑥K =
{
J𝑥K𝑝

}
𝑝∈P , where J𝑥K𝑝 indicates 𝐶𝑃𝑝 ’s share of 𝑥 . In A-SS,

P shares are chosen s.t.
∑P
𝑖=1 𝑥𝑖 = 𝑥 mod 𝐿. The reconstruction

algorithm simply adds all the shares as 𝑥 = (∑𝑝∈P [𝑥]𝑝) mod 𝐿.
Multiplicative secret sharing (M-SS): We define M-SS over real

field R, where P values are chosen uniformly at random, such that
𝑥 =

∏P
𝑖=1 𝑥𝑖 , 𝑥𝑖 ∈ R and 𝑥𝑖 > 0. We denote the M-SS of 𝑥 across the

parties 𝑝 ∈ P by ⟨⟨𝑥⟩⟩ =
{
⟨⟨𝑥⟩⟩𝑝

}
𝑝∈P

, where ⟨⟨𝑥⟩⟩𝑝 indicates party
𝐶𝑃𝑝 ’s share of 𝑥 .

Beaver Triples: Given the additive secret shares of values 𝑋,𝑌 ∈
Z𝐿 , computing the shares of𝑋 ×𝑌 requires interaction between the
parties. A commonly used approach for this secure multiplication is
using a Beaver triple [2], which consists of three elements (𝐴, 𝐵,𝐶)
such that 𝐶 ← 𝐴 × 𝐵, and 𝐴, 𝐵 $← Z𝐿 . The A-SS shares of a Beaver
triple (𝐴, 𝐵,𝐶) can be used to compute the shares of 𝑍 ← 𝑋 ×𝑌 by
following the protocol F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑢𝑙 (J𝑋 K, J𝑌 K, J𝐴K, J𝐵K, J𝐶K) shown
below:
• Each party gets the share of triples as (J𝐴K, J𝐵K, J𝐶K).
• Each party computes J𝑈 K← J𝑋 K − J𝐴K, J𝑉 K← J𝑌 K − J𝐵K.
• All parties interact to reveal𝑈 ← (𝑋 −𝐴), 𝑉 ← (𝑌 − 𝐵).
• Each party computes the shares of 𝑍 as J𝑍K ← 𝑈 × J𝐵K + 𝑉 ×

J𝐴K + J𝐶K +𝑈 ×𝑉 .
Matrix multiplication can also be performed using Beaver triples

following the above steps, just by replacing × with ⊗ to represent
the multiplication of different matrices.

2.2 Related Work
SecGNN [34] is an SMPC-based solution for GNN models that pro-
cesses graph data encrypted in A-SS. Unlike CryptGNN, it relies on
a trusted server, which is a strong assumption in practice. Moreover,
it works only for 2 parties, which cannot collude with each other.
In contrast, CryptGNN works with an arbitrary number of parties,
even when P − 1 out of the P parties collude, offering a stronger
security guarantee.

One intuitive approach for secure MPL computation is to repre-
sent node features in an encrypted feature matrix and the graph

structure in an encrypted adjacency matrix, and then employ state-
of-the-art matrix multiplication methods [1, 22]. However, this
incurs high communication overhead, may require an additional
trusted party, and results in unnecessary computations for sparse
real-world graphs. CryptGNN represents the graph structure as
source/destination arrays and achieves substantially lower over-
head. To reduce computation overhead, CryptoGCN [26] proposed
an efficient matrix multiplication using homomorphic encryption
(HE). However, it does not protect the graph structure and assumes
the GNN model parameters are in plain-text. In fact, protecting the
input graph and model parameters with HE is challenging due to
the involvement of two different entities (client and model owner)
encrypting the data, which introduces additional overhead for boot-
strapping [7] and key relinearization [8]. CryptGNN uses a much
cheaper A-SS approach, reducing the overhead.

ORAM techniques [17, 31] could enable a client to access graph
data without leaking the access patterns, and thus the graph struc-
ture; however, they require the client to download and decrypt data,
making it more computationally expensive at resource-constrained
clients. In contrast, CryptGNN’s secure message-passing protocol
offers a more efficient approach that reduces client involvement in
GNN inference computations.

Several approaches exist for secure element-wise and matrix
multiplication for FTLs in SMPC settings. CrypTen [22] requires
the parties to communicate with a trusted third party. This is not
required in CryptGNN. Protocols using HE [6] and oblivious trans-
fer [27] tend to have high overhead, making them impractical, es-
pecially for numerous inference requests. Our CryptMUL employs
HE or OT-based techniques only during preprocessing, enabling
the design of FTLs with very low overhead for computing multiple
inference requests.

Table 1 presents a comparison of our work with closely related
approaches [26, 34] that directly support GNN inference. As dis-
cussed so far in this section, the table emphasizes that CryptGNN
is the only solution that works with any numbers of SMPC parties,
does not require a trusted server, and is able to protect the model
parameters, the node features, and the graph structure. Let us notice
that all these works can be easily extended to support weighted
directed edges, but they lack support for heterogeneous graphs,
as discussed in Section 8. We also compare our work in Section 7
with [22], a generic framework that can be adapted to design se-
cure protocols in SMPC settings; however, it relies on a trusted
party and introduces higher overhead for GNN inference. Other
works [32, 39] on SMPC cannot be directly extended to support the
complex requirements of GNN inference tasks.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

X X1 X1*
MPL

f1(X1*, Ɵ1)
FTL

X2 X2*
MPL

f2(X2*, Ɵ2)
FTL

Result

(a)

Client2

(X, S, D)2 CryptGNND

3

7

(Data Owner)

Client1

(X, S, D)1 CryptGNND

CPP

[[Ɵ]]

CP1

[[Ɵ]]

CP2

[[Ɵ]]

Model Owner

CryptGNNM Ɵ
1

3
4

67

6

4

5
5

5

CryptGNNCP

2

CryptGNNCP

CryptMPL

CryptMUL

(Data Owner)

(b)

Figure 1: (a) A computational flow showing input graph fea-
tures 𝑋 passed through several MPLs and FTLs of a GNN
to generate an inference result (b) CryptGNN architecture
illustrating the major components in a 𝑝-party SMPC setting

3 THREAT MODEL AND SYSTEM OVERVIEW
Threat Model. In our system, there are three key entities:
• Model owner (MO): Its primary concern is safeguarding the pa-
rameters of the trained GNN model, while ensuring accurate
results for each inference request.
• Data owners (DO): The system can accommodate multiple DOs
(clients), each making numerous inference requests and con-
cerned about ensuring the privacy of input graph data.
• Cloud servers (referred to as parties or CP): We consider an
honest-but-curious adversary in the P-party SMPC settings,
where each of the P cloud servers honestly follows the pro-
tocols, but may attempt to learn the private data of the MO or
DO individually or through collusion.
Our threat model 𝑇𝑀 assumes that at most P − 1 parties may

collude to learn DO’s input data or MO’s model parameters. Within
𝑇𝑀 , we also consider the cases where P − 1 colluding parties
may collude either with the MO to gain access to the DO’s input
data or with a DO that they control, 𝐷𝑂 𝑓 𝑎𝑘𝑒 , to access the MO’s
model parameters or the input graph data of other DOs. We assume
that parties communicate using a secure channel. As the colluding
parties can monitor the computation’s control flow and analyze
data access patterns, we must use oblivious operations to ensure
the input, output, and intermediate results are secured.

System Overview. Fig. 1(a) shows the flow of a typical GNN,
where the initial node features X are passed through GNN layers to
get the intermediate node features X1. An MPL takes the current
node features X1 as input and exchanges messages between the
nodes through the edges to compute new node features X∗1. The
FTL transforms X∗1 into X2 = 𝑓1 (X∗1;Θ1), where Θ1 summarizes
the parameters in an FTL. In GNN, after executing multiple MPLs
and FTLs, the final node features are computed to generate the
inference result.

The CryptGNN system architecture, shown in Fig. 1(b), has com-
ponents at the SMPC parties, theMO, and the DOs. The components
at the SMPC parties execute most of the secure inference protocols.

Update/Aggregate

Write

Read

Data Masking

C
ry

p
tM

P
L

(a)

2 3
0 6
5 7
3 1

10 2
3 6
0 1
2 4

1 1
0 9
0 5
3 4

13 6
3 21
5 13
8 9

4 1
3 4
10 3
2 0

2 3
4 8
7 3
0 4

5 4
6 4
7 3
0 3

11 8
13 16
24 9
2 7

6 4
3 10
15 10
5 1

12 5
7 14
7 4
2 8

6 5
6 13
7 8
3 7

24 14
16 37
29 22
10 16

ξ=

A =

Aξ =

CP1 CP2 CP3

2

3

4

1

11 8

13 16

24 9

2 7

𝒢 D = 2

S = 1 [[S]]1 = 3
[[D]]1 = 1

[[S]]2 = 2
[[D]]2 = 1

[[S]]3 = 3
[[D]]3 = 3

(b)

Figure 2: (a) CryptMPL protocol stack (b) An example sce-
nario showing the input feature matrices, source and destina-
tion edges of a graph G with 𝑁 = 4 nodes and 𝐾 = 2 features,
in a 3-party SMPC setting

The component at MO uploads the proprietary GNN model to the
P SMPC parties in A-SS format, such that model parameters Θ are
protected (Fig. 1(b) Steps 1 and 2). Θ comprises of the parameters
{Θ1,Θ2, · · · }, whereΘ𝑖 is associated with the 𝑖-th FTL of the model.
Following prior work [34], we consider the GNNmodel architecture
(i.e., type, sequence, and number of layers) to be shared by the MO
with the parties and the clients, enabling the parties to invoke the
secure versions of the insecure layers.

CryptGNN’s client-side component allows DOs to upload graph
data to the cloud as (JXK, JSK, JDK), such that the node features
X and the graph structure, i.e., the list of source indices S and
destination indicesD, are protected (Fig. 1(b) Steps 3-4).We consider
directed, unweighted graphs, although CryptGNN protocols can
be extended in a straightforward way for weighted graphs. During
each inference request, the parties execute the secure protocols of
CryptGNN to compute the output of each layer of the GNN (Fig. 1(b)
Step 5). Finally, the client receives (Fig. 1(b) Step 6) the shares of
the final output from all parties to reconstruct the result (Fig. 1(b)
Step 7). CryptGNN comprises of the following two novel protocols:

CryptMPL: This protocol is used for secure message-passing in
GNN in a P-party A-SS setting. Executing MPL in the A-SS domain
is difficult, as the encrypted features need to be passed through
edges, while the source and destination nodes of each edge are
encrypted. Our goal is to take the graph structure (S,D) and the
feature matrix A (e.g., X1 in Fig. 1(a)) as input in A-SS format, and
compute the feature matrix JA∗K = 𝑀𝑃𝐿(JAK, JSK, JDK) after the
execution of an MPL layer, while preserving the privacy of the
input graph, intermediate results, and model parameters.

CryptMUL: The FTLs are computed using additions, multipli-
cations, and comparisons. In A-SS, addition is cheap and can be
computed locally, and comparison can be implemented using state-
of-the-art techniques [5]. To eliminate the need for a trusted server
and costly online step in secure multiplications, CryptMUL em-
ploys a preprocessing step to generate auxiliary data for each client,
which is used for multiple inference requests from the same client.

4 CRYPTMPL
This section presents the CryptMPL stack of protocols, shown in
Fig. 2(a), for privacy-preserving message-passing in GNN using a P-
party SMPC setting. To privately exchange messages through edges

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

of a graph, represented as source/destination arrays, we develop
novel protocols enabling the SMPC parties to read the feature vector
of a source node, write the vector at the destination node, and
update the node features by aggregation of intermediate vectors.
CryptMPL also uses a novel data masking technique, where the
client collaborates with the parties to protect the data against 𝑇𝑀 .
Fig. 2(b) shows a simple graph G, where CryptMPL needs to execute
the MPL through an edge from node 1○ to node 2○. In this setup,
three computing parties 𝐶𝑃1, 𝐶𝑃2 and 𝐶𝑃3 take an input feature
matrix A representing the node features of G, and collaboratively
compute the MPL to generate the output feature matrix. In A-SS
domain, 𝐶𝑃𝑝 holds shares of node features A, source index 𝑆 , and
destination index 𝐷 , denoted as JAK𝑝 , J𝑆K𝑝 , and J𝐷K𝑝 , respectively.
To compute the output node features after executing the MPL,
the computing parties execute the read, write, and aggregation
protocols (Sections 4.1, 4.2, 4.3). To protect the graph data, the client
shares a noise matrix 𝝃 with the computing parties in A-SS format,
enabling each party 𝐶𝑃 to mask its share of node features JAK𝑝
with J𝝃 K𝑝 (Section 4.4). The parties then execute the read, write
and aggregation protocols on the masked matrix JA𝝃 K𝑝 , which
prevents any leakage of information about the actual shares JAK𝑝 .

Alg. 1 presents the pseudo-code for CryptMPL, which consists of
invoking secure read, write, and aggregate functions (lines 3-5). The
details of the protocols behind these operations are presented in
Sections 4.1, 4.2, and 4.3, respectively. Read and write require each
party to communicate with the other parties in a ring-like structure,
where the 𝑝-th party receives data from the (𝑝 − 1)-th and sends
data to the (𝑝 +1)-th party (the P-th party transfers data to the first
party). While executing the read and write protocols, CryptMPL
uses a novel data masking technique to protect the transferred
feature matrices, and the indices of source and destination nodes.
To facilitate data masking, the client preprocesses a noise matrix
and helps the parties mask their data with noise (Section 4.4). The
accuracy of computation remains unaffected because the noise is
eliminated from the final result (line 7).

Algorithm 1 Secure Message Passing Layer, F𝐶𝑟𝑦𝑝𝑡𝑀𝑃𝐿
Input: JAK (Feature Matrix), JSK (Source Indices), JDK (Destination

Indices), J𝝃 ∗K (Noise)
Output: Output Features JA∗K

1: JA∗
𝜉
K← F𝐼𝑛𝑖𝑡𝑀𝑎𝑡𝑟𝑖𝑥 (𝑁,𝐾)

2: for 𝑖 ← 1, . . . , 𝑀 do
3: JYK← F𝑆𝑅 (JAK, JS[𝑖]K)
4: JGK← F𝑆𝑊 (JYK, JD[𝑖]K)
5: JA∗

𝜉
K← F𝑆𝐴 (JA∗𝜉 K, JGK)

6: end for
7: JA∗K← JA∗

𝜉
K − J𝝃 ∗K

8: return JA∗K

4.1 Reading the feature vector of a source node
The index in the source nodes’ array and the feature vector of a
source node for an edge are stored in the A-SS domain. The secure
read (F𝑆𝑅 in Alg. 1) accesses the feature vector without leaking the
index and the features of the source node. The main idea of F𝑆𝑅

requires each party to rotate their share of the feature matrix and
shift their share of the source index by the same random amount,
and then share the updated matrix and index with the next party.
The random amount is different at each party. After all the parties
have rotated the feature matrix and shifted the source index, each
party reads the vector at the updated index of the rotated matrix. As
both the rotation and shift are performed by the same total amount,
each party receives a correct share of the source feature vector.

This procedure is illustrated in Fig. 3(a) and is detailed below.
For a source node 𝑗 ∈ S, its corresponding feature vector is A[𝑗].
The secret-shared versions of the index and the vector are J 𝑗K and
JA[𝑗]K, respectively. In F𝑆𝑅 , party 𝐶𝑃𝑝 securely retrieves JA[𝑗]K𝑝 .
For example, to retrieve JA[𝑗]K1, the parties execute these steps:
(1) 𝐶𝑃1 initializes two variables: a target index 𝑗 ′ = 0 and a target

matrix JA′K1 = JAK1. The target index and the target matrix
pass through the parties in the ring and are updated by the
parties (Steps 2-5). In Step 6,𝐶𝑃1 reads the vector at the updated
index of the updated matrix.

(2) To protect the share of the source index, 𝐶𝑃𝑝 adds a random
integer 𝑟𝑝 to J 𝑗K𝑝 , and updates the target index 𝑗 ′ as, 𝑗 ′ ←
𝑗 ′ + J 𝑗K𝑝 + 𝑟𝑝 .

(3) To align the target matrix, 𝐶𝑃𝑝 rotates the rows of JA′K1 by 𝑟𝑝 ,
i.e., JA′K1 ← 𝑟𝑜𝑡𝑎𝑡𝑒 (JA′K1, 𝑟𝑝).

(4) 𝐶𝑃𝑝 transfers JA′K1 and 𝑗 ′ to 𝐶𝑃𝑝+1, which repeats Steps 2 & 3
to update JA′K1 and 𝑗 ′.

(5) After the operations at the P-th party, the information is trans-
ferred to the first party 𝐶𝑃1.

(6) 𝐶𝑃1 gets 𝑗 ′ =
P∑
𝑝=1

J 𝑗K𝑝 + 𝑟𝑝 = 𝑗 +
P∑
𝑝=1

𝑟𝑝 . Correspondingly, JA′K1

is rotated for
P∑
𝑝=1

𝑟𝑝 times, i.e, JA[𝑗]K1 = JA′ [𝑗 +
P∑
𝑝=1

𝑟𝑝]K1. Thus,

𝐶𝑃1 gets JA′ [𝑗 ′]K1 = JA[𝑗]K1.
All parties follow the same procedure in parallel to retrieve the P

shares of JA[𝑗]K. This procedure protects each party’s share of the
source index through the random shifting of its value. However, this
is insufficient to safeguard the graph data, because: (a) It is possible
to reconstruct the feature matrix, as each party gets all the shares
of A, and (b) Each party can determine the actual source index by
searching the accessed vector in A. To solve these problems, each
party adds a random noise (a matrix containing random values) to
mask the shares of A before transferring them to the other parties.
Thus, F𝑆𝑅 addresses the aforementioned issues, since: (a) Due to
the noise, the feature matrix cannot be reconstructed correctly; (b)
Since the feature matrix is modified by all parties, the parties cannot
determine the source index. Therefore, the parties can securely
access the source feature vector. Eliminating the noise from the
final result is discussed in Section 4.4.

