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ABSTRACT

The revenue of online display advertising in the U.S. is projected to
be 7.9 billion U.S. dollars by 2022. One main way of display adver-
tising is through real-time bidding (RTB). In RTB, an ad exchange
runs a second price auction among multiple advertisers to sell each
ad impression. Publishers usually set up a reserve price, the lowest
price acceptable for an ad impression. If there are bids higher than
the reserve price, then the revenue is the higher price between the
reserve price and the second highest bid; otherwise, the revenue
is zero. Thus, a higher reserve price can potentially increase the
revenue, but with higher risks associated. In this paper, we study
the problem of estimating the failure rate of a reserve price, i.e.,
the probability that a reserve price fails to be outbid. The solution
to this problem have managerial implications to publishers to set
appropriate reserve prices in order to minimizes the risks and opti-
mize the expected revenue. This problem is highly challenging since
most publishers do not know the historical highest bidding prices
offered by RTB advertisers. To address this problem, we develop a
parametric survival model for reserve price failure rate prediction.
The model is further improved by considering user and page inter-
actions, and header bidding information. The experimental results
demonstrate the effectiveness of the proposed approach.

CCS CONCEPTS

+ Mathematics of computing — Survival analysis; « Theory
of computation — Computational advertising theory;

“The author is also with the Department of Computer Science, New Jersey Institute of
Technology, USA.
Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08....$15.00
https://doi.org/10.1145/3292500.3330729

Chong Wang '
S&P Global
New York, New York
chong.wang@spglobal.com

Yi Chen
New Jersey Institute of Technology
Newark, New Jersey
yi.chen@njit.edu

KEYWORDS
Computational Advertising; Header Bidding; Survival Analysis

ACM Reference Format:

Achir Kalra, Chong Wang, Cristian Borcea, and Yi Chen. 2019. Reserve Price
Failure Rate Prediction with Header Bidding in Display Advertising. In The
25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD °19), August 4-8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3292500.3330729

1 INTRODUCTION

The revenue of online display advertising in the U.S. is projected
to be 7.9 billion U.S. dollars by 2022, and it has become the most
critical revenue source for online publishers [9]. Display advertising
comes in the form of banner ads, rich media, and more.

In addition to assigning
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ad impression selling (step 1 is an improvement that will be dis-
cussed after the basic process). For each ad impression, the publisher
first determines a reserve price, the lowest price acceptable for an
ad impression (step 2). Then, the publisher sends the impression
information (e.g. user profile, page metadata) and the reserve price to
an ad exchange (step 3). An ad exchange, denoted as adx in the rest
of this paper, is a digital marketplace that enables advertisers and
publishers to buy and sell advertising space, often through real-time
auctions. Adx requests bids from advertisers (step 4). Most RTB ad
exchanges use the second-price auction model (step 5), where the
highest bidder wins if the bidding price is higher than the reserve
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price. The price paid is the higher between the second-highest bid
and the reserve price [17]. If there is no bidding price higher than
the reserve price, then the auction fails. If there is a winner in the
auction (step 6), the winner’s ad is shown as an ad impression.

An effective strategy of setting the reserve price can significantly
increase publishers’ revenue. Figure 2 illustrates the three RTB cases,
based on the relationship among the reserve price r, the highest
bid b1, the second highest bid b, and the revenue generated.

e In Case 1, r < by < by, the revenue is bs.

o In Case 2, the publisher increases the reserve price r such that
ba < r <y 1; the revenue will be r, which gives a revenue boost
of r — by compared to case 1.

o In Case 3, by < r, the publisher increases r too much, such that
no advertisers in the auction are willing to bid more than r; the
publisher obtains no revenue.

The objective of publishers is to set r as close as possible to by but
never higher than b;. Then, the revenue will be boosted to nearly
b1. However, since publishers do not know a priori b; before an
adx auction, it is difficult to set an optimal r.

To solve the problem of accurately predicting the reserve price
value, we leverage header bidding, a recent improvement to the basic
RTB process. Before selling impressions in ad exchanges, publishers
send impression information to multiple header bidding partners to
conduct an impression header auction (step 1 in Figure 1). Header
auctions adopt first-price auction, instead of second-price auction
as in RTB [8]. Without header bidding, advertisers can only bid
leftovers after more premium channels, e.g., sponsored lines. With
header bidding, advertisers have the benefit of looking first at the
entire ad inventory: When a page loads, header bidding partners
are called for all impressions in the pageview. Publishers can have
more transparency into how much their impressions are worth and,
thus, design adjust the reserve prices to increase revenue.

A simple strategy
to benefit from header
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auction, the impres-
sion goes to the RTB winner; otherwise, it goes to the header bidding
winner. If neither RTB nor header bidding has a winner, it triggers
for a house ad or unfilled impression. This rarely happens in real-
ity. Hence, no matter which case in Figure 2 occurs, the revenue
is guaranteed to be max(hy, by). However, this is not optimal: it
can be improved by predicting a better reserve price r’, such that
by < r’ < by. Thus, the expected revenue can be further boosted to
max(hi,r’). On the other hand, increasing r’ increases the chance
that r’ fails to be outbid in adx and can be risky.

