
Cooperative Computing in Sensor Networks

Liviu Iftode, Cristian Borcea, and Porlin Kang
Division of Computer and Information Sciences

Rutgers University
Piscataway, NJ, 08854, USA

{iftode, borcea, kangp}@cs.rutgers.edu

Abstract

We envision that during the next decade the ad-
vances in technology will make sensor networks more
powerful. Therefore, they will become part of a larger
class of networks of embedded systems that have suf-
ficient computing, communication, and energy re-
sources to support distributed applications. The cur-
rent software architectures and programming mod-
els are not suitable for these new computing environ-
ments.

We present a distributed computing model, Co-
operative Computing, and the Smart Messages soft-
ware architecture for programming large networks of
embedded systems. In Cooperative Computing, dis-
tributed applications are dynamic collections of mi-
gratory execution units, called SmartMessages, work-
ing to achieve a common goal. Virtually, any user-
defined distributed application can be implemented us-
ing ourmodel. To illustrate this flexibility, we describe
the implementation, using Smart Messages, of two
previously proposed applications for sensor networks,
SPIN and Directed Diffusion. The simulation results
for these applications together with micro-benchmark
results for our prototype implementation demonstrate
that Cooperative Computing is a viable solution for
programming networks of embedded systems.

1. Introduction

As the cost of embedding computing becomes
negligible compared to the actual cost of goods,
there is a trend toward incorporating computing
and wireless communication capabilities in most of
the consumer products. Therefore, we believe that
the next generation of computing systems will be
embedded, in a virtually unbounded number, and
dynamically connected. Although these systems will

penetrate every possible domain of our daily life,
the expectation is that they will operate outside our
normal cognizance, requiring far less attention from
the human users than the desktop computers to-
day.

The first illustration of these systems that has
received considerable interest in the last couple of
years are sensor networks [12, 10, 11]. These net-
works have severe resource limitations in terms of
processing power, amount of available memory, net-
work bandwidth, and energy. We envision, however,
that during the next decade sensor networks will
become part of a larger class of networks of em-
bedded systems (NES) that have sufficient comput-
ing, communication, and energy resources to sup-
port distributed applications. For instance, there
are already companies that propose computer sys-
tems embedded into cars or video cameras which are
able to communicate to each other [3, 2]. For some
of these networks, such as a networks of intelligent
cameras performing object tracking over a large ge-
ographical area, it might be beneficial to perform
local computations and to cooperate in order to ex-
ecute a global task. They may perform sophisticated
filtering of data at a node that acquired an image,
or even distributed object tracking rather than run-
ning a centralized algorithm at a server. The chal-
lenge that we face is how to program NES, namely,
what the appropriate computing model is, and what
system support is necessary to execute distributed
applications in these networks.

NES pose a unique set of challenges which makes
traditional distributed computing models difficult
to employ in programming them. The number of
devices working together to achieve a common goal
are orders of magnitude greater than those seen so
far. These systems are heterogeneous in their hard-
ware architectures since each embedded system is
tailored to perform a specific task. Unlike the In-



ternet, NES are typically deployed in environments
void of human attention, where it is unacceptable to
expect a human to hit a “reset” button to recover
from a failure. NES are inherently fragile, with node
and connection failures being the norm rather than
the exception. The availability of nodes may vary
greatly over time; the nodes can become unreach-
able due to mobility, depletion of energy resources,
or catastrophic failures.

The nodes in NES communicate through wireless
network interfaces. Hence, they can communicate
directly only with nodes within their transmission
range. Similar to most ad hoc networks, the sepa-
ration between hosts and routers disappears (i.e.,
each node has to perform routing). However, the
scale and heterogeneity encountered in NES as well
as different application requirements preclude the
existence of a common routing support. Therefore,
the flexibility to use multiple routing algorithm in
the same network is desirable.

The applications running in NES target specific
data or properties within the network, not individ-
ual nodes. From an application point of view, nodes
with the same properties are interchangeable. Fixed
naming schemes, such as IP addressing, are inappro-
priate in most situations. The need to target specific
data or properties within the network raises the is-
sue of a different naming scheme with dynamic bind-
ings between names and node addresses. A naming
scheme based on content or properties is more ap-
propriate for NES than a fixed naming scheme [9].