4.2 Writing messages to the destination node
This secure protocol (F𝑆𝑊 in Alg. 1, Line 4) creates an intermediate
matrix G of the same dimensions as the output feature matrix, and
writes the feature vector Y at the index in G corresponding to the
destination node’s index in the destination nodes’ array D. Unlike
read, which can use rotation operations to preserve index privacy,
write must know the destination index to write the vector at the
correct position. As the destination node of each edge is encrypted,

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

r1

Target
Index = 0

r1

j1 + r1

j1

j

j+r1

r2

Target Index
= j1 + r1

r2

j1 + j2 +
r1 + r2

j2 rp

rp

j1 + j2 + .. +
jp + r1 + r2

+ .. + rp

jp

Target Index
= j1 + j2 + .. +

r1 + r2 + .. j+r1

j+r1+r2

j+r1+r2+..+rp

CP1 CP2 CPp

…….

…………….

……………. …………….

……………. …………….

…………….

j+r1+r2 + ..

(a) Secure Read

j1

0

0+j1

CP1

j2

0+j1

0+j1+j2

CP2

jp

CPp
0+j1+j2+..

0+j1+j2+..+jp

…………….

……………. …………….

…………….

…………….

…………….

…….

(b) Secure Write

Figure 3: Flow of a share of a matrix for read (a) and write (b) in CryptMPL with P SMPC parties

to write a feature vector Y at the destination index 𝑗 ∈ D of a matrix
G, the parties need to coordinate. In the secret-shared domain, each
party 𝐶𝑃𝑝 initializes the share of G as JGK𝑝 = 0 (i.e., G with all
entries zero). If party 𝐶𝑃𝑝 has the shares of Y and 𝑗 , i.e., JYK𝑝 and
J 𝑗K𝑝 , our goal is to get JG[𝑗]K𝑝 = JYK𝑝 , without leaking the target
index and the feature vector.

The main idea of the write protocol requires each party to write
its share of the feature vector Y at the 0-th index of its share of
G and transfer it to the next party in the ring. Each party rotates
the share of the matrix G by its share of the destination index.
Thus, the feature vector reaches the correct destination index of G.
For example, Fig. 3(b) shows the following steps to write JYK1 at
JG[𝑗]K1.
(1) 𝐶𝑃1 writes the vector JYK1 at index 0 of JGK1 as JG[0]K1 = JYK1.

The matrix JGK1 will pass through the parties in the ring and
be updated by other parties in Steps 2-4. In Step 5, 𝐶𝑃1 gets
the updated matrix JGK1, where JYK1 is written at the correct
destination index.

(2) 𝐶𝑃𝑝 rotates the matrix JGK1 by J 𝑗K𝑝 .
(3) 𝐶𝑃𝑝 transfers JGK1 to 𝑝 + 1-th party for 1 ≤ 𝑝 ≤ P . 𝐶𝑃𝑝+1

repeats Steps 2 to update JGK1.
(4) After the operations at the P-th party, the matrix JGK1 is trans-

ferred to the first party.

(5) 𝐶𝑃1 gets JGK1 which is rotated by
P∑
𝑝=1

𝑗𝑝 = 𝑗 times. Due to the

overall rotation, JYK1 is moved to 𝑗-th index of JGK1, equivalent
to JG[𝑗]K1 = JYK1.
All parties follow the same procedure in parallel to write their

shares of Y at the destination index of the matrix G. During write,
each party’s share of the destination index is protected. However,
the actual destination index 𝑗 is revealed from the final matrix,
since the values in the final matrix are zero for all indices other
than 𝑗 . To solve this problem, 𝐶𝑃𝑝 adds random noise to mask its
share of JGK𝑝 while sharing it with the other parties. Thus, the final
matrix is masked by all parties, and the destination index cannot be
determined by observing the values in the matrix. The procedure
to remove the noise from the final result is discussed in Section 4.4.

4.3 Updating the feature matrix
Unlike read and write, secure aggregation (F𝑆𝐴 in Alg. 1, Line 5)
can be implemented using standard SMPC techniques. The out-
put feature matrix of the same size as the input feature matrix is

initialized by each party as JA∗K = J0K. Executing one round of
read and write protocols process one edge, where the intermediate
result matrix JGK contains the feature vector of node JS[𝑖]K at index
JD[𝑖]K after processing the 𝑖-th edge. 𝐶𝑃𝑝 updates JA∗K with the
result: JA∗K𝑝 = JA∗K𝑝 + JGK𝑝 .

4.4 Putting things together with preprocessing
The protocols F𝑆𝑅 , F𝑆𝑊 and F𝑆𝐴 process all the edges in the graph.
During read and write, each party masks the shares of the feature
matrices to protect the graph data. Masking a matrix with noise
involves adding random values to the original matrix. Here, we
describe the preprocessing stage executed at the client side to help
the parties generate the noise matrices to mask the original data
and eliminate the noise from the output for the correct result of the
MPL.

As the client has the graph data structure, it can execute the
message-passing on a noise matrix 𝝃 ∈ R𝑁×𝐾 to get a feature
matrix 𝝃 ∗ and share both 𝝃 and 𝝃 ∗ with the SMPC parties in a
secret-shared manner. Each party can mask its feature matrix with
the share of 𝝃 and calculate the feature matrix A∗

𝜉
by executing

MPL on the masked feature matrix. Finally, it removes the noise
𝝃 ∗ from the A∗

𝜉
to generate the actual result A∗. The steps of this

process are as follows:
• The client calculates the effect of noise on each node after exe-
cuting an MPL round (Eq. 4).
• Each party executes the MPL to get the output feature matrix on
the masked node features (Eq. 5).
• Each party removes the effect of noise to obtain the correct fea-
ture matrix (Eq. 6).

𝝃 ∗ [𝑗] =
∑︁

𝑗 ∈N(𝑖)
𝝃 [𝑗] (4)

A∗
𝜉
[𝑖] =

∑︁
𝑗 ∈N(𝑖)

A[𝑗] + 𝝃 [𝑗] (5)

A∗ [𝑖] = A∗
𝜉
[𝑖] − 𝝃 ∗ [𝑖] (6)

To mask the feature matrices,𝐶𝑃𝑝 creates a noise matrix 𝝃𝑝 , and
adds 𝝃𝑝 to the share of the feature matrix JAK𝑝 . However, if the
same noise is used to mask JAK𝑝 while processing each edge, an
attacker can identify the node degree based on the number of times
the same value is accessed by a party. To prevent this, 𝐶𝑃𝑝 needs
to generate different noise matrices 𝝃𝑝𝑟 at each round 𝑟 of the read
and write operations. In read and write, noise is added to the party’s
own share, and to the matrices received from other parties, such

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

that the matrices cannot be recognized at the end of the process,
and the source and destination indices cannot be inferred.

During the initialization stage, the client shares different integer
values as seeds to each party, which are used in a pseudo-random
function (PRF) to generate all the rotation amounts and noise ma-
trices. At the client side, similar noise matrices are used to compute
the effect of noise 𝝃 ∗. The client shares 𝝃 ∗ in secret-shared manner
with each party. After processing all edges, each party removes the
noise 𝝃 ∗ to retrieve the correct feature matrix.

Processing edges in batches.To execute anMPL layer, CryptMPL
needs to process all edges in the graph, which involves𝑀 rounds
of read and write executions, where𝑀 is the number of edges. To
reduce the number of rounds, and consequently the computation
and communication overhead, CryptMPL processes the edges in
batches. Our batching technique executes MPL with low overhead
while preserving the privacy of the graph structure. The number
of edges in a batch is configurable. For example, a batch of 3 nodes
in secret-shared format J𝑎1, 𝑎2, 𝑎3K can be represented as relative
indices [0, 𝑎2 − 𝑎1, 𝑎3 − 𝑎1] in plain text with respect to 𝑎1, which
is still represented in secret-shared format as J𝑎1K. Both source and
destination indices can be represented in this way.

For batching, the client divides the edges into batches and calcu-
lates the relative indices with respect to the first index of a batch.
The first indices of all batches from S andD are stored as two vectors
JSf K and JDf K. The relative indices for all batches are concatenated
to create two vectors Sr and Dr in plain text. The client uploads
JXK, JSf K, JDf K, J𝝃 ∗K, Sr, Dr and the seed to the SMPC parties.

To further reduce the number of communication rounds, each
party concatenates masked feature matrices for all batches to create
a matrix of size (𝑅, 𝑁, 𝐾), where the dimension of the feature matrix
is (𝑁,𝐾) and the number of batches is 𝑅. Each sub-matrix of size
(1, 𝑁 , 𝐾) can be rotated by a different amount and the concatenated
version can be passed to the other parties for read operation. In this
way, the read operations for all batches can be executed in a single
round. Similarly, write operations can be executed in a single round
by concatenating G matrices for all batches. Finally, let us note
that there is a trade-off between performance (fewer batches) and
security (more batches). Using the relative order of the indices in
each batch, the parties may infer the graph structure. The analysis
in Section 6 shows that the probability of correct reconstruction of
the graph structure is 𝑁 −2𝑅 .

5 CRYPTMUL
Typically, a GNN comprises multiple FTLs, along with MPLs. In
A-SS, the primary bottleneck in evaluating FTLs is the multipli-
cation operation. Linear layers need matrix multiplications, and
non-linear layers require element-wise multiplications. To gener-
ate Beaver Triples (discussed in Section 2.1) for multiplications in
A-SS, previous studies [22] have relied on techniques such as HE,
oblivious transfer (OT), a trusted third party (TTP), or a combina-
tion thereof. However, using HE and OT is costly in terms of both
computation and communication. Since CryptGNN is designed for
MLaaS, it must scale to support numerous inference requests from
each client. Consequently, repeatedly employing HE or OT is im-
practical. While using a TTP is less resource-intensive, it requires
an additional third party that must not collude with the computing

parties. Moreover, communication with the TTP is necessary for
each multiplication operation.

To execute the multiplication operations in GNN, we design
CryptMUL, which offers two benefits: (i) performing multiplica-
tions without a trusted server, and (ii) lower overhead due to prepro-
cessing. Our CryptMUL conducts offline preprocessing to generate
auxiliary data, which can be used to easily create a set of Beaver
triples [2] required for multiplication operations in multiple infer-
ence requests from the same client, thereby improving performance
while preserving data privacy. Although our protocols use existing
HE- or OT-based techniques in the offline phase to generate aux-
iliary data for a client, our contribution lies in efficiently reusing
this data for multiple inference requests from the same client with
only one round of communication among the parties.

In this section, we describe the two CryptMUL protocols for: (a)
secure matrix-multiplication, and (b) secure element-wise multi-
plication. While we discuss these protocols in the context of GNN
inference, they are generic and can be applied in similar scenarios
for other types of model architectures.

5.1 Secure matrix-multiplication
In order to compute the linear layers in GNNs, we must conduct
matrix multiplication between the intermediate state matrix JXK ∈
R𝑁×𝐾 and the parameter matrix of the linear layer JYK ∈ R𝐾×𝐾 ′

to transform 𝐾 features into 𝐾 ′ features. While the values of 𝐾
and 𝐾 ′ remain constant in GNN inference, the number of nodes in
the graph, denoted as 𝑁 , can vary with each inference request for
the same GNN model. To perform matrix multiplication efficiently
in A-SS, we employ the Beaver triple technique, as explained in
Section 2.1. By utilizing a Beaver triple (JAK, JBK, JCK), we can
calculate JZK = JXK ⊗ JYK. However, it is crucial to note that using
the same triple to compute the same linear layer for two different
inference requests may lead to a privacy risk. This is because such
a scenario reveals the differences (U = X − A) and (V = Y − B), and
using the same A and B could disclose the relative changes in X and
Y across different requests. Unfortunately, generating a new Beaver
triple for each inference request using state-of-the-art techniques
such as HE or OT is impractical due to their high overhead.

The following observations help us to solve this problem:
• The intermediate feature matrix X is derived from the input
feature matrix of the graph. Revealing U does not disclose X,
unless A becomes known to any party. However, it is infeasible
to use the same A for different inference requests, as it would
reveal the relative changes in X across requests.
• The trained parameter matrix Y remains constant for a GNN
model, and the sameY is used for all inference requests. Therefore,
we can use the same B in the Beaver triple for all inference
requests. As long asB remains unknown to the computing parties,
revealing V will not disclose Y.
Based on these observations, we plan to use the same B in all

Beaver triples. However,A needs to be changed in different requests,
and consequently, C needs to be adjusted to hold the property of
Beaver triples. To derive a new set of matrices, denoted as (A′,B,C′),
from the initial Beaver triple (A,B,C), we construct a row in A′

through a linear combination of the rows of A and use a similar
linear combination of rows from C to compute the corresponding

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Preprocessing

During
Inference 1 round of communication

Local computation

Uses HE or OT based
technique

(a)

Preprocessing

During
Inference

1 round of communication

Local computation

1 round of communication

Uses OT and 2 + log(P)
rounds of communication

(b)

Figure 4: (a) Secure Matrix Multiplication Protocol (b) Secure
Element-wise Multiplication Protocol

row in C′. Specifically, if we express A′ [𝑗] = ∑𝑁
𝑖=1 𝑘 𝑗𝑖 ∗ A[𝑖], then

C′ can be computed as C′ [𝑗] = ∑𝑁
𝑖=1 𝑘 𝑗𝑖 ∗ C[𝑖]. Following this

approach, we propose a secure protocol F𝑀𝑎𝑡𝑀𝑢𝑙 to performmatrix
multiplication in a GNN’s linear layer using the following steps as
shown in Fig. 4(a):
(1) During the preprocessing stage, F𝐼𝑛𝑖𝑡𝐵𝑒𝑎𝑣𝑒𝑟 generates an initial

Beaver triple (JAK, JBK, JCK) using HE [25] or OT [20] for each
client. Here, A ∈ R𝑁×𝐾 , B ∈ R𝐾×𝐾

′ and C ∈ R𝑁×𝐾
′ . 𝐾 and

𝐾 ′ are fixed and depend on the number of input and output
features of the linear layer respectively. 𝑁 is the maximum
number of rows we may need to support and depends on the
maximum number of nodes in a graph.

(2) During inference, each party uses the same pseudo-random
function F𝑅𝑎𝑛𝑑𝐶𝑜𝑚𝑏 to pick a random linear combination of
the rows to modify JAK to JA′K and JCK to JC′K. All parties
execute the same operations locally to generate new JA′K and
JC′K based on the number of nodes in the graph.

(3) Use the new triple (JA′K, JBK, JC′K) to compute JXK ⊗ JYK.
CryptGNN uses F𝑀𝑎𝑡𝑀𝑢𝑙 to execute a linear layer to compute

the output feature states Z from the intermediate feature state X
and the trained parameter matrix Y of the linear layer. The pre-
processing step is executed once for each client to generate the
initial Beaver triples. To further reduce communication costs, we
can compute and reveal V once and use the same V (since Y and B
are fixed) for subsequent inference requests from the same client.

5.2 Secure element-wise multiplication
Several types of FTLs require support for secure element-wise mul-
tiplication J𝑍K = J𝑋 K × J𝑌 K, where neither 𝑋 nor 𝑌 are assumed to
be constant. In A-SS, we can compute the result of multiplication
using a Beaver triple as discussed in Section 2.1. The maximum
number of element-wise multiplications required for a single GNN
inference request is predetermined by the specific model architec-
ture. One approach is to pre-compute this specific number of Beaver
triples and employ them during inference. However, as outlined
in the preceding subsection, we should not use the same triple for
multiple inference requests due to the potential risk of information
leakage. Therefore, we introduce F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 to perform element-
wise multiplications within the GNN layers by generating a fresh
set of Beaver triples for each inference request. The steps followed
in F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 (as shown in Fig. 4(b)) are described below:
(1) F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 : At the pre-processing stage, the parties generate a

set of numbers both in A-SS and M-SS format, which will be
used in Step 3.

(2) F𝐵𝑒𝑎𝑣𝑒𝑟𝑀 : The parties generate the triples (⟨⟨𝐴⟩⟩, ⟨⟨𝐵⟩⟩, ⟨⟨𝐶⟩⟩) in
the multiplicative format.

(3) F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴: The parties communicate with each other and
use the data generated in F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 to convert the Beaver triple
from M-SS to A-SS as (J𝐴K, J𝐵K, J𝐶K) .

(4) The parties use the Beaver triples (J𝐴K, J𝐵K, J𝐶K) to compute
J𝑋 K × J𝑌 K following the steps in Section 2.1.
Next, we describe the F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 , F𝐵𝑒𝑎𝑣𝑒𝑟𝑀 and F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 in

more detail.
Generating additive-multiplicative pair: F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 . At the pre-
processing stage, F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 generates a list of pairs AM for each
client, where 𝑖-th (𝑖 ∈ |AM|) element of AM is a pair (J𝑅𝑖K, ⟨⟨𝑅𝑖 ⟩⟩),
i.e., a random value 𝑅𝑖 in A-SS and M-SS. The size of the list,
𝑘 = |AM| depends on the maximum number of element-wise mul-
tiplications required for a GNN inference. If the total number of
multiplications is𝑚, then 𝑘 = 3×𝑚, since each multiplication oper-
ation uses 3 pairs from AM in F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 . To protect the relative
changes in values between two different inference requests from
the same client, it is necessary to use a different set of pairs for
multiplication when processing an element at the same index of a
GNN layer. This can be done by shifting the elements of AM by 3
for each inference. In this way, F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 can support𝑚 inference
requests from the same client.