Figure 2: Impression Revenue in the
Second Price Auction

The goal of this paper is to propose effective machine learning
models for reserve price failure rate prediction: Given information
about an ad impression and a reserve price, the model outputs the
probability that no advertisers in the RTB ad exchange will outbid
the reserve price. The outcome of our approach has managerial
implications for publishers to set appropriate reserve prices to
maximize the expected revenue. It can also help publishers to find a
balance between taking risks and maximizing revenue. For example,
a conservative publisher may prefer to set a reserve price with a
20% failure rate, while a risk lover may set it to 80%.

Reserve price failure rate prediction is challenging due to three
reasons. First, publishers do not know the bidding prices offered by
RTB advertisers in past auctions, making the prediction of bidding
price (and hence of the reserve price) for a target ad impression very
challenging. We term this challenge censorship because the pub-
lishers are “censored” from knowing the highest bidding price; they
just know the revenue generated by each ad impression (i.e., the
second highest bid). There are two types of censorship in publishers’
impression transaction data: left-censoring, where the unobserved
highest adx bid is less than the known reserve price; and right-
censoring, where the unobserved highest adx bid is greater than
the observed revenue. Second, publishers do not have access to
personally identifiable information of users, and thus do not know
about users as much as advertisers and Demand-side Platforms
(i.e. systems that help advertisers to buy impressions in real time).
Without user profile information, it is difficult for publishers to
predict the advertisers’ bidding price in order to set the reserve
appropriately. Third, although intuitively header bidding informa-
tion can help with RTB prediction, it is not clear how to utilize
this information. To the best of our knowledge, there is no existing
work using header bidding in RTB-related predictions.

To address the censorship challenge, we propose to use paramet-
ric survival models. Unlike binary regressions, which cannot handle
datasets with both censored and uncensored data, parametric sur-
vival models are more generic and can handle any dataset with or
without uncensored data [13]. To deal with the challenge of limited
user profile information, we use latent vectors to capture feature
characteristics and add factorized pairwise interaction between
users and pages in the objective function. For the header bidding
challenge, we exploit the similarities between header bidding and
RTB in adx and propose to improve the prediction model using
header bidding regularization.

The paper presents empirical results of the proposed approach
on a real dataset from Forbes Media, a large online publisher, which
logs daily ad impression transaction data. The concordance index
(C-Index) is the standard performance measure for model assess-
ment in survival analysis. We develop a customized C-Index for
datasets containing only left- and right-censored instances. The
experiments show that our models with the Weibull distribution
significantly outperform the baselines, i.e., a Kaplan-Meier model
and a logistic regression with observed reserve price/revenue as
the feature. Adding interaction factorization and header bidding
regularization reduces log-loss compared with the best baseline by
67%.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3.3 presents the proposed parametric
survival model for reserve price failure rate prediction; this section



also includes a description of the real-life dataset, and the two
improvements using pairwise interaction tensor factorization and
header bidding regularization. Experimental results and insights
derived from these results are presented in Section 4. The paper
concludes in Section 5.

2 RELATED WORK

As a significant problem for online publishers, reserve price opti-
mization has been studied in the past few years. Li et al. [15] evalu-
ated the impact of reserve price on publisher revenue in real-time
bidding. Yuan et al. [28] proposed a simple game-theoretic-based
approach to obtain an optimal reserve price on the publishers’ side.
Mobhri et al. [18] assumed that both the highest bids and the second
highest bids are observed by publishers, and then proposed a ma-
chine learning approach to optimize publishers’ real-time bidding
revenue. Cesa-Bianchi et al. [5] showed a regret minimization algo-
rithm for setting the reserve price in online second-price auctions.
Austin et al. [4] described a scalable linear-function-based reserve
price optimizer for real-time bidding. Medina et al. [19] assumed
that bids are observed by publishers, and directly optimize the rev-
enue by reducing reserve price optimization to the standard setting
of prediction under squared loss, which can be conveniently mini-
mized. Xie et al. [27] came up with an efficient method of improving
the publisher revenue by mainly focusing on adjusting the reserve
price for the high-value impressions. Jauvion et al. [11] proposed
a new online learning algorithm based on classical multi-armed
bandit strategies. However, these existing studies assume that pub-
lishers know the highest winning bids and the second highest bids
of historical impressions, which is not the case for most publishers.
Most of them evaluate their approaches using either synthetic data
(e.g., [18] and [19]) or ad exchange data (e.g., [4]). In contrast, this
paper addresses the problem based on censored data available to
most publishers. Furthermore, our evaluation is done using real-life
data from a large publisher.

Existing related work that takes censorship into account may
have datasets that contain different combinations of right-, left-,
and/or uncensored data, due to different practices and platforms
used among publishers. Alcobendas et al. [3] proposed a game-
theoretic-based model to optimize reserve prices in the context
of online video advertising with left- and uncensored data. The
model considers information about auctions (e.g., the number of
bids higher than the reserve price) as input. However, such infor-
mation is typically only available for the publishers that own ad
exchanges (e.g., Google and Yahoo). Chahuara et al. [6] adopted a
relatively simple non-parametric regression model of auction rev-
enue based on an incremental time-weighted matrix factorization.
The authors used an online extension of the Aalen’s Additive model
to estimate the first and second bids’ distribution. However, this
method cannot handle left- and right-censored data at the same
time. In addition, the method has to discretize reserve prices due
to the limitation of the Aalen’s Additive model. In practice, feature
binning is tricky and makes the model inflexible, as it is hard to de-
termine the boundary of bins. Also, the method considers only user
IDs and placement IDs. Thus, the model cannot make predictions
for infrequent users [14].