We propose a distributed computing model, Co-
operative Computing, and a software architecture
for NES based on execution migration. Cooperative
Computing applications consist of migratory exe-
cution units, called Smart Messages (SMs), work-
ing together to accomplish a distributed task. SMs
are user-defined distributed programs (composed of
code, data, and execution control state) that mi-
grate through the network searching for nodes of
interest (i.e., nodes on which the program needs to
run) and execute their own routing at each node
in the path. We believe that distributed comput-
ing based on execution migration is more suitable
for NES than data migration (message passing) due
to the volatility and dynamic binding of names to
nodes specific to these networks. Cooperative Com-
puting provides flexible support for a wide variety
of applications, ranging from data collection and
dissemination to content-based routing and object
tracking.

Nodes in the network support SMs by provid-
ing: (1) a name-based shared memory (tag space)

for inter-SM communication and access to the host
system, and (2) an architecturally independent en-
vironment for SM execution. SMs are self-routing,
namely, they are responsible for determining their
own paths through the network. SMs name the
nodes of interest by properties and self-route to
them using other nodes as “stepping stones”. Ap-
plications in Cooperative Computing are able to
adapt to adverse network conditions by changing
their routing dynamically.

To validate the Cooperative Computing model
we have designed and implemented a prototype by
modifying Sun Microsystem’s Java KVM (Kilobyte
Virtual Machine) [1]. We report micro-benchmark
results for this prototype running over a testbed
consisting of Linux-based HP iPAQs equipped with
802.11 cards for wireless communication. These re-
sults indicate that Cooperative Computing is a fea-
sible solution for programming real world applica-
tions. For larger scale evaluation, we have developed
a simulator that executes SMs and allows us to ac-
count for both execution and communication time.
In this simulator, we have implemented two previ-
ously proposed applications for data collection and
data dissemination in sensor networks, Directed Dif-
fusion [12] and SPIN [10]. The simulation results
show that our model is able to provide high flexi-
bility for user-defined distributed applications while
limiting the increase in the response time to at most
15% over the traditional non-active communication
implementations.

The rest of this chapter is organized as follows.
The next section describes Cooperative Comput-
ing. Section 3 presents the node architecture for
our the model. In Section 4, we discuss the de-
tails of Smart Messages, and Section 5 presents the
API for Cooperative Computing. Section 6 shows
micro-benchmark results for our prototype imple-
mentation. Section 7 describes the applications im-
plemented using SMs, while their simulation results
are presented in Section 8. Section 9 discusses re-
lated work. We conclude in Section 10.

2. The Cooperative Computing
Model

Cooperative Computing is a distributed comput-
ing model for large scale, ad hoc NES. In this model,
distributed applications are defined as dynamic col-
lections of migratory execution units, called Smart
Messages (SM), that cooperate in achieving a com-
mon goal. The execution of an SM is described in
terms of computation and migration phases. The ex-



ecution performed at each step is determined by the
particular properties of that node. On nodes that
present interest to the current computation, the SM
may read and process data. On intermediate nodes,
the SM executes only its routing algorithm. During
migrations, SMs carry mobile data, the code miss-
ing at destination, and a lightweight execution state.

Nodes in the network cooperate by providing an
architecturally independent programming environ-
ment (virtual machine) for SM execution and a
name-based shared memory (tag space) for inter-
SM communication and interaction with the host
system. SMs along with the system support pro-
vided by nodes form the the Cooperative Comput-
ing infrastructure which allows programming user-
defined distributed applications in NES.

In our model, a new distributed application can
be developed without a priori knowledge about the
scale and topology of the network, or the specific
functionality of each node. Placing intelligence in
SMs provides this flexibility and also obviates the
issue of implementing a new application or proto-
col in NES, which is difficult or even impossible us-
ing conventional approaches [9].

SMs are resilient to network volatility. Over time,
certain nodes may become unavailable due to mo-
bility or energy depletion, but SMs are able to adapt
by controlling the routing. SMs can carry multiple
routing procedures and choose the most appropriate
one based on the conditions encountered in the net-
work. Using this feature, SMs can discover routes
to nodes of interest even in adverse network condi-
tions.