To generate a number in A-SS and M-SS in P parties, F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟
extends the algorithm in [36], which works only for two parties,
to make it work for any number of parties. In [36], two parties
𝐶𝑃1 and 𝐶𝑃2 generates random numbers 𝑋1 and 𝑋2, and convert
(𝑋1+𝑋2) to the multiplicative secret-shared M-SS format ⟨⟨𝑋1+𝑋2⟩⟩,
without revealing𝑋1 and𝑋2 to each other. Following this approach,
F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 can compute J𝑅𝑖K and ⟨⟨𝑅𝑖 ⟩⟩ for 𝑖 ∈ [1, .., 𝑃 − 1], where
𝑅𝑖 = 𝑋𝑖 +𝑋𝑖+1. Here, the value𝑋𝑖 is known to 𝑖-th party only. Since,
⟨⟨𝑅𝑖 ⟩⟩ is in multiplicative format, each party can compute ⟨⟨𝑅⟩⟩ =∏𝑃−1
𝑖=1 ⟨⟨𝑅𝑖 ⟩⟩ locally. The parties can compute the additive share of

J𝑅K =
∏𝑃−1
𝑖=1 J𝑅𝑖K using the Beaver triples generated using a state-

of-the-art technique [20]. Thus, F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 can generate a pair (J𝑅K,
⟨⟨𝑅⟩⟩), the A-SS and M-SS version of the same value 𝑅. Algorithm 2
presents the steps required to generate a pair (J𝑅K, ⟨⟨𝑅⟩⟩)) for a
random value 𝑅. Following this approach, we can generate 𝑘 pairs
to prepare the list AM within the same communication round.

Algorithm 2 Generate additive-multiplicative pair, F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟
Output: Generate additive share J𝑅K and multiplicative share ⟨⟨𝑅⟩⟩

of a random value 𝑅
1: for 𝑖 ← 1 to 𝑃 − 1 do
2: 𝐶𝑃𝑖 and 𝐶𝑃𝑖+1 generates two random values 𝑋𝑖 and 𝑋𝑖+1.

Thus, a 𝑅𝑖 = 𝑋𝑖 + 𝑋𝑖+1 is generated in A-SS format J𝑅𝑖K.
3: Two parties communicates to generate multiplicative shares

⟨⟨𝑅𝑖 ⟩⟩ ← ⟨⟨𝑋𝑖 + 𝑋𝑖+1⟩⟩ using [36]
4: J𝑅𝑖K𝑗 ← 0 and ⟨⟨𝑅𝑖 ⟩⟩ 𝑗 ← 1, for 𝑗 ≠ 𝑖 , 𝑗 ≠ (𝑖 + 1)
5: end for
6: Compute J𝑅K ← ∏𝑃−1

𝑖=1 J𝑅𝑖K using Beaver triples generated
using [20], thereby each party gets a A-SS of 𝑅.

7: Each party 𝑝 computes locally ⟨⟨𝑅⟩⟩𝑝 ←
∏𝑃−1
𝑖=1 ⟨⟨𝑅𝑖 ⟩⟩𝑝 , thereby

computing the multiplicative shares of 𝑅.

Generating Beaver triples in multiplicative format: F𝐵𝑒𝑎𝑣𝑒𝑟𝑀 .
Each party 𝐶𝑃𝑖 generates two random variables 𝐴𝑖 and 𝐵𝑖 , and
computes 𝐶𝑖 = 𝐴𝑖 × 𝐵𝑖 . In this way, 𝐴𝑖 , 𝐵𝑖 and 𝐶𝑖 constitute the

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝐴, 𝐵 and 𝐶 in multiplicative share format. Since 𝐶 =
∏𝑃
𝑖=1𝐶𝑖 =∏𝑃

𝑖=1𝐴𝑖 ×𝐵𝑖 =
∏𝑃
𝑖=1𝐴𝑖 ×

∏𝑃
𝑖=1 𝐵𝑖 = 𝐴×𝐵, the parties can generate

Beaver triples in the M-SS format without any communication.
Converting Beaver triples in additive format: F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴.
F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 converts the Beaver triples from M-SS to A-SS using
F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 , which internally calls F𝑀𝑡𝑜𝐴 to convert each value
in the triples. To convert a value𝑈 from M-SS format ⟨⟨𝑊 ⟩⟩ to A-SS
format J𝑊 K, F𝑀𝑡𝑜𝐴 selects a pair (J𝑅K, ⟨⟨𝑅⟩⟩) from pre-computed
list AM, where 𝑅 is in A-SS and M-SS format as J𝑅K and ⟨⟨𝑅⟩⟩,
respectively. Then, each party computes locally and communicates
with each other to reveal the ratio (𝛼) of𝑊 and 𝑅. Next, each party
uses 𝛼 and J𝑅K to compute the additive share of𝑊 as J𝑊 K.
F𝑀𝑡𝑜𝐴 follows the below steps to convert a value𝑈 from multi-

plicative format to additive format.
(1) Pick a pair (J𝑅K, ⟨⟨𝑅⟩⟩) from AM.
(2) Apply Extended Euclidean Algorithm [12] to compute the

inverse of 𝑅 as ⟨⟨𝑅−1⟩⟩ in M-SS format [13].
(3) Each party 𝐶𝑃𝑖 computes locally the product of ⟨⟨𝑊 ⟩⟩ and
⟨⟨𝑅−1⟩⟩ and reveals the ratio 𝛼 .

(4) 𝐶𝑃𝑖 computes J𝑊 K𝑖 ← 𝛼 × J𝑅K𝑖 to get𝑊 in A-SS.
F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 converts each value of Beaver triple from M-SS

⟨⟨𝐴⟩⟩, ⟨⟨𝐵⟩⟩, ⟨⟨𝐶⟩⟩ to A-SS format J𝐴K, J𝐵K, J𝐶K respectively usingF𝑀𝑡𝑜𝐴 .

6 SYSTEM ANALYSIS
6.1 Security Analysis
This section proves the protocol security throughout the execution
of CryptGNN, which preserve the privacy of the client’s (DO’s) in-
put graph and the model owner’s (MO’s) model parameters against
the threat model 𝑇𝑀 . CryptGNN follows the standard A-SS ap-
proach to store model parameters and uploads graph data to the
computing parties. Thus, data at rest (model parameters, feature
matrix, source and destination index of each edge) are information-
theoretically secure [9] against adversaries following Axiom 1.

Axiom 1. A value 𝑥 is information-theoretically secure in A-SS
format even if 𝑃 − 1 out of 𝑃 parties collude.

To provide the security analysis in a structured way, we consider
three different cases within the threat model𝑇𝑀 , (a)𝑇𝑀𝑃 : At most
𝑃 − 1 parties may collude to learn DO’s input graph data or MO’s
GNN model parameters (but they do not collude with DOs or MO),
(b) 𝑇𝑀𝑀 : The colluding parties in 𝑇𝑀𝑃 may collude with MO to
gain access to DO’s private graph data, (c) 𝑇𝑀𝐷 : The colluding
parties in 𝑇𝑀𝑃 may collude with a data owner 𝐷𝑂 𝑓 𝑎𝑘𝑒 to learn
MO’s GNN model parameters or the input graph the other DOs. To
prove the security of our protocols against 𝑇𝑀𝑃 , 𝑇𝑀𝑀 and 𝑇𝑀𝐷 ,
we adopt the following security definitions [3]:

Definition 1. Let parties 𝐶𝑃1, · · · ,𝐶𝑃𝑃 engage in a protocol 𝜋
that computes function F (𝑖𝑛1, · · · , 𝑖𝑛𝑃) = (𝑜𝑢𝑡1, · · · , 𝑜𝑢𝑡𝑃), where
𝑖𝑛𝑖 and 𝑜𝑢𝑡𝑖 denote the input and output of party 𝐶𝑃𝑖 , respectively.
Let, 𝑉 𝐼𝐸𝑊𝜋 (𝐶𝑃𝑖) denote the view of participant 𝐶𝑃𝑖 during the
execution of protocol 𝜋 . More precisely,𝐶𝑃𝑖 ’s view is formed by its
input, internal random coin tosses 𝑟𝑖 , pseudo-random values 𝑝𝑟𝑖 ,
as well as messages𝑚1, · · · ,𝑚𝑘 passed between the parties during
protocol execution: 𝑉 𝐼𝐸𝑊𝜋 (𝐶𝑃𝑖) = (𝑖𝑛𝑖 , 𝑟𝑖 , 𝑝𝑟𝑖 ,𝑚1, · · · ,𝑚𝑘). Let 𝐼
denote a subset of at most 𝑃 − 1 parties that collude in our threat
model 𝑇𝑀𝑃 . 𝑉 𝐼𝐸𝑊𝜋 (𝐼) denote the combined view of participants

in 𝐼 during the execution of protocol 𝜋 (i.e., the union of the views
of the parties in 𝐼), and F𝐼 (𝑖𝑛1, · · · , 𝑖𝑛𝑃) denote the projection of
F (𝑖𝑛1, · · · , 𝑖𝑛𝑃) on the coordinates in 𝐼 (i.e., F𝐼 (𝑖𝑛1, · · · , 𝑖𝑛𝑃) con-
sists of the output of function F of the colluding parties). We say
that the protocol 𝜋 is secure against𝑇𝑀𝑃 if for each coalition of size
at most 𝑃 − 1 there exist a probabilistic polynomial time (PPT) sim-
ulator 𝑆𝐼 such that {𝑆𝐼 (𝑖𝑛𝐼 , F𝐼 (𝑖𝑛1, · · · , 𝑖𝑛𝑃)), F (𝑖𝑛1, · · · , 𝑖𝑛𝑃)} ≡
{𝑉 𝐼𝐸𝑊𝜋 (𝐼), (𝑜𝑢𝑡1, · · · , 𝑜𝑢𝑡𝑃)}, where 𝑖𝑛𝐼 =

⋃
𝐶𝑃𝑖 ∈𝐼 𝑖𝑛𝑖 and ≡ de-

notes computational or statistical indistinguishability..
Definition 2. In𝑇𝑀𝑀 , we consider the model parameters Θ are

also known to the colluding parties 𝐼 , and the protocol 𝜋 is secure
against 𝑇𝑀𝑀 if there exists a probabilistic polynomial time (PPT)
simulator 𝑆𝐼 such that {𝑆𝐼 (𝑖𝑛𝐼 ,Θ, F𝐼 (𝑖𝑛1, · · · , 𝑖𝑛𝑃)), F (𝑖𝑛1, · · · , 𝑖𝑛𝑃)}
≡ {𝑉 𝐼𝐸𝑊𝜋 (𝐼), (𝑜𝑢𝑡1, · · · , 𝑜𝑢𝑡𝑃)}, where 𝑖𝑛𝐼 =

⋃
𝐶𝑃𝑖 ∈𝐼 𝑖𝑛𝑖 .

Definition 3. In the case of𝑇𝑀𝐷 , a data owner𝐷𝑂 𝑓 𝑎𝑘𝑒 ’s private
input (X𝑓 , S𝑓 ,D𝑓 , 𝜉 𝑓) is known to the colluding parties, and the
protocol 𝜋 is secure against𝑇𝑀𝐷 , if there exists a probabilistic poly-
nomial time (PPT) simulator 𝑆𝐼 such that {𝑆𝐼 (𝑖𝑛𝐼 ,X𝑓 , S𝑓 ,D𝑓 , 𝜉 𝑓 ,
F𝐼 (𝑖𝑛1, · · · , 𝑖𝑛𝑃)), F (𝑖𝑛1, · · · , 𝑖𝑛𝑃)} ≡ {𝑉 𝐼𝐸𝑊𝜋 (𝐼), (𝑜𝑢𝑡1, · · · , 𝑜𝑢𝑡𝑃)},
where 𝑖𝑛𝐼 =

⋃
𝐶𝑃𝑖 ∈𝐼 𝑖𝑛𝑖 .

The following theorems ensure protocol security throughout the
execution of CryptGNN.
Theorem1.The node features are protected against𝑇𝑀 in CryptMPL.
Proof. To execute the message-passing, CryptMPL executes se-
cure read, write and aggregation protocols for each edge of the
input graph data stored in A-SS format as (JXK, JSK, JDK). To prove
this theorem we consider that the simulator 𝑆𝐶𝑟𝑦𝑝𝑡𝑀𝑃𝐿 calls the
simulators 𝑆𝑆𝑅 , 𝑆𝑆𝑊 and 𝑆𝑆𝐴 of F𝑆𝑅 , F𝑆𝑊 and F𝑆𝐴 respectively.

In the secure read protocol with data masking F𝑆𝑅 , each party
𝐶𝑃𝑖 exchanges the share of feature matrix JAK𝑖 with other parties.
We consider the case where the parties do not rotate the feature
matrix to prove this theorem. In this case, a party has all the shares
of the feature matrix and can reconstruct the original feature matrix

by taking the sum of the shares as, A =
𝑃∑
𝑝=1

JAK𝑝 . To protect the

feature matrix, 𝐶𝑃𝑖 masks data with noise matrix 𝝃 𝑖 and shares
JA𝜉 K𝑖 = JAK𝑖 + 𝝃 𝑖 with other parties.

As in Definition 1, 𝐼 denotes the set of at most 𝑃 − 1 parties
that collude in our threat models. We build a simulator 𝑆𝑆𝑅 , which
simulates the view of parties in 𝐼 . In the simulated view, 𝑆𝑆𝑅 can

compute A𝜉 =
𝑃∑
𝑝=1

JA𝜉 K𝑝 =
𝑃∑
𝑝=1

JAK𝑝 +
𝑃∑
𝑝=1

𝝃𝑝 , as it has all the

masked shares JA𝜉 K𝑖 for 𝑖 ∈ [1, · · · , 𝑃]. However, A𝜉 is uniformly
random in 𝐼 ’s View, since there is at least one mask matrix 𝝃 𝑖 (from
the non-colluding party) which is unknown to 𝐼 . Therefore, the
distribution over the real A𝜉 received by the colluding parties and
over the simulated A𝜉 generated by 𝑆𝑆𝑅 is identically distributed.

Similarly, during the secure write, the share of the temporary ma-
trix JGK𝑖 from 𝐶𝑃𝑖 is masked with a mask matrix. In the simulated

view of F𝑆𝑊 , 𝐼 can compute G𝜉 =
𝑃∑
𝑝=1

JG𝜉 K𝑝 =
𝑃∑
𝑝=1

JGK𝑝 +
𝑃∑
𝑝=1

𝝃𝑝 ,

which is uniformly random in 𝐼 ’s View, since there is at least one
mask matrix 𝝃 𝑖 (from non-colluding party) which is unknown to 𝐼 .
Therefore, the distribution over the real G𝜉 received by the collud-
ing parties and over the simulated G𝜉 generated by the simulator
is identically distributed.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

The secure aggregation operation F𝑆𝐴 does not require exchang-
ing data with other parties, as the addition operations on additive
secret-shared data can be executed locally. Since the views pro-
duced by the simulator 𝑆𝐶𝑟𝑦𝑝𝑡𝑀𝑃𝐿 in the read and write protocols
are indistinguishable from the parties’ views in the real protocol
execution, the views remain indistinguishable after the simula-
tion of 𝑆𝑆𝐴 , which proves that the input and output node features
of CryptMPL are secure against 𝑇𝑀𝑃 , while processing an edge.
CryptMPL follows the same procedure to process all the edges.
Since the collective view of the protocol execution while processing
each edge is computationally indistinguishable from a simulated
view, the node features are protected in F𝐶𝑟𝑦𝑝𝑡𝑀𝑃𝐿 . Finally, each
party locally subtracts the noise from their share of the result. Since
no data is exchanged in this step, the node features remain protected.
Processing multiple edges in a batch has no additional impact on
the node features, ensuring their security during batching.

The node features are also protected against 𝑇𝑀𝑀 , since the
model parameters Θ are not involved in any step of F𝐶𝑟𝑦𝑝𝑡𝑀𝑃𝐿 .
In the case of 𝑇𝑀𝐷 , the input of the data owner 𝐷𝑂 𝑓 𝑎𝑘𝑒 is known
to the colluding parties 𝐼 . However, since each client generates
its own mask matrix, knowing the 𝐷𝑂 𝑓 𝑎𝑘𝑒 ’s data does not reveal
other client’s private input. Thus, for each client, the views of 𝐼
produced by the simulator 𝑆𝐶𝑟𝑦𝑝𝑡𝑀𝑃𝐿 remain indistinguishable
from the parties’ views in the real protocol execution, which proves
that the input and output node features are secure against 𝑇𝑀𝐷 .

Since, the node features are secured against 𝑇𝑀𝑃 , 𝑇𝑀𝑀 , and
𝑇𝑀𝐷 , thereby protected against the threat model 𝑇𝑀 .
Theorem2.The graph structure is secured against𝑇𝑀 in CryptMPL.
Proof. To prove this theorem, first, we analyze the protocols fol-
lowed to process an edge in CryptMPL. During the read operation,
𝐶𝑃𝑖 shifts the share of the source node index J𝑆K𝑖 by a random
amount 𝑟𝑖 . Thus, the simulator 𝑆𝑆𝑅 of F𝑆𝑅 gets an aggregated value

as 𝑆 ′ =
𝑃∑
𝑝=1

J𝑆K𝑝 +
𝑃∑
𝑝=1

𝑟𝑝 . Since at least one 𝑟𝑖 from the 𝑖-th party is

unknown to the view of 𝑆𝑆𝑅 , the source index is uniformly random
in the 𝐼 ’s view. The destination index for an edge is also protected
in the view of the simulator 𝑆𝑆𝑊 of F𝑆𝑊 , since the parties use the
share of that index to rotate the intermediate matrix locally and do
not share the destination index during the write operation.

Since both source and destination indices are protected, if the
colluding parties 𝐼 try to estimate the source-destination pair, the
probability of correct estimation is 1

𝑁×(𝑁−1) , where 𝑁 is the num-
ber of nodes in the graph. Processing multiple edges in CryptMPL
does not reveal additional information. Since CryptMPL rotates the
matrices by different amounts and uses different noise matrices for
each edge, an adversary can not learn anything from the access
pattern. Similar to processing an edge in each round, the probability
of correct estimation of source-destination pairs is 1

𝑁×(𝑁−1) for
a batch in case of batch processing. Thus, to process all edges in
𝑅 batches in CryptMPL, the probability of correct reconstruction
of graph structure is 𝑁 −2𝑅 . Therefore, increasing the number of
batches ensures stronger security against 𝑇𝑀𝑃 .

Similar to the logic described in Theorem 1, the graph structure
is also protected against 𝑇𝑀𝑀 and 𝑇𝑀𝐷 , thereby it is protected
against 𝑇𝑀 .