In addition to reserve price optimization, another family of re-
lated work is the prediction of winning prices at the advertisers’
side [7, 25, 26, 29]. These studies predict the adx bid of a given
impression for an advertiser or a Demand-Side Platform (DSP) to
win the ad opportunity. Reserve price optimization and RTB win-
ning price prediction share a common feature: both evaluate the
values of impressions. However, the algorithms in existing studies
on winning price prediction do not make probabilistic predictions.
Also, advertisers and DSPs typically know the highest bids (i.e.,
their own bids) when they win the impressions. However, most
publishers are not able to access the highest adx bids. This makes
the problem more challenging.

Compared with the existing studies, our work predicts the re-
serve price failure rate using data available at the publishers’ side,
which does not include details about the adx auctions. Our method
is applicable to data with any type of censorship faced by a publisher.
In addition, our proposed model outputs probabilistic predictions.

3 RESERVE PRICE FAILURE PREDICTION

This section first introduces our real-life dataset (Section 3.1) and
discusses the data censorship (Section 3.2). It then presents our
parametric survival model (Section 3.3) with factorized pairwise
interactions (Section 3.4) and header bidding regularization (Sec-
tion 3.5).

3.1 Real-Life Datasets

We use two datasets collected in one day in April 2018 at Forbes
Media’s website: 1) NetworkImpressions and 2) NetworkBackfil-
IImpressions !. These two datasets are provided by Google Dou-
bleClick for Publishers (DFP) [1]. The data preparation is illustrated
in Figure 3. The final dataset contains above 16 million impressions
with 2.6 million unique users and 132 thousand unique pages.
NetworkImpressions records the impressions which were allo-
cated to direct sale or header bidding winners. Headerbidding-won
impressions failed to receive higher bids during RTB than the high-
est header bids (which is the reserve price of the headerbidding-won
impressions in our dataset). Unlike headerbidding-won, directsale-
won impressions were not sent to RTB. They were never bid by
advertisers. Therefore, we filter out direct sale impressions by their
order IDs. We get nearly 6 million headerbidding-won impressions.
NetworkBackfilllmpressions
records the impres-
sions which were al-

Final Dataset

headerbidding-won
(~6 million)

adx-won
(~10 million)

Figure 3: Data Preparation
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header bids 2. In addition, it records the revenue and reserve price of
each impression. We obtain about 10 million adx-won impressions.
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!The description and data samples are available at https://support.google.com/
admanager/answer/1733124

The default data report does not contain header bids. This information added by the
publisher.
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Although our method is based on Google DFP datasets (which
has a dominant market share), it can be adopted by a large majority
of the other publishers as well. This is because DFP’s competitors
(e.g., OpenX [2]) provide similar datasets, and most publishers face
the same restrictions/limitations in the datasets (e.g., censorship).

3.2 Data Censorship

The dataset has two types of impressions: adx-won and headerbidding-
won. In the rest of the paper, they are referred to as reserve-won
and header-won, respectively. Without loss of generality, they are
subdivided into three censorship cases in Figure 4.

header-won is sim-
ilar to case 3 in Fig-
ure 2. The only dif-
ference is that, with
header bidding avail-

highest bid
P —
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" reserve price

) highest bid
(i.e., revenue)

to decrease the re-
serve price, so that it
may be outbid in adx,
and then the revenue
will be the higher
value between the rev-
enue from adx and
header bidding. Since the highest bid was not disclosed to pub-
lishers, the impressions are left-censored at the reserve prices.

reserve-wonl corresponds to case 1 in Figure 2. The reserve
price and the revenue (i.e., the second highest bid) are known, but
the highest bid is unknown. Reserve-won1 impressions are right-
censored at the second highest bid.

reserve-won2 corresponds to case 2 in Figure 2. Only the rev-
enue (i.e. the reserve price) is known. That is, reserve-won2 impres-
sions are right-censored at the reserve price.

For both Reserve-won1 and reserve-won2, to increase revenue, the
publisher wants to increase the reserve price to be close to (but not
exceed) the highest bid, which will then be the revenue [20].

Figure 4: Three censorship cases. The
black variables are observed, while
the grey ones are unobserved.

3.3 The Proposed Parametric Survival Model

Problem Definition. Given an ad impression A; and a reserve price
ti, the goal is to predict the probability that no advertiser is willing to
bid higher than t; during RTB.