Moving the execution to the source of data im-
proves the performance for applications that need to
process large amounts of data. For example, instead
of transferring large size images through the net-
work for an object tracking application, an SM can
perform the analysis of the images at the nodes that
acquired them. Thus, it reduces the network band-
width and energy consumption, and in the same
time, it improves the user-perceived response time.
The impact on performance of transferring code can
be limited by caching code at the nodes.

Figure 1 shows a simple application that illus-
trates the novel aspects of computation and com-
munication in Cooperative Computing. The appli-
cation performs object tracking over a large area
(e.g, a campus, airport, or urban highway system)
using a network of mobile robots with attached cam-
eras [16]. In the figure, the target is represented by
a person that moves across a given geographical re-
gion. A user can inject the tracking SM into any

Migrates Back
Response Smart Message
Tracking Completes and

Inject Tracking Smart Message Camera Used Just For Routing

Camera That Performs Tracking

Tracking Smart Message

Response Smart Message

Figure 1: Distributed Object Tracking Using Coop-
erative Computing

node of the network. The SM migrates to a node
that acquired an image of a possible target object,
analyzes this image, and then it may decide to fol-
low the object. The network maintains no routing
infrastructure, and the SM is responsible for deter-
mining its path to cameras that detected the object.
The SM can use the direction of motion and geo-
graphical information to “chase” the object. Once
the SM arrives at a new node that has a picture
of the object, it generates a task to further ana-
lyze the object and its motion. The SM may mi-
grate to neighbor nodes to obtain pictures of the
object from a different angle or lighting conditions.
When the tracking completes, the SM generates a
response SM that will transport the gathered infor-
mation back to the user node.

3. Node Architecture

The goal of the SM software architecture is to
keep the support required from nodes in the net-
work to the minimum, placing intelligence in SMs
rather than in individual nodes. Figure 2 shows the
common system support provided by nodes for Co-
operative Computing. The admission manager re-
ceives incoming SMs, decides whether or not to ac-
cept them, and stores these messages into the SM
ready queue. The code cache stores frequently used
code to reduce the amount of traffic in the net-
work. The virtual machine (VM) acts as a hard-
ware abstraction layer for scheduling and executing
tasks generated by incoming SMs. The tag space is
a name-based shared memory that stores data ob-
jects persistent across SM executions and offers a
unique interface to host’s OS and I/O system.

3.1. Admission Manager

To prevent excessive use of its resources (energy,
memory, bandwidth), a node needs to perform ad-
mission control. Each SM presents its resource re-



Migration
Smart MessageSmart Message

Arrival

Smart Messages
Ready Queue

Admission
Manager

Virtual
Machine

Code
Cache Space

Tag

Figure 2: Node Architecture

quirements within a resource table. The admission
manager is responsible for receiving incoming mes-
sages and storing them into the SM ready queue,
subject to admission restrictions.

3.2. Code Cache

Commonly, the applications executing in NES
have a localized behavior, exhibiting spatial and
temporal locality. Therefore, we cache frequently
used SM code in order to amortize over time the
initial cost of transferring the code through the net-
work.

3.3. Virtual Machine

The virtual machine (VM) schedules, executes,
and migrates SMs. To migrate an SM, the VM cap-
tures the execution state and sends it along with the
code and data to the next hop. The VM at the desti-
nation will resume the SM from the instruction fol-
lowing the migration invocation. The VM also en-
sures that an SM conforms to its declared resource
estimates; otherwise, the SM can be removed from
the system.

3.4. Tag Space

Each node that supports SMs manages a name-
based shared memory, called tag space, consisting
of tags that are persistent across SM executions.
The tag space contains two types of tags: applica-
tion tags which are created by SMs, and I/O tags
which are provided by the system. The I/O tags de-
fine the basic hardware of the node and provide SMs
with a unique interface to the local OS and I/O sys-
tem. SMs are allowed to read and write both types
of tags, but they can create or delete only applica-
tion tags.