Lemma 1. Let 𝐴 and 𝐵 be two secrets encrypted using A-SS in a
𝑃-party SMPC setting, represented as J𝐴K and J𝐵K, respectively. Let
the linear combination of J𝐴K and J𝐵K be J𝐶K = 𝑎 · J𝐴K + 𝑏 · J𝐵K,
where 𝑎 and 𝑏 are public coefficients. The shares of 𝐶 preserve the
information-theoretic security of the original secrets against 𝑇𝑀 .
Proof. We analyze the combined view of the participants in 𝐼 as
defined in Defintion 1. We build a simulator 𝑆𝐿𝐶 , which simulates
the view of parties in 𝐼 . In the simulated view, 𝑆𝐿𝐶 can compute
𝐶 = 𝑎 ·∑𝑃𝑖=1J𝐴K+𝑏 ·∑𝑃𝑖=1J𝐵K. However, since at least one share of𝐴
and 𝐵 is unknown to 𝐼 , the distribution over the real 𝐶 received by
the colluding parties and the simulated𝐶 generated by the simulator
is identically distributed.
Theorem 3. DO’s input graph and MO’s model parameters are
secured in CryptGNN against 𝑇𝑀 .
Proof. Considering the scenario where each client may upload
data for numerous inference requests, to prove the security of
DO’s input graph and MO’s model parameters in CryptGNN, we
demonstrate that the protocols employed to generate a fresh set
of Beaver triples for matrix multiplication (F𝑀𝑎𝑡𝑀𝑢𝑙) and element-
wise multiplication (F𝐸𝑙𝑒𝑚𝑀𝑢𝑙) operations in FTLs are secure.
F𝑀𝑎𝑡𝑀𝑢𝑙 is secure against 𝑇𝑀 . To prove F𝑀𝑎𝑡𝑀𝑢𝑙 is secure, we

consider a simulator 𝑆𝑀𝑎𝑡𝑀𝑢𝑙 that uses the simulators 𝑆𝐼𝑛𝑖𝑡𝐵𝑒𝑎𝑣𝑒𝑟
and 𝑆𝑅𝑎𝑛𝑑𝐶𝑜𝑚𝑏 of F𝐼𝑛𝑖𝑡𝐵𝑒𝑎𝑣𝑒𝑟 and F𝑅𝑎𝑛𝑑𝐶𝑜𝑚𝑏 respectively.

In S𝑀𝑎𝑡𝑀𝑢𝑙 , 𝑆𝐼𝑛𝑖𝑡𝐵𝑒𝑎𝑣𝑒𝑟 generates the initial Beaver triples. We
refer to [20] for the security proof that shows F𝐼𝑛𝑖𝑡𝐵𝑒𝑎𝑣𝑒𝑟 is secure
against 𝑇𝑀𝑃 . Each element of the generated triple, A, B, and C is
secure in additive secret-shared format according to Axiom 1.

To compute JXK ⊗ JYK, 𝑆𝑅𝑎𝑛𝑑𝐶𝑜𝑚𝑏 modifies A and C using the
same linear combination of the rows (Step 2 in Section 5.1). Al-
though, the combination of the rows used to generate A′ and C′ is
known to the view of 𝑆𝑅𝑎𝑛𝑑𝐶𝑜𝑚𝑏 , since the elements in each row
involved in the computation are in the A-SS domain, A′ and C′

remain secure against the threat models (as shown in Lemma 1).
Following Step 3 of F𝑀𝑎𝑡𝑀𝑢𝑙 , the matrices U = X − A′ and

V = Y−B are revealed to 𝑆𝑀𝑎𝑡𝑀𝑢𝑙 . Since, A′ and B are unknown to
𝑆𝑀𝑎𝑡𝑀𝑢𝑙 , the distribution over elements in the private inputs X and
Y remain identically distributed. F𝑀𝑎𝑡𝑀𝑢𝑙 uses a newly generated
matrixA′ for each inference request. Therefore, revealingUwill not
reveal the relative changes in the private input A in two different re-
quests. Finally,U and V are used to compute JZK = JXK⊗JYK, which
does not involve any data sharing between the parties. Therefore,
the simulated view is identical to the real view of 𝐼 . This proves
that F𝑀𝑎𝑡𝑀𝑢𝑙 is secure against the threat model 𝑇𝑀𝑃 .

In the case of 𝑇𝑀𝑀 , the model parameters Θ are known, which
means the input Y of the matrix multiplication in the linear layer
is known to 𝐼 . Using V and Y, the 𝐼 can learn B. However, since
A′ and C′ are protected, the distribution over the private input X
and the output Z received by 𝐼 and over the simulated matrices
generated by the simulator are identically distributed.

In the threat model 𝑇𝑀𝐷 , using 𝐷𝑂 𝑓 𝑎𝑘𝑒 ’s private input, the
colluding parties 𝐼 can learn X and consequently A′ from U in
the inference requests from that data owner. However, B and C′

remain protected, and the distribution over a linear layer’s private
input (model parameter) Y and the output Z received by 𝐼 and over
the simulated matrices generated by the simulator are identically
distributed. Since, F𝐼𝑛𝑖𝑡𝐵𝑒𝑎𝑣𝑒𝑟 generates a fresh set of Beaver triples

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

for each client, learning A′ using 𝐷𝑂 𝑓 𝑎𝑘𝑒 ’s input by 𝐼 does not help
to learn other DO’s input. Thus, F𝑀𝑎𝑡𝑀𝑢𝑙 is secure against 𝑇𝑀𝐷 .
F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 is secure against 𝑇𝑀 . At the pre-processing stage,

F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 generates additive and multiplicative shares of random
values for two parties using oblivious transfer. We refer to [36] for
the proof of this step. In F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 , the parties 𝐶𝑃𝑖 and 𝐶𝑃𝑖+1 for
𝑖 ∈ [1, · · · , 𝑃 − 1] generate 𝑃 − 1 numbers of 𝑅𝑖 values. Then the
additive share J𝑅𝑖K are multiplied using Beaver triples generated
using secure protocol used in [20]. The multiplicative shares ⟨⟨𝑅𝑖 ⟩⟩
are used locally to compute the multiplicative shares of 𝑅. Since at
least one 𝑅𝑖 value is unknown to 𝐼 , the distribution over the real
pair (J𝑅K, ⟨⟨𝑅⟩⟩) received by 𝐼 and over the simulated (J𝑅K, ⟨⟨𝑅⟩⟩)
generated by the simulator is identically distributed.

The simulator 𝑆𝐵𝑒𝑎𝑣𝑒𝑟𝑀 of F𝐵𝑒𝑎𝑣𝑒𝑟𝑀 generates the Beaver triples
in multiplicative format, which does not require any communica-
tion among the parties. Since the parties in 𝐼 do not receive any
data from other parties, the simulated view is identical to the real
view. To covert multiplicative shares to additive shares, the simu-
lator 𝑆𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 of F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 uses the additive-multiplicative
pairs generated in F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 . We refer to the proof of protocol
𝑆𝑒𝑐𝑀𝑢𝑙𝑅𝑒𝑠ℎ described in [35] to prove that F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 is secure
against 𝑇𝑀𝑃 . Thus, F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 is secure, since its sub-protocols are
proven to be secure.

To compute the element-wise multiplication in different lay-
ers of GNN, we pre-compute the required amount of additive-
multiplicative pairs inF𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 . For each inference request,F𝐵𝑒𝑎𝑣𝑒𝑟𝑀
generates a fresh Beaver triple inmultiplicative format andF𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴
uses a different pair from F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 to compute an element-wise
multiplication. Thus, the ratio 𝛼 recovered in F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 does
not reveal any relative value for two different inference requests.

In the case of𝑇𝑀𝑀 , the simulatormay learn𝐵 in the Beaver triple
from 𝑉 , if the model parameter is used as 𝑌 in the multiplication
step and it is known to 𝐼 . However, the elements 𝐴 and 𝐶 are still
protected, which are related to the DO’s private input and the result
of the multiplication. Therefore, the DO’s private input and the
private output are secure against 𝑇𝑀𝑀 .

In the threat model 𝑇𝑀𝐷 , using 𝐷𝑂 𝑓 𝑎𝑘𝑒 ’s private input, the
colluding parties 𝐼 can learn 𝐴 of the Beaver triple, but the model
parameters and the final result are protected since 𝐵 and 𝐶 are
unknown. Furthermore, the other DO’s data is also protected, since
we generate a new set of (additive-multiplicative) shares for each
client, which are used to generate the Beaver triples.

6.2 Overhead Analysis
The protocols in CryptGNN are able to avoid high overhead, while
providing stronger privacy guarantees than existing solutions by
leveraging application-specific knowledge. Unlike general-purpose
frameworks such as CrypTen, which rely heavily on costly ma-
trix multiplications for message passing, CryptMPL minimizes this
overhead by executing custom secure protocols for read, write,
and aggregation operations. In CryptMPL, data privacy is pre-
served usingmasking techniques, and efficiency is further enhanced
through batch processing. CryptGNN’s secure multiplication pro-
tocol, CryptMUL, leverages key characteristics of GNN inference
(e.g., known model architecture and fixed number of parameters)
to enable secure and efficient execution.

Overhead analysis of CryptMPL. We present the overhead
analysis of CryptMPL in terms of: (i) the number of nodes in the
graph, 𝑁 , (ii) the number of edges𝑀 , (iii) the number of features
of each node 𝐾 , (iv) the number of computing parties 𝑃 , and (v) the
number of batches 𝑅 to process𝑀 edges.

Table 2: Performance comparison of secure message-passing

CryptMPL AdjacencyMatrix

Computation Cost (Client) 𝑂 (𝑁 × 𝐾 × 𝑃2 × 𝑅) 𝑂 (𝑁 2 × 𝐾)
Computation Cost (Each party) 𝑂 (𝑁 × 𝐾 × 𝑃 × 𝑅) 𝑂 (𝑁 2 × 𝐾)

Communication Cost (Client to each CP) (𝑁 × 𝐾 +𝑀 × 2 + 𝑃) × 𝐿 (𝑁 2 + 2 × 𝑁 × 𝐾) × 𝐿
Communication Cost (Each CP to others) (𝑁 × 𝐾 × 𝑅 +𝑀) × 𝑃 × 𝐿 (𝑁 2 + 2 × 𝑁 × 𝐾) × 𝑃 × 𝐿

CryptMPL preserves data privacy, with overhead in terms of
computation and communication among servers. It also introduces
overhead on the client side, as the client computes a noise matrix at
the pre-processing stage and uploads the noise-matrix along with
the graph data. Table 2 presents the overhead of CryptMPL and
compares it with that of an adjacency matrix–based approach. The
computation cost at the client side is proportional to the size of
feature matrix (𝑁 ×𝐾), the number of batches (𝑅), and the number
of parties (𝑃2), since it requires to compute the effect of noise added
by each party on its own data and on the data of the other parties.
To protect the feature matrix and graph structure, CryptMPL adds
noise and rotates matrices by a random amount. Overall, there
are 2 × 𝑃 × 𝑅 numbers of rotations and (𝑃 + 1) × 𝑅 + 1 numbers
of addition of matrices of size (𝑁,𝐾) by each server. Similar to
plain text, each party needs to add two (1, 𝐾) sized vectors𝑀 times.
Therefore, the computation overhead with respect to the plain text
version is 𝑂 (𝑁 × 𝐾 × 𝑃 × 𝑅). These computations can be done in a
multi-threaded way (or transferred to GPUs) to make them faster.
Additionally, to process all𝑀 edges in 𝑅 batches, each server sends
a total of (𝑁 × 𝐾 × 𝑅 +𝑀) × 𝑃 × 𝐿 bits to the other servers, where
(𝑁 × 𝐾) is the size of the feature matrix in a batch and 𝐿 is the
number of bits required to represent a share of a value in A-SS
format. As described in Section 4.4, CryptMPL processes all batches
in a single round by transferring all bits for the 𝑅 batches at once,
thereby reducing propagation and queuing delays [14].

CryptMPL has significantly less overhead than MPL using an
adjacency matrix, which requires multiplying two matrices of size
(𝑁, 𝑁) and (𝑁,𝐾). In the adjacency matrix-based approach, either
the client or the trusted server needs to distribute 3 matrices A ∈
R𝑁×𝐾 ,B ∈ R𝑁×𝑁 ,C ∈ R𝑁×𝐾 as the Beaver triples to 𝑃 parties to
support secure multiplication in A-SS domain following [1].

Overhead analysis of CryptMUL. In F𝑀𝑎𝑡𝑀𝑢𝑙 , to compute
JZK = JXK ⊗ JYK, X ∈ R𝑁×𝐾 ,Y ∈ R𝐾×𝐾 ′ ,Z ∈ R𝑁×𝐾 ′ during infer-
ence, the parties compute locally to generate a new Beaver triple
from the pre-computed Beaver triple. The computation cost in this
process is𝑂 (𝑁 2× (𝐾 +𝐾 ′)). This process does not require any com-
munication among the computing parties, while [22] requires one
round of communication between the computing parties and the
trusted server to get a new Beaver triple. The cost associated with
computing matrix-multiplication using the Beaver triple is the same
(one round of communication and local computation) in both [22]
and F𝑀𝑎𝑡𝑀𝑢𝑙 . Thus, the overall cost of matrix-multiplication using

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

CryptMUL is lower compared to [22], since the communication
overhead is reduced through the local computation in F𝑀𝑎𝑡𝑀𝑢𝑙 .

To compute element-wise multiplication, J𝑍K = J𝑋 K × J𝑌 K,
F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 requires each party to locally generate a random Beaver
triple (⟨⟨𝐴⟩⟩, ⟨⟨𝐵⟩⟩, ⟨⟨𝐶⟩⟩). Then, one round of communication among
the parties is required to convert the Beaver triple from M-SS to
A-SS format. [22] also requires a round of communication between
the parties and the trusted server to obtain the Beaver triple. The
cost associated with computing element-wise multiplication using
the Beaver triple is the same (one round of communication and local
computation) in both [22] and F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 . Therefore, the overhead
of both CryptMUL and [22] is of the same order.

7 EVALUATION
We implement a CryptGNN prototype in Python and conduct ex-
periments to compare its performance with baselines. To create
arithmetic shares of the private data and to implement FTLs, we use
CrypTen [22]. In CryptGNN, the model owner does not require any
preprocessing, except for encrypting the model parameters in A-SS
format, which is a one-time process. We implement CryptMPL with
client-side data preprocessing and server-side batching. Addition-
ally, we develop CryptMUL protocols for secure matrix multiplica-
tion and element-wise multiplication. To avoid using a trusted party,
we replace the multiplication operations in the FTLs of CrypTen
using our CryptMUL. We use 𝐿 = 64 bits to represent the values
in A-SS format. We perform the experiments on a 3.4GHz Intel
Core i7, with the parties running in separate processes. We also
use AWS instances to evaluate CryptGNN in a realistic distributed
cloud setting. We conduct each experiment 30 times and report the
average execution time. For evaluation, we use benchmark datasets
for graph classification tasks (FAUST [4], TUDataset (PROTEINS,
ENZYMES) [18]) and the well-known GIN [37] architecture as a
GNN model. Let us note that, CryptGNN protocols can be extended
to support other complex message-passing in GNN architectures
(beyond GIN) by incorporating additional operations (e.g., node
sampling, concatenation, etc.) using standard SMPC techniques or
by designing efficient protocols.

7.1 Overall CryptGNN Performance
Weuse FAUST, PROTEINS, and ENZYMES datasets. For each dataset,
70% of the graphs are used for training the GIN model; the remain-
ing graphs are considered as the client’s private input graphs. In all
experiments, the batch size is set to group all edges in 20 batches,
and CryptGNN processes all the batches in a single round as de-
scribed in Section 4.4.
CryptGNN vs. plain-text performance.We train three GIN mod-
els on the three benchmark datasets, and then compare the results
of the plain-text versions of the models with the CryptGNN ver-
sions. The plain-text version utilizes PyTorch APIs to compute the
GNN layers. In CryptGNN, we leverage CrypTen’s API, which uses
numerical approximations to compute non-linear functions. The
necessary multiplication operations are performed using Crypt-
MUL. The fixed-point encoding to represent floating-point values
and the approximation techniques may introduce some precision
errors in intermediate results. For instance, in a graph with 2000
nodes and 10 features, the mean difference between the plaintext

3 4 5
Number of parties

1
2
3
4
5
6
7
8
9

10
11
12

Ra
tio

 o
f E

xe
cu

tio
n

tim
e

PROTEINS
ENZYMES
FAUST

Figure 5: Execution time ratio of CrypTen over CryptGNN
for GIN, while varying the number of parties

values and A-SS domain values is 5.1 × 10−5. This error is accept-
able for deep learning tasks. Since our focus is on predicting the
classification IDs rather than obtaining the exact float values, the
final result remains unaffected. We achieve the same inference accu-
racy results for each pair of models (i.e., plain-text vs. CryptGNN).
This demonstrates that CryptGNN works correctly from a machine
learning point of view.
Efficiency.We compare the performance of CryptGNN with an im-
plementation of the GIN model using CrypTen [22]. For CryptGNN,
we measure execution time at the server after the data is uploaded
by the client. The execution time does not include the server side
preprocessing required in CryptMUL, since it is a one-time process
for each client that generates the initial Beaver Triples. To execute
the operations required for GNN inference for the Baseline, we use
CrypTen’s functions for FTLs and implement an adjacency-matrix
based solution for MPL. Unlike CryptGNN, CrypTen uses a trusted
server.

Fig. 5 shows that CryptGNN is significantly faster than CrypTen,
particularly for large-scale graphs in FAUST. This is because CrypTen
incurs higher computation overhead in MPLs and FTLs, which in-
creases with the number of nodes and features in the graph. The ex-
ecution time ratio between CrypTen and CryptGNN also increases
with the number of parties, since CrypTen requires the parties to
communicate with the trusted server for many operations. In terms
of absolute inference time, the models using CryptGNN work well
in practice. For instance, on the FAUST dataset with 6890 nodes and
41328 edges, the CryptGNN model achieved an average inference
time of 22.3𝑠 in a 3-party setting. Furthermore, in order to evaluate
scalability, we used a synthetic graph dataset with an average of
20,000 nodes and 200,000 edges. CryptGNN’s average inference time
for the graphs in this dataset is approximately 75𝑠 . These results
show that CryptGNN can work efficiently in practical situations
where security matters more than inference latency, such as in drug
discovery and automated code analysis (discussed in Section 1).