Model Selection. Since our data are censored, it is natural to use
survival analysis models [24]. The goal of survival analysis is to
estimate the probability of a time-to-event of interest for a new
instance with feature predictors. For instance, it can answer a ques-
tion such as how likely it is that a patient has a disease at a certain
point in time. To apply survival analysis to our case, we can make
an analogy: one impression is an instance, which has a set of fea-
tures. The event of interest is that all advertisers bid lower than the
reserve price (i.e., reserve price failure). The time to event is the
reserve price. With the increase in the reserve price (i.e., time to
event), the probability of reserve price failure (i.e., event of interest)
also increases. When the reserve price is $0, it is most likely that

the event of reserve price failure does not occur. If the reserve price
is high (e.g., $100), it can hardly receive a higher bid.

One important feature of survival analysis models is that they
can output probabilistic predictions. In our application, they can
both infer the optimal reserve price and tell how likely it is that
a better bid can be received from advertisers. This is helpful for
publishers that would like to perform revenue optimization and/or
find the trade-off between risk and return.

Survival analysis models have been used in many applications [24].
As a widely used semi-parametric survival model, Cox proportional
hazards model [13] assumes that the baseline hazard is a function
of time to event ¢, but does not involve the feature predictors X.
Thus, it is not necessary to specify the form of the baseline hazard
(i.e., how the probability of event occurrence is changing with t).

Although the Cox proportional hazards model is popular due to
its flexibility, it is insufficient for our application for several reasons.
First, it does not directly accommodate left- or interval-censored
data (it does handle right-censor data, though). Second, in model
inference, partial likelihood requires observed data whose times
to event are known. However, our dataset consists of both right-
and left-censored data and does not contain any observed data,
i.e., the highest adx bids of all impression are not accessible on the
publishers’ side. In addition, we need to deal with continuous time
points because the reserve price is a continuous variable. Also, as
the size of the impression data is huge, our model should be able to
be learned stochastically.

The Proposed Method. We propose to use the parametric likeli-
hood of a parametric survival model since it can easily accommo-
date left- and right-censored data or uncensored data. Furthermore,
parametric survival models are more general compared to binary
regressions, which cannot handle data containing both censored
and uncensored instances [13].

A parametric survival model is one in which the outcome is
assumed to follow a known distribution family. In other words, it
assumes the probability that no advertiser bids higher than a reserve
price follows a certain distribution. Commonly used distributions
include Weibull, Exponential, and Log-logistic. Individual instances
typically share the same family of distributions of similar form
but with different parameters. Distribution parameter values are
determined based on the feature predictors of instances.

Left- and right-censoring can be considered as special cases
of interval-censoring (with zero as the lower bound and positive
infinity as the upper bound). Hence, without loss of generality,
given the ith ad impression, we aim to predict the probability that
the reserve price ¢; fails within the interval [a;, b;].

b;
P(a; <t; <bj) = / f(t)dt (1)

where P(a; < t; < b;) is the probability that the true failure
reserve price t; is between a; and b;. f(t) is the probability density
function (PDF) of the specified distribution. a; and b; are the lower
bound and the upper bound of the reserve price for the ith ad
impression, respectively. Our particular cases are handled as follows
(refer to Figure 4):
o For header-won impressions (i.e., left-censoring), a; is zero and

b; is the historical reserve price because the true failure reserve

price t; must be less than the observed reserve price b;. For the ith



impression, we want to maximize the probability that a reserve
price t; fails within the interval [0, b;], i.e., P(0 < t; < b;).

e For reserve-won impressions (i.e., right-censoring), a; is the his-
torical revenue and b; is positive infinity because the true fail-
ure reserve price t; must be higher than the observed revenue
a;. For the ith impression, we want to maximize the probabil-
ity that a reserve price t; fails within the interval [a;, +0], i.e.,
P(a; < t; < +00).

If a publisher’s data have uncensored impressions (i.e., the high-

est bids bgl) are observed), we can use P(t; = bgl)) = f(t).

Taking Weibull distribution as an example, its PDF is f(t) =

B

F (é)ﬁ_1 e_(é)ﬁ, where « is the scale parameter and f is the shape
parameter. Both a and f are positive. Typically, for parametric
survival models, the shape parameter f is pre-specified and held fix.
The scale parameter a can be re-parameterized in terms of feature

predictors X; and regression coefficients W;:

m
a; = wg + WjXjj (2)
Jj=1

where m is the number of impression features reflecting the user,

the page, and the context, which are defined next.
Features. The features we consider come from several aspects:

e User: User information plays an important role when adver-
tisers/DSPs are assessing ad opportunities. Most publishers do
not have access to personally identifiable information. Hence,
we model users by 1) user IDs, 2) state-level location, 3) operat-
ing system and Internet browser, 4) network bandwidth, and 5)
devices.

o Ad Placement: The ad placement sizes and positions determine
if the ads are visible and thus convertible [22]. A small ad place-
ment at the bottom of the page may not receive high adx bids.
We model ad placements by 1) ad unit size, e.g., “123x324” and 2)
ad position (On the publisher’s page template, each ad slot has a
unique name represents its position).

o Page: Page information reflects user interests and the informa-
tion that a user is looking for at the moment. It may also impact
impression valuation. We model pages by 1) page URLs, 2) chan-
nels, e.g., “business” and “lifestyle,” 3) sections, i.e., sub-channels,
and 4) the trending status of the page (i.e., if the page is labeled
as trending by the publishers’ editors).