Figure 3 illustrates the structure of application
and I/O tags. The identifier is the name of the tag
and is similar to a file name in a file system. This
identifier is used by SMs for content-based node
naming. The access of SMs to tags is restricted

I/O Tag

Application Tag

Identifier Access Control Information Pointer to I/O Handler

LifetimeIdentifier Access Control Information Data

Figure 3: The Structure of Tags

based on the access control information associated
with each tag. For application tags, the VM asso-
ciates the access control information carried by the
SM that created the tag (i.e., the owner of the tag).
For I/O tags, the owner of the device sets the ac-
cess control information 1. Application tags and I/O
tags differ in terms of functionality and lifetime. Ap-
plication tags offer persistent memory for a limited
lifetime (i.e., application tags are still “alive”, for
a certain amount of time, after the SMs that cre-
ated them have finished the execution at the local
node); after this time interval, the tags expire, and
the node reclaims their memory. I/O tags, on the
other hand, are permanent and provide a pointer to
an I/O handler (i.e., a system call or an external
process) which is capable of serving I/O requests.
Below, we list all the possible utilizations of tags:

• Naming: SMs name the nodes of interest using
tag identifiers.

• Data storage: An SM can store data in the net-
work by creating its own tags.

• Data exchange and data sharing: Exchanging
data through the tag space is the only commu-
nication channel among different SMs.

• Routing: SMs may create routing tags at vis-
ited nodes to store routing information in the
data portion of these tags.

• Synchronization: An SM can block on a spe-
cific tag pending a write of this tag by another
SM. Once the tag is written, all SMs blocked
on it are woken up and made ready for execu-
tion.

• Interaction with the host system: An SM can
issue commands to, or request data from the
host OS and I/O devices using I/O tags.

1 More information about access control, protection do-
mains, and SM security in general can be found in [27].



4. Smart Messages

SMs are execution units which migrate through
the network to execute on nodes of interest and
route themselves at each node in the path toward
a node of interest. SMs are comprised of code and
data sections (referred to as “bricks”), a lightweight
execution state, and a resource table. The code and
data bricks can be dynamically used to assemble
new, possibly smaller SMs. The ability to incor-
porate only the necessary code and data bricks in
the new SMs can reduce the size of these SMs, and
consequently, the amount of traffic in the network
(i.e., the code and data carried by SMs are divided
into bricks solely for this purpose). The execution
state contains the execution context necessary to re-
sume the SM after a successful migration. The re-
source table consists of resource estimates: execu-
tion time, tags to be accessed or created, memory
requirements, and network traffic. These resource
estimates set a bound on the expected needs of an
SM at a node; they are used by the admission man-
ager to make the admission decision.

The SM computation is embodied in tasks. Dur-
ing its execution, a task may modify the data bricks
of the SM as well as the local tags to which it has ac-
cess. It can also migrate, create new SMs, or block
on tags of interest. A collection of SMs cooperat-
ing toward a common goal forms a distributed ap-
plication.

4.1. Smart Message Life Cycle

Each SM has a well defined life cycle at a node:
(1) it is subject to admission control, (2) upon ad-
mission, a task is generated out of SM’s code and
data bricks and scheduled for execution, and (3) af-
ter completion at a node, the SM may terminate
or may decide to migrate to other nodes of inter-
est.

4.1.1. Admission. To avoid unnecessary re-
source consumption, the admission manager exe-
cutes a three-way handshake protocol for trans-
ferring SMs between neighbor nodes. First, only
the resource table is sent to destination for admis-
sion control. If the SM admission fails, the task will
be informed, and it can decide on subsequent ac-
tions.

If the SM is accepted, the admission manager
checks, using the code bricks’ IDs (computed off-
line by applying a hash function on the code itself),
whether the code bricks belonging to this SM are
cached locally. Then, it informs the source to trans-

fer only the missing code bricks (i.e., these code
bricks will also be cached upon arrival).

4.1.2. Scheduling and Execution. Upon ad-
mission, an SM becomes a task which is scheduled
(in FIFO order) for execution. The execution is non-
preemptive; new SMs can be accepted, but they
will not be dispatched for execution until the cur-
rent SM terminates. An executing SM can yield the
VM, however, by blocking on a tag. The execution
time is bounded by the estimated running time pre-
sented during admission (i.e., the VM may termi-
nate an SM that does not respect the admission
contract).