To evaluate CryptGNN considering network delay and band-
width restrictions, we performed an experiment, where we used 3
AWS instances (t2.micro, us-east-1 region) as the computing parties.
For the graphs in TUDataset, CryptGNN takes around 2.3 seconds
to obtain the inference results for each graph. This indicates that
network latency has minimal impact on the overall inference time.

End-to-end execution times. In CryptGNN, the end-to-end
execution time can be divided into three main components: (i)
offline preprocessing for data masking at the client side, (ii) offline
Beaver triple generation at the server side, and (iii) the online phase.
The offline preprocessing time at the client side is low compared to
the overall execution time. For a benchmark dataset (TUDataset),

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 3: Communication Performance

TUDataset Synthetic Dataset
CryptGNN CrypTen CryptGNN CrypTen

Client Comm. (MB) 0.1 0.4 12 3050
Trusted Server Comm. (MB) - 0.4 - 3050
Each Party Comm. (MB) 1.24 1.31 81.9 6103

Number of Comm. Rounds 120 128 122 130

it takes around 0.1s, with the ratio of offline/online overhead being
approximately 1:25. We measure the end-to-end execution time on
a large benchmark dataset (FAUST), where client-side computation,
Beaver triple generation, and the online phase take approximately
0.9s, 7.5s, and 23.1s, respectively. Since CryptMUL can generate
new sets of Beaver triples from an initial set, offline preprocessing
is required only once per client. Thus, the overall execution time
consists of the time needed for client-side preprocessing and the
online phase, which is feasible in real-life scenarios.

Communication overhead. To evaluate the communication
overhead during the online phase, we use two datasets: TUDataset,
which consists of graphs with an average of 36 nodes, and a syn-
thetic dataset with larger graphs averaging 20,000 nodes. For both
datasets, we measure the communication overhead for each infer-
ence request using a trained GIN model with parameters encrypted
in a 3-party SMPC setting. We report the number of communication
rounds, the size of the data (in MB) uploaded by the client, and the
total amount of data (in MB) communicated per party using the
CryptGNN protocols. Additionally, we compare the communication
overhead with CrypTen, which also requires a trusted party during
the online phase.

As shown in Table 3, CryptGNN achieves significantly lower
overhead compared to CrypTen on larger datasets. It requires fewer
rounds and transfers 74 times less data. The high overhead in
CrypTen arises from its adjacency matrix-based implementation,
which necessitates large matrix multiplications. Additionally, the
client uploads substantially less data since there is no need to up-
load a large adjacency matrix. On smaller datasets, CryptGNN
still outperforms CrypTen, reducing overhead by 5%, while being
more secure. For both datasets, the majority of data is transferred
in the message-passing layer, which CryptGNN optimizes using
CryptMPL protocols. The majority of communication rounds occur
in the non-linear layers due to element-wise multiplications needed
for the numerical approximation of non-linear functions, which
can be further optimized through parallelized computations.

7.2 CryptMPL Results
Overhead. We generate graphs with the numbers of nodes 𝑁
ranging from 20 to 2000. The average degree𝐷𝑎𝑣𝑔 is varied from 1 to
𝑚𝑎𝑥 (100, (𝑁 −1)/2), having a total number of edges𝑀 = 𝑁 ×𝐷𝑎𝑣𝑔 .
We choose a batch size 𝑐𝑒𝑖𝑙 (𝑀/20) to process the edges in 20 batches.
Fig. 6(a) shows the ratio of the execution time of CryptMPL and the
non-secure MPL for different graphs. The results demonstrate that
CryptMPL performs efficiently for medium and large-scale graphs,
which are the types of graphs encountered in real-life scenarios. As
the plain text computation has a linear relation with the number of

0 25 50 75 100
Average node degree

0

100

200

300

400

Ra
tio

 o
f e

xe
cu

tio
n

tim
e N=20

N=50
N=100
N=500
N=1000
N=2000

(a)

2 4 6 8 10
Average node degree

0

2

4

6

8

10

Ra
tio

 o
f E

xe
cu

tio
n

tim
e

Dmax/Davg = 1
Dmax/Davg = 3
Dmax/Davg = 5

(b)

Figure 6: Comparison of CryptMPL with existing techniques:
Ratio of execution time — (a) between CryptMPL and Plain-
text, and (b) between SecGNN and CryptMPL.

2 3 4 5 6
P

101

102

103

Ti
m

e
(m

illi
se

co
nd

s)

CryptMPL_Server
CryptMPL_Client

Baseline_Server
Baseline_Client

(a)

1 200 400 600 800 1000
Batch size

10 1

100

101

102

103

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) CiteSeer

Cora
PPI

(b)

Figure 7: Effect of (a) number of parties and (b) batch size on
CryptMPL (Y-axis is log scaled)

edges𝑀 , the ratio of the execution times decreases as𝑀 increases.
Despite the high overhead for small graphs, the execution time
remains low (e.g., 190ms) and does not have a major impact on the
inference latency.
Comparison with SecGNN. This experiment compares the ef-
ficiency of CryptMPL with that of SecGNN (see Section 2). We
measure the ratio of execution time of the MPL between SecGNN
and CryptMPL for graphs with𝑁 = 2000 nodes and𝐾 = 10 features,
while varying the node degrees. Fig. 6(b) shows that CryptMPL is
about 1.5× faster than SecGNN. Moreover, the execution time ratio
increases linearly as 𝐷𝑚𝑎𝑥/𝐷𝑎𝑣𝑔 increases, where 𝐷𝑚𝑎𝑥 and 𝐷𝑎𝑣𝑔
are the maximum and average node degree in the graph, respec-
tively. This demonstrates that CryptMPL works better for real-life
graphs, as 𝐷𝑚𝑎𝑥 is usually much higher compared to 𝐷𝑎𝑣𝑔 . In ad-
dition, CryptMPL provides better security, as it works with more
than 2 parties and does not require a trusted party.
Comparison with adjacency matrix-based MPL. We compare
the execution time of CryptMPL with a hypothetical solution based
on representing the graph as an adjacency matrix. The experiment
uses a PPI dataset and varies the number of parties. Fig. 7(a) shows
CryptMPL is 25 times faster compared to the adjacency matrix
solution when using 6 parties. This demonstrates that CryptMPL’s
choice of graph representation and its novel SMPC techniques to
compute MPL lead to large performance improvements.
Effect of batching. We use three datasets (Cora, CiteSeer, PPI) in
a 3-party SMPC setting. Fig. 7(b) shows that the execution time of
CryptMPL decreases as the batch size increases, since CryptMPL
requires a low number of rounds 𝑅 = ⌈𝑀/𝐵⌉ to process the edges,
where𝑀 and 𝐵 are the number of edges and the size of each batch,

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

3 4 5
Number of parties

1.2

1.3

1.4

1.5

Ra
tio

 o
f E

xe
cu

tio
n

tim
e

N=1000
N=2000
N=5000

(a)

3 4 5
Number of parties

1.1

1.2

1.3

1.4

1.5

Ra
tio

 o
f E

xe
cu

tio
n

tim
e

K'=16
K'=32
K'=64

(b)

Figure 8: Execution time ratio of a linear layer between
CrypTen and CryptMUL by varying: (a) 𝑁 and 𝑃 (b) 𝐾 ′ and 𝑃

respectively. However, as discussed in Section 6, the security guar-
antees improve exponentially with 𝑅 and CryptMPL can use a
relatively large batch size while still guaranteeing a good level of
security.

7.3 CryptMUL Results
In this experiment, we evaluate the performance of a linear layer
that computes JZK = JXK ⊗ JYK + JBK, where X ∈ R𝑁×𝐾 ,Y ∈
R𝐾×𝐾

′
,B ∈ R𝑁×𝐾

′ . The linear layer transforms the number of
features from 𝐾 to 𝐾 ′ for the same number of nodes 𝑁 . To see the
effect of different parameters of the data, we generate synthetic
matrices and vary 𝑁 ∈ [1000, 2000, 5000] and 𝐾 ′ ∈ [16, 32, 64]. We
set 𝐾 = 3 in this experiment. We measure the ratio of execution
time between linear layers using CrypTen [22] and CryptMUL by
varying the number of parties P ∈ [3, 4, 5]. Our results demonstrate
that the linear layer implemented with CryptMUL outperforms
its counterpart using CrypTen. As illustrated in Fig. 8, the ratio
of execution time between CrypTen and CryptMUL exhibits an
increasing trend with P, since the communication overhead in
CrypTen increases with the number of parties involved. Moreover,
this ratio also rises in relation to 𝑁 and 𝐾 ′, since higher values of
these parameters increase the computation at the trusted server
and the communication between the parties with the trusted server.

8 DISCUSSION
CryptGNN marks an important advancement toward secure and
efficient GNN inference in MLaaS settings. 1 While the current
design is effective, there is significant room for improvements. For
simplicity, the main design of CryptGNN focuses on unweighted
and undirected edges in input graphs. This section outlines the
current limitations of CryptGNN and identifies several promising
directions for future exploration.

Supporting Complex Message-Passing Layers. The secure
message-passing layer of CryptGNN, referred to as CryptMPL
(Section 4), is specifically designed to natively support the widely
adopted GIN architecture [37] as a GNN model. While this design
choice ensures compatibility, it also introduces a limitation in sup-
porting more complex MPLs. However, CryptMPL’s secure read
and write protocols can be extended to support such MPLs by in-
corporating additional operations – such as node sampling, feature
concatenation, and others – using standard SMPC techniques or

1Additional design details, results for different graph and system parameters, and
protocol extensions are presented in the Appendix.

by developing efficient, custom protocols. For example, in Graph-
SAGE [15], instead of performing message-passing on the entire
graph, nodes are randomly sampled, and message-passing is carried
out only through the adjacent edges. In the case of secure inference,
this sampling operation must be executed in a way that does not
reveal the graph structure. While oblivious sampling operations in
SMPC settings may be feasible, they are computationally expensive
and significantly increase overhead. An alternative solution is to
perform the sampling operation on the client side, where the graph
structure is already known. After sampling, the client can upload
the list of edges following the CryptMPL protocol, allowing secure
message-passing to be executed on the server side.

Similarly, CryptGNN can support Graph Attention Networks
(GATs) [33], which require the computation of attention coeffi-
cients for each edge in the message-passing layer. Since CryptMPL
can securely read the feature vector of any source node, it can be
extended to concatenate the feature vectors of the two nodes con-
nected by each edge and compute pairwise attention coefficients
using standard SMPC techniques.

Supporting Heterogeneous Graphs. In CryptGNN, we focus
on state-of-the-art GNN architectures (e.g., GIN, GCN) that are
designed for homogeneous graphs. While there are advanced ar-
chitectures capable of handling heterogeneous graphs, supporting
them securely would require additional effort, as it involves pro-
tecting the types of nodes and edges to fully preserve the privacy
of the graph structure. We plan to explore this in future work.

Supporting GNN training. In CryptGNN, we design secure
protocols to execute the forward pass required for inference in
MLaaS, which can benefit many applications, as described in Sec-
tion 1. CryptGNN could also be extended to support training or
fine-tuning, which would require secure protocols for computing
the loss, performing backpropagation to calculate gradients, and
updating the weight matrices accordingly. While CryptGNN can
in principle be extended to support these steps, since they can be
decomposed into a fixed number of addition and multiplication
operations, doing so would be computationally expensive. Training
typically involves multiple epochs, and to preserve data privacy in
each epoch, a fresh set of noise matrices (for CryptMPL) and auxil-
iary data (for CryptMUL) would be required. We plan to explore
secure training as part of our future work.

Toward Security Against Active Adversaries. CryptGNN as-
sumes an honest-but-curious adversarial model, where parties fol-
low the protocol but may attempt to infer private information from
observed data. While this model is practical and widely adopted, it
does not account for adversaries that may actively deviate from the
protocol. In future work, we aim to explore the design of secure and
verifiable protocols that can support GNN inference even in the
presence of active (malicious) adversaries. Achieving this would
require incorporating mechanisms such as zero-knowledge proofs
or verifiable computation to ensure correctness and integrity of
computations under stronger threat models.

9 CONCLUSION
We presented CryptGNN, a provably secure and effective inference
system for GNN in MLaaS scenarios. CryptGNN has two main
protocols, CryptMPL and CryptMUL, to support secure MPLs and

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

FTLs in GNN. These novel SMPC protocols preserve the privacy
of the model parameters and input graph data while providing
the same results as the non-secure inference version. CryptGNN
works with an arbitrary number of SMPC parties, and it protects the
input data, the intermediate results, and the output, even if P − 1
out of P parties collude. The experimental results demonstrate
CryptGNN’s correctness and low overhead compared to state-of-
the-art approaches.

REFERENCES
[1] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

InAdvances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings (Lecture
Notes in Computer Science, Vol. 576). Springer, 420–432. https://doi.org/10.1007/3-
540-46766-1_34

[2] Donald Beaver. 1992. Efficient multiparty protocols using circuit randomization.
In Advances in Cryptology—CRYPTO’91: Proceedings 11. Springer, 420–432.

[3] Marina Blanton, Ahreum Kang, and Chen Yuan. 2020. Improved Building Blocks
for Secure Multi-Party Computation Based on Secret Sharing with Honest Major-
ity. In Applied Cryptography and Network Security: 18th International Conference,
ACNS 2020, Rome, Italy, October 19–22, 2020, Proceedings, Part I. Springer-Verlag,
Berlin, Heidelberg, 377–397. https://doi.org/10.1007/978-3-030-57808-4_19

[4] Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. 2014. FAUST:
Dataset and evaluation for 3D mesh registration. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 3794–3801.

[5] Octavian Catrina and Sebastiaan Hoogh. 2010. Improved primitives for secure
multiparty integer computation. In Security and Cryptography for Networks: 7th
International Conference, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceed-
ings 7. Springer, 182–199.

[6] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yongsoo Song, and
Sameer Wagh. 2020. Maliciously Secure Matrix Multiplication with Applications
to Private Deep Learning. Cryptology ePrint Archive, Paper 2020/451. https:
//eprint.iacr.org/2020/451 https://eprint.iacr.org/2020/451.

[7] Hao Chen and Han Kyoohyung. 2018. Homomorphic Lower Digits Removal and
Improved FHE Bootstrapping. 315–337. https://doi.org/10.1007/978-3-319-
78381-9_12

[8] Long Chen, Zhenfeng Zhang, and Xueqing Wang. 2017. Batched Multi-Hop
Multi-Key FHE from Ring-LWE with Compact Ciphertext Extension. In Theory
of Cryptography: 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part II. Springer-Verlag, Berlin, Heidelberg,
597–627. https://doi.org/10.1007/978-3-319-70503-3_20

[9] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority –
Or: Breaking the SPDZ Limits. In Computer Security – ESORICS 2013. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1–18.

[10] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceedings of the 33rd International
Conference on International Conference onMachine Learning - Volume 48 (ICML’16).
JMLR.org, 201–210.

[11] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional
Networks on Graphs for Learning Molecular Fingerprints. In Advances in Neural
Information Processing Systems, Vol. 28.

[12] E.E.A. .com. 2024. Modular Multiplicative Inverse. https://www.extendedeuclid
eanalgorithm.com/multiplicative_inverse.php.

[13] Hossein Ghodosi, Josef Pieprzyk, and Ron Steinfeld. 2012. Multi-party compu-
tation with conversion of secret sharing. Designs, Codes and Cryptography 62
(2012), 259–272.

[14] Ma Haiyan, Yan Jinyao, Panagiotis Georgopoulos, and Bernhard Plattner. 2016.
Towards SDN based queuing delay estimation. China Communications 13, 3
(2016), 27–36. https://doi.org/10.1109/CC.2016.7445500

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS’17). 1025–1035.

[16] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS.

[17] Thang Hoang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam
Nguyen. 2017. S3ORAM: A Computation-Efficient and Constant Client Band-
width Blowup ORAMwith Shamir Secret Sharing. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’17). 491–505.
https://doi.org/10.1145/3133956.3134090

[18] Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. 2019. Understanding Isomor-
phism Bias in Graph Data Sets. CoRR abs/1910.12091 (2019). arXiv:1910.12091

http://arxiv.org/abs/1910.12091
[19] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
27th USENIX Security Symposium (USENIX Security 18). 1651–1669.

[20] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: faster mali-
cious arithmetic secure computation with oblivious transfer. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
830–842.

[21] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. 2021. CrypTen: Secure Multi-Party Com-
putation Meets Machine Learning. In Advances in Neural Information Processing
Systems, Vol. 34. 4961–4973.

[23] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. CrypTFlow: Secure TensorFlow Inference. In 2020
IEEE Symposium on Security and Privacy (SP). 336–353. https://doi.org/10.1109/
SP40000.2020.00092

[24] Linfeng Liu, Hoan Nguyen, George Karypis, and Srinivasan H. Sengamedu. 2021.
Universal representation for code. In PAKDD 2021. https://www.amazon.science
/publications/universal-representation-for-code

[25] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-
Pierre Hubaux. 2021. Multiparty homomorphic encryption from ring-learning-
with-errors. Proceedings on Privacy Enhancing Technologies 2021, CONF (2021),
291–311.

[26] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. 2022.
CryptoGCN: Fast and Scalable Homomorphically Encrypted GraphConvolutional
Network Inference. In Advances in Neural Information Processing Systems, Vol. 35.
Curran Associates, Inc., 37676–37689.

[27] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and
Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural Network
Inference. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1501–1518.

[28] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (ASIACCS).
707–721. https://doi.org/10.1145/3196494.3196522

[29] Mauro Ribeiro, Katarina Grolinger, and Miriam A.M. Capretz. 2015. MLaaS:
Machine Learning as a Service. In 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA). 896–902. https://doi.org/10.1109/IC
MLA.2015.152

[30] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (nov 1979),
612–613. https://doi.org/10.1145/359168.359176

[31] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: An
Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4, Article 18 (apr 2018),
26 pages. https://doi.org/10.1145/3177872

[32] Anh-Tu Tran, The-Dung Luong, Jessada Karnjana, and Van-Nam Huynh. 2021.
An efficient approach for privacy preserving decentralized deep learning models
based on secure multi-party computation. Neurocomputing 422 (2021), 245–262.
https://doi.org/10.1016/j.neucom.2020.10.014

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=rJXMpikCZ

[34] Songlei Wang, Yifeng Zheng, and Xiaohua Jia. 2023. SecGNN: Privacy-preserving
graph neural network training and inference as a cloud service. IEEE Transactions
on Services Computing (2023).