Context: 1) hour of the day and 2) referrer URLs, i.e., which page

the current page request originated from.

All of these features are constant over the reserve prices. In
other words, no matter what the reserve price is, the feature values
of a given impression do not change. Since these features are all
categorical, we convert them to dummy variables.

Inference. The log-likelihood function is defined as:

N
InL= )" [y:lng; + (1 - ;) In(1 - §)] - (3)

i=1
where y; is the ground truth of the ith impression. If the ith
impression is a header-won impression, y; = 1; otherwise, it is 0. §;
is the prediction of the reserve price failure rate. The corresponding
success rate can be calculated by 1 — 7J;. r; is the reserve price for

header-won impressions and to the revenue (i.e., second highest
bid) for adx-won impressions.

Given Equation 1, §j; is calculated by §; = foti f(t)dt. As Figure 4
shows, if the ith impression is header-won, ¢; is its reserve price. If
it is reserve-won, t; is its revenue. f(t) is the PDF of a distribution.
The scale parameter ; in f(t) is calculated by Equation 2.

An example weight r; is assigned to each training impression i to
represent how important the impression is. In our application, pub-
lishers care more about high-value impressions [27]. For example,
correctly predicting that an impression values $5 can bring more
revenue to a publisher than correctly predicting that one values
$0.05. Thus, r; serves as a weight in Equation 3.

Therefore, to learn w, we can minimize the negative log-likelihood,
where the log-likelihood function is as below:

N
w" = argmin {— Z lyilngi + (1 —yi) In(1 - g;)] - ri} (4)

i=1

3.4 Pairwise Interaction Tensor Factorization

To improve the prediction performance, we further consider the
interactions between users and pages. Indeed, the adx bids on an
impression may be jointly determined by the user, the page, and the
ad placement. Matrix factorization-based predictive models, e.g.,
Factorization Machines [21, 23], have been used at the advertisers’
side to optimize RTB [12]. Considering pairwise interactions be-
tween features using latent vectors captures better the features’
characteristics and thus boosts the performance of reserve price
failure rate prediction. It can also overcome data sparsity, which is
especially challenging for interactions between users and pages.

We add a term of pairwise interaction tensor factorization to
Equation 2.

m m m
a; = wo + Z wjXjj + Z Z (vj,vh)xijxih (5)
Jj=1

J=1 h=j+1

where m is the number of feature predictors. v; describes the
Jjth feature with k factors. k is a hyperparameter that defines the
dimensionality of the factorization. (v, vy,) is the dot product of
two vectors of size k, i.e., (vj,vp) := Zjlﬁzl V. f Uk f

To alleviate the data sparsity and the cold-start problem [16],
we assign occasional users and infrequent pages, whose occur-
rences are less than 5 times, to dummy features “rare_user” and
“rare_page”, respectively. In our dataset, 39.04% users and 74.94%
pages are involved in at least 5 impressions.

Adding factorization does not change substantially Equation 3
for log-likelihood. The only part the needs to be revised is how to
compute the scale parameter « in the distribution PDF f(t), i.e.,
replace Equation 2 with Equation 5.

Adding factorization increases the number of parameters that
need to be learned from data, especially if k is large. Thus, we add
an L2 penalty term, i.e., A; |w||? and A; ||v||?, at the end of Equa-
tion 4 to avoid overfitting [21]. This limits w and v from becoming
extremely large or small. 1; and A, are pre-specified parameters
controlling the strength of regularization. In this case, the new loss



function is shown in Equation 6.

N
W= argmin{— D lyilng; + (1= y)In(1 = )] - ri

w,v i=1

+ Ay lIwlf* + 2z [Iv]I? } (6)

3.5 Header Bidding Regularization

Before undergoing a traditional RTB auction, an ad impression is
offered for sale in a header auction. In fact, the same advertiser may
join both auctions. Therefore, it can be assumed that header bids
are pseudo-randomly sampled from adx bids. The header bids that
publishers receive from header bidding partners are the maximums
in the corresponding sample groups. Since header bidding uses
first-price auctions, the highest header bid in each header bidding
partner is known, which can shed insights on advertiser’s bids in
the later RTB auctions.

This section discusses how to leverage the known bids in header
bidding to improve reserve price failure rate prediction. One option
is to add the winning header bids as feature vectors in the prediction
model. However, in our dataset, the publisher receives winning
header bids from five header bidding partners, who may not provide
bids for every impression; this often happens due to network latency
that prevents publishers from receiving header bids on time. Due
to the presence of a substantial number of missing values, directly
adding these bids into feature vectors may not work.