We use a non-preemptive scheduling for three
reasons. First, the execution time of SMs is usu-
ally short (many times a node is used merely as
a “stepping stone” en-route to a node of interest).
Thus, context-switching would incur too much over-
head with respect to the total execution time of
the SM. Second, there is no need to support multi-
programming for interactive programs (unlike tra-
ditional computer systems, embedded systems com-
monly operate unattended). Third, the communi-
cation always terminates the current SM (i.e., the
only form of communication in Cooperative Com-
puting is a migration invocation), and consequently,
the idea of using multiple threads in one appli-
cation to overlap communication and computation
does not make sense for SM programs. On the other
hand, non-preemptive scheduling makes inter-SM
synchronization and sharing particularly simple to
implement.

4.1.3. Migration. If the current computa-
tion does not complete at the local node, the
task may continue its execution at another node.
The current execution state is captured and mi-
grated along with the code and data bricks. Since
a task accesses only mobile data and tags, we
have been able to implement an efficient migra-
tion, where only a small part of the entire execution
context is saved and transferred through the net-
work. Essentially, we transfer the instruction
and stack pointers for all the stack frames cor-
responding to the current task. It is important
to notice that migration is explicit (i.e., the pro-
grammers call a “migration” primitive when
needed), and that data transferred during a mi-
gration is specified by the programmer as data
bricks.



Category Primitives
Tag Space Operations createTag(tag name, lifetime, data); deleteTag(tag name);

readTag(tag name); writeTag(tag name, value);
SM Creation createSMFromFiles(program files);

createSM(code bricks, data bricks); spawnSM();
SM Synchronization blockSM(tag name, timeout);
SM Migration migrateSM(tag names, timeout); sys migrate(next hop);

Table 1: Cooperative Computing API

4.2. Smart Message Self-Routing

SMs are self-routing, i.e., they are responsible
for determining their own paths through the net-
work. There is no system support required by SMs
for routing, with the entire process taking place at
application level. An SM names its destinations in
terms of tag identifiers and executes its routing al-
gorithm at each node in the path. SMs may cre-
ate routing tags at intermediate nodes in the net-
work to store routing information. If routing infor-
mation is not locally available, an SM may create
other SMs for route discovery and block on a rout-
ing tag. A write on this tag unblocks the SM, which
will resume its migration. Since tags are persistent
for their lifetime, the routing information, once ac-
quired, can be used by subsequent SMs, thus amor-
tizing the route discovery effort.

Each SM has to include at least one routing brick
among its code bricks. A single routing algorithm,
however, might not always reach a node of interest
in the presence of highly dynamic network configu-
rations. Therefore, an SM can carry multiple rout-
ing algorithms and change them during execution
according to the current network conditions. For in-
stance, an SM can use a proactive routing algorithm
in a stable and relatively dense network and an on-
demand algorithm in a volatile and sparse network.
In this way, the SM may complete even if the net-
work conditions change significantly during its ex-
ecution. A complete description of the self-routing
mechanism can be found in [5].

5. Programming Interface

The API for the Cooperative Computing model,
given in Table 1, provides simple, yet powerful prim-
itives. SMs can access the tag space, dynamically
create new SMs, synchronize on tags, and migrate
to nodes of interest.

createTag, deleteTag, readTag, and write-
Tag. These operations allow SMs to create, delete,

or access existing tags. As mentioned in Section 3,
these operations are subject to access control. The
same interface is used to access the I/O tags: SMs
can issue commands to I/O devices by writing into
I/O tags, or can get I/O data by reading I/O tags.

createSMFromFiles, createSM, and
spawnSM. An SM is created by injecting a
program file at a node; this program calls cre-
ateSMFromFiles with a list of program file names
to build the new SM structure. An SM may use cre-
ateSM during execution to assemble a new SM
from a subset of its code and data bricks. A cre-
ateSM call is commonly used to create a route
discovery SM when routing information is not lo-
cally available. An SM that needs to clone it-
self calls spawnSM; this primitive returns true in
the “parent” and false in the “child” SM. Typi-
cally, spawnSM is invoked when the current com-
putation needs to migrate a copy of itself to nodes
of interest while continuing the execution at the lo-
cal node. A newly created SM is inserted into the
SM ready queue.