[35] Zhihua Xia, Qi Gu, Wenhao Zhou, Lizhi Xiong, Jian Weng, and Naixue Xiong.
2021. STR: Secure computation on additive shares using the share-transform-
reveal strategy. IEEE Trans. Comput. (2021), 1–1. https://doi.org/10.1109/TC.202
1.3073171

[36] Lizhi Xiong, Wenhao Zhou, Zhihua Xia, Qi Gu, and Jian Weng. 2020. Efficient
privacy-preserving computation based on additive secret sharing. arXiv preprint
arXiv:2009.05356 (2020).

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[38] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[39] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao,
Hongwei Li, and Yu an Tan. 2019. Secure Multi-Party Computation: Theory,
practice and applications. Information Sciences 476 (2019), 357–372. https:
//doi.org/10.1016/j.ins.2018.10.024

[40] Marinka Zitnik and Jure Leskovec. 2017. Predictingmulticellular function through
multi-layer tissue networks. Bioinformatics 33, 14 (2017), i190–i198.

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-57808-4_19
https://eprint.iacr.org/2020/451
https://eprint.iacr.org/2020/451
https://eprint.iacr.org/2020/451
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-70503-3_20
https://www.extendedeuclideanalgorithm.com/multiplicative_inverse.php
https://www.extendedeuclideanalgorithm.com/multiplicative_inverse.php
https://doi.org/10.1109/CC.2016.7445500
https://doi.org/10.1145/3133956.3134090
https://arxiv.org/abs/1910.12091
http://arxiv.org/abs/1910.12091
https://doi.org/10.1109/SP40000.2020.00092
https://doi.org/10.1109/SP40000.2020.00092
https://www.amazon.science/publications/universal-representation-for-code
https://www.amazon.science/publications/universal-representation-for-code
https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3177872
https://doi.org/10.1016/j.neucom.2020.10.014
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/TC.2021.3073171
https://doi.org/10.1109/TC.2021.3073171
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1016/j.ins.2018.10.024
https://doi.org/10.1016/j.ins.2018.10.024

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

APPENDIX
This appendix provides additional technical details to supplement
the main paper. In Appendix A, we present a complete example
illustrating the flow of CryptMPL, several straightforward exten-
sions, and the pseudocode for the algorithms introduced in the main
paper (Section 4). Detailed algorithms for CryptMUL are presented
in Appendix B. While the main paper focuses on the system and
security analysis (Section 6), we provide the correctness analysis
of CryptGNN in Appendix C. Finally, Appendix D includes experi-
mental details and additional evaluation results for CryptMPL and
CryptMUL over various graph- and system-specific parameters.

A DETAILED DESCRIPTION OF CRYPTMPL
We discuss our securemessage-passing layer CryptMPL in Section 4.
In this section, we present a simple example illustrating the flow of
data in CryptMPL. We also discuss straightforward extensions of
CryptMPL and provide the pseudocodes of the algorithms.

A.1 A Simple Example
In this example, we consider three computing parties 𝐶𝑃1, 𝐶𝑃2
and 𝐶𝑃3 take an input feature matrix A and compute the message-
passing layer to generate the output feature matrix A∗. Here, the
matrix A represents 𝐾 = 2 features for each of the 𝑁 = 4 nodes
in the graph G. For simplicity, we consider a simple graph and
illustrate the protocols for computing the message passing through
an edge from node 1○ to node 2○. We consider the indices to be
1-indexed. Therefore, for this edge, the source index 𝑆 = 1 and
the destination index 𝐷 = 2. In the A-SS domain, 𝐶𝑃𝑝 has the
shares of node features, source index, and destination index as JAK𝑝 ,
J𝑆K𝑝 , and J𝐷K𝑝 respectively. Here, A =

∑P
𝑝=1J𝐴K𝑝 , 𝑆 = (∑P

𝑝=1J𝑆𝑝K)
mod 𝑁 + 1 and 𝐷 = (∑P

𝑝=1J𝐷𝑝K) mod 𝑁 + 1.

2 3
0 6
5 7
3 1

10 2
3 6
0 1
2 4

1 1
0 9
0 5
3 4

13 6
3 21
5 13
8 9

4 1
3 4
10 3
2 0

2 3
4 8
7 3
0 4

5 4
6 4
7 3
0 3

11 8
13 16
24 9
2 7

6 4
3 10
15 10
5 1

12 5
7 14
7 4
2 8

6 5
6 13
7 8
3 7

24 14
16 37
29 22
10 16

ξ=

A =

Aξ =

CP1 CP2 CP3

2

3

4

1

11 8

13 16

24 9

2 7

𝒢 D = 2

S = 1 [[S]]1 = 3
[[D]]1 = 1

[[S]]2 = 2
[[D]]2 = 1

[[S]]3 = 3
[[D]]3 = 3

Figure 9: Input feature matrix A, noise matrix 𝝃 , and masked
feature matrix A𝝃 , for a graph G with 𝑁 = 4 nodes and 𝐾 = 2
features

The owner of the graph, the client, has the information about the
graph structure, i.e., it knows the source index 𝑆 and the destination
index 𝐷 . However, the client doesn’t have any information about
the current feature matrix A. Nonetheless, the client can assist
the computing parties in masking their shares and executing the
message-passing layer, ensuring that the node features and graph
structure (𝑆 and 𝐷) remain protected throughout the execution of
CryptMPL.

2 3
0 6
5 7
3 1

5 + X1131 7 + X1132

3 + X1141 1 + X1142

2 + X1111 3 + X1112

0 + X1121 6 + X1122

3 + X1141 + X2121 1 + X1142 + X2122

2 + X1111+ X2131 3 + X1112 + X2132

0 + X1121+ X2141 6 + X1122 + X2142

5 + X1131 + X2111 7 + X1132 + X2112

0 + X1121+ X2141 + X3131 6 + X1122 + X2142 + X3132

5 + X1131 + X2111+ X3141 7 + X1132 + X2112+ X3142

3 + X1141 + X2121+ X3111 1 + X1142 + X2122+ X3112

2 + X1111+ X2131+ X3121 3 + X1112 + X2132+ X3122

2 + Z11 3 + Z12

0 0
0 0
0 0

0 + Y1141 0 + Y1142

2 + Z11 + Y1111 3 + Z12 + Y1112

0 + Y1121 0 + Y1122

0 + Y1131 0 + Y1132

0 + Y1131+ Y2141 0 + Y1132+ Y2142

0 + Y1141+ Y2111 0 + Y1142+ Y2112

2 + Z11 + Y1111+ Y2121 3 + Z12 + Y1112+ Y2122

0 + Y1121+ Y2131 0 + Y1122+ Y2132

0 + Y1131+ Y2141 + Y3121 0 + Y1132+ Y2142+ Y3122

2 + Z11 + Y1111+ Y2121 + Y3131 3 + Z12 + Y1112+ Y2122+ Y3132

0 + Y1121+ Y2131+ Y3141 0 + Y1122+ Y2132+ Y3142

0 + Y1141+ Y2111 + Y3111 0 + Y1142+ Y2112 + Y3112

0 + R1111 0 + R1112

2 + R1121 3 + R1122

0 + R1131 0 + R1132

0 + R1141 0 + R1142

0 + R2211 0 + R2212

10 + R2221 2 + R2222

0 + R2231 0 + R2232

0 + R2241 0 + R2242

0 + R3311 0 + R3312

1 + R3321 1 + R3322

0 + R3331 0 + R3332

0 + R3341 0 + R3342

[[𝝃]]1 =

2 + X1111+ X2131+ X3121 3 + X1112 + X2132+ X3122

2 3 2

1 1 3

𝝃∗

[[𝒀𝝃]]1 =

[[𝑮𝝃]]1 =

Figure 10: CryptMPL: Client side preprocessing step

To preserve the node features, the client shares the seeds 𝑠𝑝 with
the computing parties𝐶𝑃𝑝 . Each party uses its seed to create matrix
𝝃𝑝 which is used to mask its share JAK𝑝 as JA𝝃 K𝑝 = JAK𝑝 + 𝝃𝑝
(shown in Fig. 9). The parties follow CryptMPL read protocol F𝑆𝑅
and write protocol F𝑆𝑊 to obtain JA∗𝝃 K by executing the message-
passing on on JA𝝃 K. Finally, the computing parties remove the
effect of noise from JA∗𝝃 K to obtain the correct result JA∗K.

During the read operation (Section 4.1), using the seed value
𝑠𝑝 , 𝐶𝑃𝑝 generates matrix X𝑝𝑖 , which is used to mask the share of
the feature matrix from 𝐶𝑃𝑖 . Additionally, 𝐶𝑃𝑝 generates random
values 𝑟𝑝𝑖 and rotates the share of the feature matrix from party
𝐶𝑃𝑖 by 𝑟𝑝𝑖 . During the write operation (Section 4.2), 𝐶𝑃𝑝 generates
Y𝑝𝑖 which is used to mask the share of the feature matrix from
𝐶𝑃𝑖 . Additionally, 𝐶𝑃𝑝 rotates the share of the feature matrix from
party 𝐶𝑃𝑖 by 𝐷𝑝 . We use X𝑝𝑖𝑚𝑛 and Y𝑝𝑖𝑚𝑛 to represent the value
X𝑝𝑖 [𝑚] [𝑛] and Y𝑝𝑖 [𝑚] [𝑛] respectively.

Client-side preprocessing. As described in Section 4.4, the
client executes the message-passing step on the noise matrix 𝝃
to generate 𝝃 ∗. 𝝃 ∗ is shared with the computing parties in A-SS
format, so that they can remove the effect of noise from JA𝝃 K𝑝 .
We illustrate the client-side preprocessing step to generate a share
J𝝃 ∗K1 in Fig. 10. During the read operation, the client simulates the
effect of rotations 𝑟𝑝1 and data masking X𝑝1 on J𝝃 ∗K1. Figure 10
shows the final state of J𝝃 ∗K1 after passing the share through all
parties, assuming 𝑟11 = 2, 𝑟21 = 3 and 𝑟31 = 2. Client completes the
read operation by reading the vector at index (∑P

𝑝=1 (J𝑆K𝑝 + 𝑟𝑝1))
mod 𝑁 + 1 = ((3 + 2) + (2 + 3) + (3 + 2)) mod 4 + 1 = 4 to get
the vector JY𝝃 K1 = [2 + 𝑍11, 3 + 𝑍12], where the cumulative noises,
𝑍11 = X1111 +X2131 +X3121, 𝑍12 = X1112 +X2132 +X3122. Similarly,
the client computes other shares, JY𝝃 K2 and JY𝝃 K3.

For the write operation, the client creates a featurematrixG𝝃 = 0
and writes the read result at index 0 as JG𝝃 [0]K1 = JY𝝃 K1. Then,
it simulates the effect of rotations 𝐷𝑝 and data maskings Y𝑝1 on
JG𝝃 K1. Finally, it gets the share JG𝝃 K1 where JY𝝃 K1 is moved to the
target index

∑P
𝑝=1 𝐷𝑝 = 𝐷 . Here, all values in JG𝝃 K1 are masked

with noise added by all parties. Similarly, client gets other shares
JG𝝃 K2 and JG𝝃 K3.

Thus, the output of message passing on 𝝃 is masked with noise
as J𝝃 K∗𝑝 = JGK𝑝 + R𝑝𝑝 , where JGK𝑝 represents the 𝑝-th party’s
share of the final result if noise were not added and R𝑝𝑝 are the
accumulated noises. To upload the result 𝝃 ∗, client creates different
shares of 𝝃 ∗ as J𝝃 ∗K𝑝 = JGK𝑝 + T𝑝𝑝 , where

∑P
𝑝=1 T𝑝𝑝 [𝑚] [𝑛] =∑P

𝑝=1 R𝑝𝑝 [𝑚] [𝑛].

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

6 4
3 10

15 10
5 1

15 + X1131 10 + X1132

5 + X1141 1 + X1142

6 + X1111 4 + X1112

3 + X1121 10 + X1122

5 + X1141 + X2121 1 + X1142 + X2122

6 + X1111+ X2131 4 + X1112 + X2132

3 + X1121+ X2141 10 + X1122 + X2142

15 + X1131 + X2111 10 + X1132 + X2112

3 + X1121+ X2141 + X3131 10 + X1122 + X2142 + X3132

15 + X1131 + X2111+ X3141 10 + X1132 + X2112+ X3142

5 + X1141 + X2121+ X3111 1 + X1142 + X2122+ X3112

6 + X1111+ X2131+ X3121 4 + X1112 + X2132+ X3122

6 + Z11 4 + Z12

0 0
0 0
0 0

0 + Y1141 0 + Y1142

6 + Z11 + Y1111 4 + Z12 + Y1112

0 + Y1121 0 + Y1122

0 + Y1131 0 + Y1132

0 + Y1131+ Y2141 0 + Y1132+ Y2142

0 + Y1141+ Y2111 0 + Y1142+ Y2112

6 + Z11 + Y1111+ Y2121 4 + Z12 + Y1112+ Y2122

0 + Y1121+ Y2131 0 + Y1122+ Y2132

0 + Y1131+ Y2141 + Y3121 0 + Y1132+ Y2142+ Y3122

6 + Z11 + Y1111+ Y2121 + Y3131 4 + Z12 + Y1112+ Y2122+ Y3132

0 + Y1121+ Y2131+ Y3141 0 + Y1122+ Y2132+ Y3142

0 + Y1141+ Y2111 + Y3111 0 + Y1142+ Y2112 + Y3112

0 + R2211 0 + R2212

12 + R2221 5 + R2222

0 + R2231 0 + R2232

0 + R2241 0 + R2242

0 + R3311 0 + R3312

6 + R3321 5 + R3322

0 + R3331 0 + R3332

0 + R3341 0 + R3342

CP2 CP3
CP1

Secure Read:
Index S = 1

CP1

2 3 2

6 + X1111+ X2131+ X3121 4 + X1112 + X2132+ X3122

Secure Write:
Index D= 2

[[𝒀]]1 =

[[𝑨
𝝃
]]1 =,

[[𝑮]]1=,

1 1 3

0 + R1111 0 + R1112

6 + R1121 4 + R1122

0 + R1131 0 + R1132

0 + R1141 0 + R1142

𝑨
𝝃

∗=

Figure 11: CryptMPL flow at the computing parties

0 + T1111 0 + T1112

2 + T1121 3 + T1122

0 + T1131 0 + T1132

0 + T1141 0 + T1142

0 + T2211 0 + T2212

10 + T2221 2 + T2222

0 + T2231 0 + T2232

0 + T2241 0 + T2242

0 + T3311 0 + T3312

1 + T3321 1 + T3322

0 + T3331 0 + T3332

0 + T3341 0 + T3342

R1111 – T1111 R1112– T1112

4 + R1121– T1121 1 + R1122– T1122

R1131– T1131 R1132– T1132

R1141– T1141 R1142– T1142

R2211– T2211 R2212– T2212

2 + R2221– T2221 3 + R2222– T2222

R2231– T2231 R2232– T2232

R2241– T2241 R2242– T2242

R3311– T3311 R3312– T3312

5 + R3321– T3321 4 + R3322– T3322

R3331– T3331 R3332– T3332

R3341– T3341 R3342– T3342

0 + R1111 0 + R1112

6 + R1121 4 + R1122

0 + R1131 0 + R1132

0 + R1141 0 + R1142

0 + R2211 0 + R2212

12 + R2221 5 + R2222

0 + R2231 0 + R2232

0 + R2241 0 + R2242

0 + R3311 0 + R3312

6 + R3321 5 + R3322

0 + R3331 0 + R3332

0 + R3341 0 + R3342

0 0
11 8
0 0
0 0

CP2 CP3CP1

𝑨∗=

𝝃∗=

𝑨
𝝃

∗=

Figure 12: CryptMPL - removal of noise to get the output
feature matrix

CryptMPL protocols in the cloud. The computing parties𝐶𝑃𝑝
initialize a output feature matrix as JA∗𝝃 K𝑝 = 0.𝐶𝑃𝑝 perform similar
operations on the shares of A𝝃 as the clients do on 𝝃 during the
preprocessing step.

Fig. 11 shows the operations on JA𝝃 K1 to obtain JYK1 after read
operation and JGK1 after the write operation. After executing the
read operation on JA𝝃 K1 for the source index J𝑆K, 𝐶𝑃1 reads the
vector at the updated target index (∑P

𝑝=1 (J𝑆K𝑝 +𝑟𝑝1)) mod 𝑁 +1 =
((3 + 2) + (2 + 3) + (3 + 2)) mod 4 + 1 = 4 to get JYK1. Since JYK1
is obtained by rotation and masking of JA𝝃 K1 with noise from all
parties, the computing parties cannot learn the original index or
values, even if there is collusion among P − 1 parties. Similarly𝐶𝑃2
and 𝐶𝑃3 obtain JYK2 and JYK3 respectively.

During the write operation, each party𝐶𝑃𝑝 sets JG[0]K𝑝 = JYK𝑝 .
Then, 𝐶𝑃𝑝 adds noise 𝑌𝑝𝑖 to 𝑖-th party’s share, rotates it by J𝐷K𝑝 ,
and passes it to the next party. As shown in Fig. 11, 𝐶𝑃1 obtains
JGK1 which is modified by all parties. Due to rotations by

∑P
𝑝=1 𝐷𝑝

mod 𝑁+1 = (1+1+3) mod 4+1 = 2, JYK1 reaches at the destination
index of JGK1. Due to the rotations and noises, the computing
parties cannot learn the original index or values, even if there is
collusion among P − 1 parties. In parallel,𝐶𝑃2 and𝐶𝑃3 obtain JGK2
and JGK3 respectively. Then, the matrix JGK𝑝 is used to update the
output feature matrix for the MPL layer as JA∗𝝃 K𝑝 = JA∗𝝃 K𝑝 + JGK𝑝 .