Instead, we propose
to use header bidding

1 i reserve price
information to reg-
. header-won: | ——— I
ularize model learn-
hbmm hbmax

ing. The intuition is

shown in Figure 5. evense

The minimum and the T
reserve-won1&2: L 1

maximum header bids hb by
of an impression are

first identified. They Figure 5: Two Cases for Header Bid-

are denoted as hbmin ding Regularization
and hbpgx, respec-

tively. For a header-

won impression, its reserve price was set too high. The advertisers
in the RTB auction were willing to pay less than the reserve price set
by the publisher (i.e., left-censoring), while the advertisers in header
bidding auctions were willing to pay at least hbpin. If hbmin is less
than the reserve price, it can be assumed that likely advertisers in
the RTB auction were also willing to pay more than hb,;, ;. Thus, as
Figure 5 shows, the header-won impression is strictly left-censored
at the reserve price, while the highest adx bid probably is more than
hbmin (ie., loosely right-censored at hb,,p). For a reserve-won im-
pression, its reserve price was set too low. The advertisers in the
RTB auction were willing to pay more than the revenue received by
the publisher (i.e., right-censoring), while the advertisers in header
bidding auctions were willing to pay at most hbpgx. If Abmay is less
than the revenue, it can be assumed that likely advertisers in the
RTB auction were willing to pay less than hbp, 4x. Thus, as Figure 5

min

shows, the reserve-won impression is strictly right-censored at the
revenue, while it is loosely left-censored at hbp, gx-.

Thus, we add a term on header bidding regularization to the
log-likelihood, i.e., from Equation 3 to Equation 7:

N
InL= " [yilng; +(1-y;)In(1 =gl - ri
i=1
+ 3 Iiaemy - [0- g™ +1-In(1 - §7"'™)] - ri
+ Aq - I{AiEE} . [l . lng;nax +0- ln(l - g;naX)] B
N
= > lyilngi + (1 =) In(1 - §)] -
i=1
+ 23 Iiasemy - In(U=97) - ri + Ag - Ia,epy - In g7 -ri (7)

In Equation 7, the first term is the same as in Equation 3. I{ 4, ¢ p1}
is an indicator variable, whose value is 1 if the impression A; is
in the header-won impressions H; otherwise, it is 0. g;’“’" is the
prediction at the minimum header bid of impression A; (as shown in

the first case of Figure 5). It is calculated by y”lf”i” = /Ohbmi" f(t)dt.

Since we assume adx advertisers are likely to bid more than
hbmin (i.e., survive at hbpy,iy,), the closer y;’”’” is to 0, the better. A3
is the strength of the regularization for header-won impressions.
A large A3 encourages the model to predict correctly at hbpyip.
I{4,cE) is an indicator variable, whose value is 1 if A; is in the
reserve-won impressions E; otherwise, it is 1. §["®* is the prediction

at the maximum header bid of A; (as shown in the second case of

Figure 5). It is calculated by g7~ = fohbmax f(t)dt.

Since we assume adx advertisers likely pay less than hby, 4y, the
closer §"%* is to 1, the better. They are all weighted by r;. A4 is the
strength of the regularization for reserve-won impressions. A large
A4 encourages the model to predict correctly at hbp,qyx-

The loss function is revised from Equation 6 to Equation 8.

N
W= argmin—{z lyilngi + (1 =) In(1 = gi)] - 1

w.v i=1

+ A3 - I{AieH} -In(1 - gl(nin) i+ Ag - I{A,—EE} . h’lglmax < T
+ A1 [Iwll? + Az [|v]|? } ®)

4 EVALUATION

4.1 Experimental Dataset and Ground Truth

The dataset has been described in Section 3.1. The dataset is col-
lected over one day in April 2018 on Forbes.com. All header-won
and reserve-won impressions are shuffled. Training data, validation
data, and test data are randomly picked by 8:1:1. Nearly 13 million
impressions are in the training data, and 1.6 million impressions
are in the validation/test data.

Test impressions are also weighted by r;, as it was already de-
scribed for training data in Section 3.3. r; is set to the reserve price
if the ith impression is header-won or the revenue (second highest
bid) if reserve-won.

We consider reserve price failure rate prediction as a classifica-
tion problem. Our model outputs the probability that no advertisers
will outbid a reserve price for an impression. The ground truth is



available in our dataset; it is known for each ad impression with a
reserve price whether it is header-won or reserve-won.

4.2 Implementation

The proposed parametric survival model is implemented using
Tensorflow. The experiments are run on a desktop with i7 3.60Hz
CPU and 32GB RAM. The computation is sped up using NVIDIA
GeForce GTX 1060 6G GPU. Running 5 epochs usually takes 5-6
hours depending on the parameter setting. In practice, the training
phase can be offline. The prediction of an impression is done in less
than 100ms, which demonstrates that the prediction phase can be
deployed as an online process.

The training goal is to minimize the log-loss. Since the large
training dataset does fit the memory, the optimizer we adopt is
Stochastic Gradient Descent (SGD) with a learning rate of 1073,

Considering the training speed and memory consumption, we
set the training batch size to 2048. Although using smaller batch
sizes, in theory, can speed up convergence, it may also lead to longer
training time for one epoch due to more I/O with the GPU. In this
experiment, we find a batch size of 2048 is a good trade-off between
convergence and training time for one epoch. The training process
usually can converge at the second epoch.

To avoid overfitting, across all 10 epochs, the model that performs
the best on the validation data is applied to the test data.

The parameter values are empirically set: A; and A, (introduced
in Section 3.4) are both set to 1077, They control the complexity
of the feature weights, w, and the complexity of the weights for
feature latent vectors, v. A4 (introduced in Section 3.5) and A5 are set
to 107%. They control the strength of header bidding regularization
for header-won and reserve-won impressions, respectively.

4.3 Experimental Metrics

Accuracy computes the percentage of the test instances correctly
predicted at the reserve prices (for header-won impressions) or the
revenues (for reserve-won impressions). Higher values are better.

Log-Loss is widely used in probabilistic classification. It penalizes
a method more for being both confident and wrong. logloss =
—ﬁ Zﬁl [yilog(§;) + (1 — y;i)log(1 — §;)], where N is the number
of test impressions. §; is the probabilistic prediction and y; is the
ground truth (either 0 or 1). Lower values are better.

Concordance-Index (C-Index) [10] is a well-recognized mea-
sure of discrimination for models that predicts a time-to-event
and equals the proportion of impression pairs in which the pre-
dicted event probability is higher for the subject who experienced
the event of interest than that of the subject who did not.

The original C-Index requires uncensored instances. However,

our dataset contains censored instances: either left- or right-censored.

Figure 6 shows the four relationships of any pair of impressions, i.e.,
< Aj, Aj >.In the first case, A; is left-censored (i.e., header-won),
while A; is right-censored (i.e., reserve-won). As it is known that
Aj’s reserve price t; failed and A;’s reserve price ¢; was outbid, we
can expect that 1 > §; > 7 > 0, where §; is the reserve price
failure rate of A;. The failure rates of < A;, Aj > are comparable.
In the second case, both are left-censored because their reserve
prices are higher than the (unobserved) highest adx bid prices. The
highest bid of A;, t;’, is within [0, t;). The highest bid of Aj, t;, is

within [0, tj). In the case of t;” < t;/ < t; < t3, we may expect
0 < §; < J; < 1because tp — t" > t; — t1’. In other words, §; is
farther from its highest bid price than g;. Thus, §; should be closer
to 1. However, in the case of ;" < t; < 2" < tp, we expect §; > §j;
because t2 —ty < t; —t1’. Since t;” and t»” are censored, The failure
rates of < Aj, Aj > is not comparable. Likewise, the third and the
fourth cases are also not comparable on failure rates.

Thus, we create a customized C-Index based on the original one:

cindex:ﬁ Z Z Lgisgy )

él AL AjeR

where L and R are the set of left- and right-censored impressions,
respectively. The customized C-Index only considers the first case,
which is the only comparable one. Higher values are better.

This customized C-Index
provide a measure that con-

event=1  event=0
siders only the test instance . 0
pairs whose relationships
are known. Along with log- i
loss, it is complementary 5 1
for the data in which the event=0  event=0,
highest bids are far away 4 Y
from the observed reserve event=0 event=1

Not Comparable

t 4

prices/revenues, since the
observed reserve prices/revenues
are no longer reliable. Since
the customized C-Index only
considers one case (refer to
Figure 6), it may be hacked by a naive method that always outputs
low failure rates for large reserve prices and large failure rates for
low reserve prices. Therefore, in the experiments, we evaluate the
model using C-index along with log-loss and accuracy.

In our experiments, we ran each test three times and reported
the averages.

Figure 6: Pairwise relationships

4.4 Comparison Systems

Observed Reserve Price/Revenues (OR). The simplest way to
predict failure rates is to use reserve prices as the only feature in
the model. Thus, we build a logistic regression with one feature:
reserve prices for header-won and revenues for reserve-won.
Kaplan-Meier (KM): Kaplan-Meier [13] is an extensively-used
non-parametric statistic used to estimate the survival function from
lifetime data. We slightly modify it: 4 = 1~ [T, <, (1 - Z—;)
where t; is the reserve price/revenue of the ith test instance. t; is a
price less than ;. d; is the number of impressions that failed to be

sold at ¢;. nj is the number of impressions that did not fail at ¢;.

4.5 Comparison of Different Distributions

The proposed parametric survival model requires the assumption
of a distribution of the reserve price failure rate. The distribution
type can impact the prediction performance. In practice, publishers
can plug in commonly-used distributions for survival analysis and
pick the one with the best performance [13]. We evaluate the per-
formance of Exponential, Weibull, and Log-Logistic distributions.
Section 3.3 described how Weibull distribution is used. The PDFs of
Exponential and Log-Logistic distributions are f(t) = ae™%? and
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f() = g . (é)ﬁ_l] /[(1 + (é)ﬂ)z], respectively. The scale param-
eter, @, can be learned from the training data. It is re-parameterized
in terms of feature predictors X; and regression coefficients W;
(Equation 2). The optimal shape f, is found through experiments.

The performance of different distributions and different shape
parameters is presented in Figure 7. The performance is reported
for the proposed model with factorization and header bidding regu-
larization. As the Exponential distribution has no shape parameter,
its performance does not change across different fs. As one can
see, the performance of the Exponential distribution is not as good
as Weibull and Log-Logistic.