However, since JA∗𝝃 K is computed on the matrix JA𝝃 K, it is re-
quired to remove the noise. As shown in Fig 12, 𝐶𝑃𝑝 removes the
effect of noise by computing JA∗K = JA𝝃 K − J𝝃 ∗K. Thus, the shares
constitute the correct JA∗K in A-SS domain as JAK∗ =

∑𝑁
𝑝=1JAK∗𝑝 ,

since
∑P
𝑝=1 (R𝑝𝑝 − T𝑝𝑝) = 0. However, the computing parties can

not determine the actual values from P − 1 shares of JA∗K.
Following this approach, we can compute the message-passing

for each edge of the graph. However, we can process multiple edges

in a batch, since secure read and write operation does not reveal
the actual source and destination indices of the edges. For each
batch, the client and parties use different sets of noises to protect
the node features and source-destination indices by observing data
in different batches. To obtain the correct result, the client only
needs to share the initial noise J𝝃 K, overall noise J𝝃 ∗K and the seeds
(to generate rotation amount and noise matrices for each batch) to
the computing parties.

A.2 Extensions of CryptMPL
For simplicity, themain design of CryptGNN focuses on unweighted
and undirected edges in input graphs. Its secure message-passing
protocol, CryptMPL, can be extended to support weighted and
directed edges, as well as to protect the number of edges in the
graph, as discussed below.

Supporting directed edges. An undirected edge (A–B) is rep-
resented in CryptGNN as two directed edges (A→ B and B→ A)
in the edge list. Therefore, supporting directed edges is straightfor-
ward: each edge is simply included as a one-way connection from
the source to the destination node.

Supporting weighted edges. To support weighted edges, the
client needs to upload the list of edge weights, denoted asW, along
with the list of edges, whereW[𝑖] is the weight for the edge from
source node S[𝑖] to destination node D[𝑖]. To protect the weights,
W is represented in A-SS format as JWK.

As discussed in Section 4.1, CryptMPL reads the node feature of
the source node for each 𝑖-th edge as JY[𝑖]K. To apply the weights,
the computing parties multiply the weight JW[𝑖]K by the result
of the read operation JY[𝑖]K. CryptMPL leverages CryptMUL’s
element-wise multiplication protocol to perform this operation,
which requires only one additional round of communication among
the computing parties.

In the data-processing step, the client also multiplies the weight
of each edge by the corresponding noise vector of the source node
in the noise matrix 𝝃 to compute the overall noise 𝝃 ∗. Taking the
weights into account, Eq. 4, 5 and 6 can be modified as follows: Eq. 7
considers the weights to compute the overall noise, Eq. 8 computes
the message-passing on the masked feature matrix and applies the
edge weights, and finally Eq. 9 removes the overall noise to obtain
the correct output feature matrix.

𝝃 ∗ [𝑗] =
∑︁

𝑗 ∈N(𝑖)
W[𝑗] × 𝝃 [𝑗] (7)

A∗
𝜉
[𝑖] =

∑︁
𝑗 ∈N(𝑖)

W[𝑗] × (A[𝑗] + 𝝃 [𝑗]) (8)

A∗ [𝑖] = A∗
𝜉
[𝑖] − 𝝃 ∗ [𝑖] =

∑︁
𝑗 ∈N(𝑖)

W[𝑗] × A[𝑗] (9)

Protecting the number of edges. If a client wants to protect
the number of edges in the graph, it can insert any number of fake
edges (𝑆𝑓 , 𝐷 𝑓), 1 ≤ 𝑆𝑓 , 𝐷 𝑓 ≤ 𝑁 , with weight𝑊𝑓 = 0. In the A-SS
format, the parties cannot determine whether the weight values
are zero, and therefore, fake edges cannot be detected. Moreover,
these fake edges do not affect the overall result, as their weights
are zero. Although fake edges introduce overhead, they can be
processed without increasing the number of communication rounds
by adjusting the batch size.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

A.3 CryptMPL Algorithms
We consider the following variables to be known to all parties for
each graph data uploaded by the client for analysis: (i) the number
of nodes 𝑁 , (ii) the number of edges𝑀 , (iii) the number of features
of each node 𝐾 , and (iv) the number of computing parties P. In the
pseudo codes, we use the following utility functions:
• 𝑟𝑜𝑡𝑎𝑡𝑒 (A, 𝑠𝑧, 𝑘): rotates an matrix A of length 𝑠𝑧 for 𝑘 times
• 𝑖𝑛𝑖𝑡_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑎, 𝑏): returns a matrix of size (𝑎, 𝑏) where all
the entries are zero
• 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (𝑠𝑒𝑒𝑑0, 𝑟): generates a seeds for round 𝑟 from
an initial seed 𝑠𝑒𝑒𝑑0
• 𝑃𝑅𝐹 (𝑐𝑢𝑟_𝑠𝑒𝑒𝑑, (𝑎, 𝑏)): generates a pseudo-random matrix of
size (𝑎, 𝑏) using a seed 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑
• 𝑔𝑒𝑡_𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦 (): returns the ID of the current party
• 𝑠𝑒𝑛𝑑_𝑡𝑜 (𝑝): to send the data to a party with rank 𝑝
• 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑓 𝑟𝑜𝑚(𝑝): to receive the data from a party with rank
𝑝

Preprocessing at the client side This section presents the
algorithm F𝐶𝑁 to calculate the overall noise at the preprocessing
stage on the client side. In Algorithm 3, first, the client generates
seeds for the P computing parties (line 2). Next, the client generates
noise matrices for all parties using the pseudo-random function and
calculates the overall noise 𝝃 ∗ by considering the effect of noise
added in the read stage (line 5-13) and write stage (lines 15-24)
during the processing of𝑀 edges.

Secure Read and Write Protocols with Data Masking In
the main paper (Section 4.1), we present the protocol to access the
feature vector of a source node for an edge in the graph stored in
the secret-shared domain. Algorithm 4 shows the following steps
to be executed by each party 𝐶𝑃𝑖 to read the feature vector of the
source node J𝑆K from the feature matrix JAK while protecting the
shares of JAK using noise 𝝃 .

(1) Generate a random integer 𝑟𝑖 (line 7)
(2) Initialize a matrix JA′K𝑖 = JAK𝑖 and add a noise matrix with

JA′K𝑖 (line 9-10)
(3) Rotate the matrix JA′K𝑖 by 𝑟𝑖 to create JA′′K𝑖 (line 11)
(4) Create a new index 𝑅′′

𝑖
with J𝑆K𝑖 and a random integer (line

12)
(5) Share matrix JA′′K𝑖 and 𝑅′′𝑖 with the next party in the ring,

which stores the data as JA′K𝑖 and 𝑅′𝑖 respectively (line 17-
20).

(6) Follow steps (2)-(5) for P − 1 times. Each party adds noise
to the others’ shares before exchanging the data with other
parties (line 23-24)

Finally, each party accesses the feature from JA′′K𝑖 at index 𝑅′′𝑖
and stores it as JYK𝑖 = JA′′ [𝑅′′

𝑖
]K𝑖 .

Algorithm 3 Preprocessing to create noise, F𝐶𝑁
Input S (Source Indices), D (Destination Indices), Sshares (Shares

of source Indices), Dshares (Shares of destination Indices)
Output 𝝃 ∗ (Overall Noise)

1: seeds← 𝑃𝑅𝐹 (𝑟𝑎𝑛𝑑_𝑣𝑎𝑙𝑢𝑒, (P, 1))
2: 𝝃 ∗← 𝑖𝑛𝑖𝑡_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑁,𝐾)
3: for 𝑟 ← 1 to𝑀 do
4: R← 𝑖𝑛𝑖𝑡_𝑚𝑎𝑡𝑟𝑖𝑥 (P, 1) %Computes the amount of rotation

for each party
5: for 𝑖 ← 1 to P do
6: for 𝑗 ← 1 to P do
7: 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (seeds[𝑗], 𝑟)
8: 𝑿𝒔𝒉𝒂𝒓𝒆 ← 𝑃𝑅𝐹 (𝑐𝑢𝑟_𝑠𝑒𝑒𝑑, (𝑁,𝐾))
9: 𝝃 ∗ [D[𝑟]] ← 𝝃 ∗ [D[𝑟]] + 𝑿𝒔𝒉𝒂𝒓𝒆 [S[𝑟] + R[𝑗]]
10: 𝑝𝑎𝑟𝑡𝑦_𝑟𝑎𝑛𝑘 ← (𝑗 − 𝑖 − 1) mod P + 1
11: R[𝑗] ← R[𝑗] + Sshares [𝑝𝑎𝑟𝑡𝑦_𝑟𝑎𝑛𝑘] [𝑟]
12: end for
13: end for
14: R← 𝑖𝑛𝑖𝑡_𝑚𝑎𝑡𝑟𝑖𝑥 (P, 1) %Computes the amount of rotation

for each party
15: for 𝑖 ← P to 1 do
16: for 𝑗 ← 1 to P do
17: 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (seeds[𝑗], 𝑟)
18: 𝒀𝒔𝒉𝒂𝒓𝒆 ← 𝑃𝑅𝐹 (𝑐𝑢𝑟_𝑠𝑒𝑒𝑑, (𝑁,𝐾))
19: 𝑝𝑎𝑟𝑡𝑦_𝑟𝑎𝑛𝑘 ← (𝑗 + 𝑟) mod P + 1
20: R[𝑗] ← R[𝑗] + Dshares [𝑝𝑎𝑟𝑡𝑦_𝑟𝑎𝑛𝑘] [𝑟]
21: 𝒀𝒔𝒉𝒂𝒓𝒆 ← 𝑟𝑜𝑡𝑎𝑡𝑒 (𝒀𝒔𝒉𝒂𝒓𝒆, 𝑁 ,R[𝑗])
22: 𝝃 ∗ ← 𝝃 ∗ + 𝒀𝒔𝒉𝒂𝒓𝒆
23: end for
24: end for
25: end for
26: return seeds, 𝝃 ∗

Algorithm 4 Secure Read, F𝑆𝑅
Input: JAK (Feature Matrix), J𝑆K (Source index), 𝑐𝑢𝑟_𝑟𝑜𝑢𝑛𝑑

(Current round), 𝑠𝑒𝑒𝑑𝑝 (seed for 𝑝-th party)
Output: JYK (Feature vector at A[𝑆])
1: 𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦← 𝑔𝑒𝑡_𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦 ()
2: A′ ← 𝑐𝑜𝑝𝑦 (JAK𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦)
3: 𝑐𝑢𝑟_𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑎𝑟𝑒 ← J𝑆K𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦
4: 𝑟 ← 𝑔𝑒𝑡_𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ()
5: 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (𝑠𝑒𝑒𝑑𝑝 , 𝑐𝑢𝑟_𝑟𝑜𝑢𝑛𝑑)
6: 𝝃 ← 𝑃𝑅𝐹 (𝑐𝑢𝑟_𝑠𝑒𝑒𝑑, (𝑁,𝐾)), A′ ← A′ + 𝝃 , A′′ ←
𝑟𝑜𝑡𝑎𝑡𝑒 (A′, 𝑁 , 𝑟), 𝑅′′ ← 𝑐𝑢𝑟_𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑎𝑟𝑒 + 𝑟

7: 𝑐𝑢𝑟_𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎← 𝑡𝑢𝑝𝑙𝑒 (A′′, 𝑅′′), 𝑐𝑢𝑟_𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑎𝑡𝑎← 𝑛𝑢𝑙𝑙

8: 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0
9: while 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 < (𝑃 − 1) do
10: 𝑐𝑢𝑟_𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎.𝑠𝑒𝑛𝑑_𝑡𝑜 (𝑛𝑒𝑥𝑡_𝑝𝑎𝑟𝑡𝑦), 𝑐𝑢𝑟_𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑎𝑡𝑎 ←

𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑓 𝑟𝑜𝑚(𝑝𝑟𝑒𝑣_𝑝𝑎𝑟𝑡𝑦)
11: A′ ← 𝑐𝑢𝑟_𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑎𝑡𝑎[0], 𝑅′ ← 𝑐𝑢𝑟_𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑎𝑡𝑎[1]
12: 𝑟 ← 𝑔𝑒𝑡_𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ()
13: 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (𝑠𝑒𝑒𝑑𝑝 , 𝑐𝑢𝑟_𝑟𝑜𝑢𝑛𝑑)
14: 𝝃 ← 𝑃𝑅𝐹 (𝑐𝑢𝑟_𝑠𝑒𝑒𝑑, (𝑁,𝐾)), A′ ← A′ + 𝝃 , A′′ ←

𝑟𝑜𝑡𝑎𝑡𝑒 (A′, 𝑁 , 𝑟), 𝑅′′ ← 𝑐𝑢𝑟_𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑎𝑟𝑒 + 𝑟 + 𝑅′
15: 𝑐𝑢𝑟_𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎← 𝑡𝑢𝑝𝑙𝑒 (A′′, 𝑅′′)
16: 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
17: end while
18: JYK𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦 ← A′′ [𝑅′′ mod 𝑁]
19: return JYK

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Next, we present Algorithm 5 that shows the following steps to
be executed by each party 𝑖 , to write a feature vector JYK at the
target index J𝐷K of a matrix JGK.

(1) Initialize a matrix JGK𝑖 of size (𝑁,𝐾) with a noise matrix
and updates first index of JGK𝑖 with JYK (line 5-6)

(2) Rotate the matrix JGK𝑖 by J𝐷K𝑖 to create JG′K𝑖 (line 7-8)
(3) Share the matrix JG′K𝑖 to the next party, which stores it as

JGK𝑖 (line 13-14)
(4) Follow steps (2) - (3) for P − 1 times. Each party adds noise

to the others’ shares before exchanging the data with other
parties (line 16-17)

Finally, each party has a share JG′K, where the destination index
is updated with a share JYK, and all values of JG′K are masked with
the noise.

Algorithm 5 Secure Write, F𝑆𝑊
Input: JYK (Feature vector), J𝐷K (Destination index), 𝑐𝑢𝑟_𝑟𝑜𝑢𝑛𝑑

(Current round), 𝑠𝑒𝑒𝑑𝑝 (seed for p-th party)
Output: JGK

1: 𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦← 𝑔𝑒𝑡_𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦 ()
2: 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (𝑠𝑒𝑒𝑑𝑝 , 𝑐𝑢𝑟_𝑟𝑜𝑢𝑛𝑑)
3: 𝝃 ← 𝑃𝑅𝐹 (𝑐𝑢𝑟_𝑠𝑒𝑒𝑑, (𝑁,𝐾))
4: G← 𝝃 , G[0] ← G[0] + JYK
5: 𝑐𝑢𝑟_𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑎𝑟𝑒 ← J𝐷K𝑐𝑢𝑟_𝑝𝑎𝑟𝑡𝑦
6: G′ ← 𝑟𝑜𝑡𝑎𝑡𝑒 (G, 𝑁 , 𝑐𝑢𝑟_𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑎𝑟𝑒)
7: 𝑐𝑢𝑟_𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎← G′, 𝑐𝑢𝑟_𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑎𝑡𝑎← 𝑛𝑢𝑙𝑙

8: 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0
9: while 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 < (𝑃 − 1) do
10: 𝑐𝑢𝑟_𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎.𝑠𝑒𝑛𝑑_𝑡𝑜 (𝑛𝑒𝑥𝑡_𝑝𝑎𝑟𝑡𝑦), 𝑐𝑢𝑟_𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑎𝑡𝑎 ←

𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑓 𝑟𝑜𝑚(𝑝𝑟𝑒𝑣_𝑝𝑎𝑟𝑡𝑦)
11: 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (𝑠𝑒𝑒𝑑𝑝 , 𝑐𝑢𝑟_𝑟𝑜𝑢𝑛𝑑)
12: 𝝃 ← 𝑃𝑅𝐹 (𝑐𝑢𝑟_𝑠𝑒𝑒𝑑, (𝑁,𝐾)), G← 𝑐𝑢𝑟_𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑎𝑡𝑎 + 𝝃 , G′

← 𝑟𝑜𝑡𝑎𝑡𝑒 (G, 𝑁 , 𝑐𝑢𝑟_𝑖𝑛𝑑𝑒𝑥_𝑠ℎ𝑎𝑟𝑒)
13: 𝑐𝑢𝑟_𝑠𝑒𝑛𝑑_𝑑𝑎𝑡𝑎← G′

14: 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑝𝑎𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
15: end while
16: return JG′K

Algorithm 6 MPL with Batch, F𝐵𝑎𝑡𝑐ℎ𝐶𝑟𝑦𝑝𝑡𝑀𝑃𝐿
Input:JAK (Feature matrix), JSf K, JDf K (Encrypted source and
destination indices), J𝝃 ∗K (Noise), Sr, Dr (Relative source and

destination indices)
Output: JA∗K (Output feature matrix)
1: 𝑀 ← 𝑙𝑒𝑛𝑔𝑡ℎ(Sr)
2: 𝑅← 𝑙𝑒𝑛𝑔𝑡ℎ(JSf K)
3: JA∗

𝜉
K← 𝑖𝑛𝑖𝑡_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑁,𝐾)

4: for 𝑟 ← 0 to 𝑅 − 1 do
5: 𝑐𝑢𝑟_𝑠𝑒𝑒𝑑 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑠𝑒𝑒𝑑 (𝑠𝑒𝑒𝑑, 𝑟)
6: N′ ← 𝑃𝑅𝐹 (𝑠𝑒𝑒𝑑, (𝑁,𝐾))
7: J𝑠𝑟𝑐𝐼𝑛𝑑K← JSf [𝑟]K
8: srcIndRel← Sr [𝑟 ∗ 𝑏 : 𝑟 ∗ (𝑏 + 1)]
9: JYK← F𝐵𝑎𝑡𝑐ℎ𝑆𝑅 (JAK, J𝑠𝑟𝑐𝐼𝑛𝑑K, srcIndRel)
10: J𝑑𝑒𝑠𝑡𝐼𝑛𝑑K← JDf [𝑟]K
11: destIndRel← Dr [𝑟 ∗ 𝑏 : 𝑟 ∗ (𝑏 + 1)]
12: JGK← F𝐵𝑎𝑡𝑐ℎ𝑆𝑊 (JYK, J𝑑𝑒𝑠𝑡𝐼𝑛𝑑K, destIndRel)
13: JA∗

𝜉
K← JA∗

𝜉
K + JGK

14: end for
15: JA∗K← JA∗

𝜉
K − J𝝃 ∗K

16: return JA∗K

Processing edges in batchesAlgorithm 6 shows how the edges
are processed in batches by each party. To protect the feature matrix,
each party adds different noise matrices to the feature matrix in
each round. For each batch, F𝐵𝑎𝑡𝑐ℎ𝑆𝑅 reads the feature vector of
the encrypted node and uses the relative indices to read the feature
vector of other nodes in the batch (line 7-9). The feature vectors
JYK accessed via read operation are used to update the feature
vectors at the destination nodes of a batch using F𝐵𝑎𝑡𝑐ℎ𝑆𝑊 function
(line 10-12). Specifically, F𝐵𝑎𝑡𝑐ℎ𝑆𝑊 writes the feature vector of the
encrypted node in a batch at the appropriate position of the target
matrix and uses relative indices to update the target matrix (line
13). Finally, the overall noise is removed to get the correct feature
matrix (line 15).