The Log-Logistic obtains its lowest log-loss (0.2248) when § = 0.7
and the highest accuracy (0.8988) when f = 0.8. However, f§ = 0.7
and 0.8 make the model with the Log-Logistic misclassify more test
instances of the “sure case” (case 1 in Figure 6). f = 0.1 leads to the
highest C-Index, while its log-loss and accuracy are unsatisfactory:
B = 0.1 tends to favor impressions with large reserve prices rather
than those with low reserve prices (in terms of lowest failure rates).

The Weibull distribution obtains the lowest log-loss (0.2274)
when f = 0.3, the highest accuracy (0.8978) when f = 0.2, and the
highest C-Index (0.8615) when f = 0.1. The Weibull parametric
survival model with a small § (e.g., 0.2) can obtain outstanding per-
formance for all three metrics. Thus, in the rest of the experiments,
we use the Weibull distribution with f = 0.2 as the model setting.

4.6 Comparison of Different Dimensionalities

In Section 3.4, each feature is represented by a k-length latent vector
that carries characteristics of the feature. k is an important parame-
ter which can significantly impact model performance. In theory, a
larger k has better representation and results in a more complex
model; however, it has a higher chance to overfit. Dimentionality k
is usually determined through experiments.

The results are shown in Figure 8. They indicate that, with the
increasing in vector dimensionality, the performance on the test
data generally improves. The reason is that longer latent feature

vectors can better capture the signals in the training data so as to
improve model complexity. In addition, the performance of log-loss
and accuracy increases fast when k grows from 40 to 60. After 60, the
growth slows down and even reduces. This is because most signals
in the training data have been captured, and further increasing k
results in overfitting. C-Index also follows such a trend. In addition,
we observe that k = 100 leads to a jump when compared with
k = 90. The possible reason is that k = 100 may happen to correctly
predict many test instances in the first case of Figure 6, which
increases the customized C-Index. Finally, we notice that there is
no single k that results in best performance for all three metrics:
When k = 80, we get the lowest log-loss in the test data. k = 90
leads to the highest accuracy. k = 100 wins the C-Index test.

Publishers can select the k based on their objectives: Log-loss
can make balance between ad revenue and failure risk. Accuracy
maximize the total number of impressions that are correctly clas-
sified. C-index can be used when the observed reserve prices and
revenues are believed to be very off from the actual highest bids.

Since minimizing the overall log-loss is the training objective in
Equation 8, we set k = 80 in the rest of the experiments.

4.7 Overall Comparison

We compare the proposed model with two baselines: KM and OR.
For our model, we use three versions: the plain parametric survival
model param-surv, the model with interaction factorization param-
surv-f, and the model with both pairwise interaction factorization
and header bidding regularization param-surv-fhb. All use Weibull
distribution with § = 0.2.

Table 1 presents the results. All three versions of our model
outperform the two baselines. Among the three version, param-
surv-fhb is the best.

The C-Index values of the two baselines are all zero because: 1)
KM makes predictions based on the percentages of impressions
whose reserve prices that are less than a given price have already
failed. As the overall failure rate increases with the increase of the



Log-Loss | Accuracy | C-Index
KM 1.5762 0.5495 0.0
OR 0.6883 0.5486 0.0
Param-surv 0.2425 0.8880 0.8532
Param-surv-f 0.2305 0.8953 0.8577
Param-surv-fhb 0.2266 0.8972 0.8583

Table 1: Comparison for all impressions

Log-Loss | Accuracy | C-Index
KM 1.5766 0.5493 0.0
OR 0.6881 0.5487 0.0
Param-surv 0.2438 0.8879 0.8533
Param-surv-f 0.2311 0.8946 0.8573
Param-surv-fhb | 0.2186 0.9011 0.8597

Table 2: Comparison for impressions with header bids only

reserve price, KM always “thinks” an impression with a higher
reserve price has a higher failure rate (i.e., case 1 in Figure 6 never
happens). 2) Likewise, OR is a linear model. It learns from the data
that the failure rate is positively correlated with the reserve price.
It always gives a higher reserve price a greater failure rate than a
lower reserve price.

The param-surv model has good performance and clearly outper-
form the baselines. Adding interaction factorization, param-surv-f
reduces the log-loss by 5% because latent feature vectors can better
capture the regularities in the training data and overcome data spar-
sity compared to one-hot encoding. Furthermore, utilizing header
bidding to regularize the model, param-surv-fhb can reduce the
log-loss by additional 1.7% from param-surv-f.

Header bidding regularization is only applicable on impressions
with header bids. To fully present its effect, we filter out impression
without header bids from the test set. The results are shown in
Table 2, and they demonstrate that Param-surv-fhb has a larger
performance improvement compared with the other models.

5 CONCLUSIONS

This paper proposes a parametric survival model to predict the
failure rate of the reserve price of an online display ad impres-
sion in an ad exchange auction. The model is further augmented
by user-page pairwise interaction tensor factorization and header
bidding factorization. We also develop a customized C-Index for
datasets containing only left- and right-censored instances. The ex-
perimental results show that the proposed models with the Weibull
distribution significantly outperforms a Kaplan-Meier model and
a logistic regression with observed reserve price/revenue as the
feature. Adding factorized interaction and header bidding regu-
larization further boost performance. Our model can be adopted
by the majority of online publishers because similar data can be
conveniently collected on most publishers’ platforms.
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