B DETAILED ALGORITHMS OF CRYPTMUL
In this section we present the algorithm F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 described
in Section 5. To convert Beaver triples from M-SS to A-SS format
F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 internally uses F𝑀𝑡𝑜𝐴 , which invokes the following
steps to convert a value𝑊 from M-SS to A-SS format.

(1) Select a pair (J𝑅K, ⟨⟨𝑅⟩⟩) from AM (Alg. 7 Line 1).
(2) Apply Extended Euclidean Algorithm [12] to compute the

inverse of 𝑅 as ⟨⟨𝑅−1⟩⟩ in M-SS format [13] (Alg. 7 Line 2).
(3) Each party computes locally the product of ⟨⟨𝑊 ⟩⟩ and ⟨⟨𝑅−1⟩⟩

(Alg. 7 Line 3) and reveals the ratio 𝛼 (Alg. 7 Line 4).
(4) Each party computes J𝑊 K𝑖 ← 𝛼 × J𝑅K𝑖 to get𝑊 in A-SS

format (Alg. 7 Line 5).
F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 converts each value of Beaver triple from M-SS

format using F𝑀𝑡𝑜𝐴 as shown in Alg. 8.

C CORRECTNESS ANALYSIS
In CryptGNN, during the execution of secure protocols in inference,
parties mask their shares with random noise to protect the data
from adversaries. The protocols also guarantee the correctness of

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 7Multiplicative to Additive Shares, F𝑀𝑡𝑜𝐴
Input: ⟨⟨𝑊 ⟩⟩

Output: Generate additive shares J𝑊 K
1: Pick a pair (J𝑅K, ⟨⟨𝑅⟩⟩) from AM computed in F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟
2: Each party 𝑝 computes locally ⟨⟨𝑅−1⟩⟩𝑝 using Extended Eu-

clidean Algorithm, thereby computing the multiplicative shares
of 𝑅−1.

3: 𝐶𝑃𝑖 computes ⟨⟨𝛼⟩⟩𝑖 ← ⟨⟨𝑊 ⟩⟩𝑖 × ⟨⟨𝑅−1⟩⟩𝑖 .
4: All parties collaboratively recover 𝛼 .
5: 𝐶𝑃𝑖 computes J𝑊 K𝑖 ← 𝛼 × J𝑅K𝑖

Algorithm 8 Generate Beaver Triples, F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴
Input:(⟨⟨𝐴⟩⟩, ⟨⟨𝐵⟩⟩, ⟨⟨𝐶⟩⟩)

Output: Beaver Triples in additive format (J𝐴K, J𝐵K, J𝐶K)

1: J𝐴K← F𝑀𝑡𝑜𝐴 (⟨⟨𝐴⟩⟩)
2: J𝐵K← F𝑀𝑡𝑜𝐴 (⟨⟨𝐵⟩⟩)
3: J𝐶K← F𝑀𝑡𝑜𝐴 (⟨⟨𝐶⟩⟩)

their results by eliminating the effect of noise. In this section, we
provide the correctness analysis of the protocols in CryptGNN.

Correctness of message-passing layer using CryptMPL.
First, we analyze the correctness of CryptMPL without data mask-
ing in a 𝑃-party SMPC setting. As discussed in the main paper
(Section 4), to access the feature vector at the source index of the
feature matrix, each share of the matrix is rotated

∑𝑃
𝑖=1 𝑟𝑖 times, and

F𝑆𝑅 accesses the feature vector at index
∑𝑃
𝑖=1 (J𝑆K𝑖+𝑟𝑖) = 𝑆+

∑𝑃
𝑖=1 𝑟𝑖

(equivalent to accessing the value at index 𝑆 in the original feature
matrix). To update the feature at the destination index, F𝑆𝑊 writes
the intermediate vector JYK at index 0 of the matrix JGK, and it is
rotated overall by

∑𝑃
𝑖=1 𝐷𝑖 = 𝐷 . Thus, JYK reaches the destination

index 𝐷 of JGK, while the vectors in the other indices are 0. Then,
in F𝑆𝐴 each party updates its share of the output feature matrix A∗
with G, which is equivalent to updating the feature vector at index
𝐷 . CryptMPL executes the same operation for all edges, completing
the message passing correctly.

Next, to protect the data exchanged with other parties, each party
masks the feature matrix and intermediate results with random
noise, such that the final feature matrix equals A∗ + 𝝃 ′, where 𝝃 ′
is the error due to the added noise. As the same operations are
performed at the client side on the input noise matrices, the client
can calculate the effect of the overall noise 𝝃 ∗ = 𝝃 ′ and share it
with all the SMPC parties. Therefore, the noise can be removed to
retrieve the correct feature matrix A∗.

Using batching, CryptMPL reads the feature vector at the first
index of a batch, and the feature vectors at the relative indices for
the batch. Similarly, CryptMPL updates the intermediate matrix
G at the first index of a batch and the indices relative to the first
index. Since the first index of a batch can be processed correctly,
reads and writes at relative indices give the correct result.

Correctness of feature transformation layers using Crypt-
MUL. To compute FTLs, CryptGNN uses standard techniques as
described in Section 2.1. In CryptMUL, we propose new techniques
to generate Beaver triples for secure matrix multiplication and

element-wise multiplications in additive secret-shared format (A-
SS), which are used to implement the secure versions of the FTLs.
Other operations in FTLs are straightforward and can be used
without requiring any specialized protocol. Here, we demonstrate
the correctness of the Beaver triples generated in F𝑀𝑎𝑡𝑀𝑢𝑙 and
F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 for secure matrix multiplication and element-wise multi-
plications respectively.

InF𝑀𝑎𝑡𝑀𝑢𝑙 ,F𝐼𝑛𝑖𝑡𝐵𝑒𝑎𝑣𝑒𝑟 follows [20] to generate the initial Beaver
triples in A-SS format as (JAK, JBK, JCK), where A ∈ R𝑁×𝐾 ,B ∈
R𝐾×𝐾

′
,C ∈ R𝑁×𝐾 ′ and A ⊗ B = C. Next, the parties compute the

linear combinations of the rows in the matrix using F𝑅𝑎𝑛𝑑𝐶𝑜𝑚𝑏 to
generate two new matrices A′ and C′, where JA′ [𝑗]K = ∑𝑁

𝑖=1 𝑘 𝑗𝑖 ×
JA[𝑖]K and JC′ [𝑗]K =

∑𝑁
𝑖=1 𝑘 𝑗𝑖 × JC[𝑖]K for 𝑖 ∈ [1, 𝑁], 𝑗 ∈ [1, 𝑁].

The random real values 𝑘 𝑗𝑖 are generated by a pseudo-random
function (PRF). Since, B is fixed, modifying A to A′ and C to C′

using the same linear combination maintains the correctness for
(A′,B,C′).

In F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 , F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 follows [36] to compute the A-SS and
M-SS of a random value 𝑅𝑖 for two parties. For other parties, we
consider the share of J𝑅𝑖K = 0 and ⟨⟨𝑅𝑖 ⟩⟩ = 1, thus the 𝑅𝑖 is correct
in A-SS and M-SS format for 𝑃 parties. Following this approach, we
generate 𝑃 − 1 random values 𝑅𝑖 , 𝑖 ∈ [1, 𝑃 − 1] in A-SS and M-SS
format. Finally, F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟 takes the products of J𝑅𝑖K =

∏𝑃−1
𝑖=1 J𝑅𝑖K

using the pre-computed Beaver triples (generated using [20]) to
compute 𝑅 in A-SS format. It also calculates the products of ⟨⟨𝑅𝑖 ⟩⟩ =∏𝑃−1
𝑖=1 ⟨⟨𝑅𝑖 ⟩⟩ to get the multiplicative share of ⟨⟨𝑅⟩⟩. Thus, F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟

gets a random value 𝑅 which is correct in both A-SS and M-SS
format. For each element-wise multiplication operation, F𝑀𝑠𝐴𝑠𝑃𝑎𝑖𝑟
generates 3 random values 𝑅𝐴, 𝑅𝐵, 𝑅𝐶 in A-SS and M-SS format
following this approach.

As part ofF𝐸𝑙𝑒𝑚𝑀𝑢𝑙 ,F𝐵𝑒𝑎𝑣𝑒𝑟𝑀 generates a Beaver triple (𝐴, 𝐵,𝐶)
in M-SS format. Each party𝐶𝑃𝑝 generates random values ⟨⟨𝐴⟩⟩𝑝 and
⟨⟨𝐵⟩⟩𝑝 , and computes ⟨⟨𝐶⟩⟩𝑝 = ⟨⟨𝐴⟩⟩𝑝 ×⟨⟨𝐵⟩⟩𝑝 . In this way, we get the
correct Beaver triples in the M-SS format as (⟨⟨𝐴⟩⟩, ⟨⟨𝐵⟩⟩, ⟨⟨𝐶⟩⟩), since
⟨⟨𝐶⟩⟩ = ∏𝑃

𝑖=1⟨⟨𝐶⟩⟩𝑖 =
∏𝑃
𝑖=1⟨⟨𝐴⟩⟩𝑖×⟨⟨𝐵⟩⟩𝑖 =

∏𝑃
𝑖=1⟨⟨𝐴⟩⟩𝑖×

∏𝑃
𝑖=1⟨⟨𝐵⟩⟩𝑖 =

⟨⟨𝐴⟩⟩ × ⟨⟨𝐵⟩⟩.
Finally, F𝐵𝑒𝑎𝑣𝑒𝑟𝑀𝑡𝑜𝐴 converts each element of (⟨⟨𝐴⟩⟩, ⟨⟨𝐵⟩⟩, ⟨⟨𝐶⟩⟩)

to A-SS format (J𝐴K, J𝐵K, J𝐶K) using the 𝑅𝐴, 𝑅𝐵, 𝑅𝐶 in A-SS and
M-SS format following the approach in [35], which is proved to be
correct. Thus, F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 gets a correct Beaver triple as the required
format (J𝐴K, J𝐵K, J𝐶K), which can be used for the secure element-
wise multiplication operation.

D EXPERIMENTAL SETUP & ADDITIONAL
RESULTS

In this section, we present the statistics of the graph datasets and
GNN network architecture used in the main paper (Section 7)
to evaluate the performance of CryptGNN system and its proto-
cols. We also present the additional results on the evaluation of
CryptMPL.

D.1 Graph Datasets
Table 4 summarizes the statistics of the graph datasets we use
in our experiments. To evaluate the performance of the Crypt-
GNN system for the graph classification task, we use 3 benchmark
datasets: TUDataset (ENZYMES), TUDataset (PROTEINS) [18], and

CryptGNN: Enabling Secure Inference for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

MPL

Linear ReLU
Dropo

ut
Linear

NN

MPL NN

MPL NN

+

Linear
Batch
Norm

ReLU Linear ReLU

NN

X*

X1
*

X1

X2
*

X2

X1

X2

X3

Softm
ax

Predicted
Class

X

Figure 13: GIN architecture

FAUST [4]. Among these three datasets, the FAUST dataset has
the largest graphs with 6,890 nodes and 41,328 edges. To assess
the performance of the secure message-passing layer CryptMPL,
we employed three additional datasets: Cora, CiteSeer [38], and
PPI [40]. These benchmark datasets are typically well-suited for
node classification tasks and have a substantial number of nodes,
edges, and features. We use these datasets to assess the performance
of our secure message-passing layer on large graphs. We also gener-
ate synthetic data to systematically observe the effects of different
parameters.

Table 4: Graph dataset statistics

Dataset #graphs #nodes #edges #features #classes
ENZYMES 600 32.6 124.3 3 6
PROTEINS 1,113 39.1 145.6 3 2

Cora - 2,708 10,556 1,433 7
CiteSeer - 3,327 9,104 3,703 6

PPI 20 2,245.3 61,318.4 50 121
FAUST 100 6,890 41,328 3 10

D.2 Network Architecture
Figure 13 shows the architecture of the GIN [37] model we use
to evaluate the performance of secure graph classification tasks.
The network comprises 3 message-passing layers stacked one after
another. The outputs of the 3 layers are concatenated and passed
through a linear layer with the ReLU activation function. Finally,
another linear layer with the Softmax activation function predicts
the probability of each class for the sample input graph. A dropout
layer is used in training, which does not have any effect during
inference. The model is trained in private infrastructure and the
parameters for Linear and Batch Norm layers are stored in the cloud
in secret-shared format.

D.3 CryptMPL Results
To evaluate CryptMPL with respect to graph parameters, we use
synthetic data and compare the performance with adjacency-matrix
based implementation using CrypTen. In each experiment, we vary
one parameter. Unless otherwise stated, we use 3 parties in these
experiments and the synthetic graph has 𝑁 = 2000 nodes, 𝐾 = 10
features, 𝐷𝑎𝑣𝑔 = 5 edges per node.
Effect of the number of nodes. We compare the execution time
of CryptMPL with the Baseline using synthetic graphs with dif-
ferent numbers of nodes. Figure 14(a) shows the execution times
at the client and server are not affected much in CryptMPL. The
results show that CryptMPL has superior performance compared to

the Baseline for medium and large-scale graphs with many nodes.
The reason is that the Baseline approach needs to manage a large
adjacency matrix of size (𝑁, 𝑁) and performs large matrix multi-
plications.
Effect of the number of features. We use synthetic graphs with
different numbers of features and compare the execution time of
CryptMPL with the Baseline. Figure 14(b) shows that CryptMPL
performs significantly better than the Baseline. Although the size
of the adjacency matrix in the Baseline does not change, increas-
ing the number of features increases the number of multiplication
operations, which in turn increases the execution time at a higher
rate compared to CryptMPL as shown in Figure 14(b). As 𝑁 , 𝑃 and
𝑀 are constant, the number of addition and rotation operations re-
main constant for CryptMPL. However, its execution time increases
slightly with 𝐾 , as addition is now executed on larger matrices.
Effect of the number of edges. Figure 14(c) shows the execution
time of CryptMPL and the Baseline, when we vary the number of
edges. The results show the execution time increases slightly in the
case of CryptMPL, while the rate of change is low compared to the
Baseline. For the Baseline, the computation and the communication
costs remain the same at the server side, as the size of matrices is
the same. However, the computation cost at the client side increases
to create the adjacency matrix from the list of edges. Increasing the
number of edges in a graph increases the computation cost on the
client side for CryptMPL, as it needs to process more edges on the
noise matrix to compute the overall effect of noise. Similarly, the
server needs to do more computation to execute the MPL on the
masked feature matrix.

D.4 Non-linear layers using CryptMUL
We compare the execution time of the Sigmoid function, which
requires secure multiplications, between the implementations using
CrypTen and CryptMUL’s protocol F𝐸𝑙𝑒𝑚𝑀𝑢𝑙 . We generate a list
of 1000 random values X and measure the overall execution time
to compute JZK = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (JXK) for a different number of parties.
We observe that the execution time of CrypTen and CryptMUL is
almost the same, since both approaches have similar computation
and communication costs. However, the protocol using CryptMUL
ismore secure since it does not require a trusted server as CrypTen.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

20 50 100 200 500 1000 2000
N

100

101

102

103

Ti
m

e
(m

illi
se

co
nd

s)

CryptMPL_Server CryptMPL_Client Baseline_Server Baseline_Client

20 50 100 200 500 1000 2000
N

100

101

102

103

Ti
m

e
(m

illi
se

co
nd

s)

(a) Variable 𝑁

1 5 10 20 50 100
K

101

102

103

Ti
m

e
(m

illi
se

co
nd

s)

(b) Variable 𝐾

1 5 10 20 50 100
M/N

101

102

103

Ti
m

e
(m

illi
se

co
nd

s)

(c) Variable 𝐷𝑎𝑣𝑔

Figure 14: Effect of different parameters of graph data (Y-axis is log-scaled)

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background on GNN and Cryptographic Primitives
	2.2 Related Work

	3 Threat Model and System Overview
	4 CryptMPL
	4.1 Reading the feature vector of a source node
	4.2 Writing messages to the destination node
	4.3 Updating the feature matrix
	4.4 Putting things together with preprocessing

	5 CryptMUL
	5.1 Secure matrix-multiplication
	5.2 Secure element-wise multiplication

	6 System Analysis
	6.1 Security Analysis
	6.2 Overhead Analysis

	7 Evaluation
	7.1 Overall CryptGNN Performance
	7.2 CryptMPL Results
	7.3 CryptMUL Results

	8 Discussion
	9 Conclusion
	References
	A Detailed Description of CryptMPL
	A.1 A Simple Example
	A.2 Extensions of CryptMPL
	A.3 CryptMPL Algorithms

	B Detailed Algorithms of CryptMUL
	C Correctness Analysis
	D Experimental Setup & Additional Results
	D.1 Graph Datasets
	D.2 Network Architecture
	D.3 CryptMPL Results
	D.4 Non-linear layers using CryptMUL