blockSM. This primitive implements the
update-based synchronization mechanism. An
SM blocks on a tag waiting for a write. To pre-
vent deadlocks, blockSM takes a timeout as param-
eter. If nobody writes the tag in the timeout in-
terval, the VM returns the control to the SM. A
typical example is an SM that blocks on a rout-
ing tag while waiting for a route discovery SM to
bring a new route.

migrateSM and sys migrate. The migrateSM
primitive implements a high level content-based mi-
gration, provided usually as a library function. It al-
lows applications to name the nodes of interest by
tag names and to bound the migration time. When
migrateSM returns normally (no timeout), the SM
is guaranteed to resume its execution at a node of
interest. In case of timeout, the SM regains the con-
trol at one of the intermediate nodes in the path.
Figure 4 presents an example of a typical SM which
uses migrateSM. For instance, this SM can be used



1 Typical_SM(tag){
2 do
3 migrateSM(tag, timeout);
4 <do computation>
5 until(<quality of result>);
6 migrateSM(back, timeout);
7 }

Figure 4: Code Skeleton for Typical Smart Message

in the object tracking application described in Sec-
tion 2. The SM migrates to nodes hosting the tag
of interest and executes on these nodes until a cer-
tain quality of result is achieved. When this is done,
the SM migrates back to the node that injected it
in the network.

The migrateSM function implements routing us-
ing routing tags, the low level primitive called
sys migrate, and possibly other SMs for route dis-
covery. An SM can choose among multiple mi-
grateSM functions which correspond to differ-
ent routing algorithms. The sys migrate primi-
tive is used to migrate SMs between neighbor
nodes. The entire migration protocol of captur-
ing the execution state and sending the SM to the
next hop is implemented in sys migrate.

6. Prototype Implementation and
Evaluation

We have implemented our SM prototype in Java
over Linux, thus harnessing well developed and
supported Java application development tools and
knowledge base 2. Specifically, we have modified Sun
Microsystem’s KVM (Kilobyte Virtual Machine) [1]
since it has a small memory footprint (i.e., as lit-
tle as 160 KB, which makes it suitable for resource
constrained devices) and its source code is publicly
available.

The SM API is encapsulated in two Java classes:
SmartMessage and TagSpace. For efficiency, we have
implemented the API as Java native methods. We
have also implemented our own serialization mech-
anism since KVM does not support serialization.
Besides the KVM interpreter thread, we have in-
troduced two additional threads for admission con-
trol and local code injection. The design of the SM
computing platform is not specific to any hardware
or software environment. It can be implemented on

2 The SM software distribution is freely available at
http://discolab.rutgers.edu

any virtual machine (e.g., Mate [19], Scylla [25]),
any language, or underlying operating system.

In the following, we report micro-benchmark re-
sults for our SM prototype. Specifically, we have
evaluated the cost of one-hop migration and the cost
of tag space operations. Our testbed consists of HP
iPAQs 3870 running Linux 2.4.18-rmk3-hh24. Each
iPAQ contains an Intel StrongARM 1110 206Mhz
32bit RISC processor, 32MB flash memory, and
64MB RAM memory. For communication, we use
Lucent Orinoco 802.11b Silver PC Cards in ad hoc
mode. To factor out the cost of Java method call
overhead (approximately 6µs), we have inserted the
code for measuring the costs inside the native meth-
ods associated with the SM API.

6.1. Cost of SM Migration

The one-hop migration has three phases: execu-
tion capture at source, SM transfer, and execution
resumption at destination. To be capable of cap-
turing and resuming an SM, we convert the SM
into a machine-independent representation. Since
the code bricks are already in machine-independent
Java class format, only the data bricks and execu-
tion state need to be converted. This conversion is
done using our simple object serialization mecha-
nism. The serialization of the execution state does
not have a significant impact because we do not cap-
ture and transfer the local variables, but only the
execution control state. Therefore, the important
factors that determine the cost of one-hop migra-
tion are the data brick serialization, the SM trans-
fer, and data brick de-serialization.

6.1.1. Data Brick Serialization and De-
Serialization. To study the effect of data brick se-
rialization, we have used a fixed size code brick
(1197 bytes) and have varied the data brick
from 2 KB to 16 KB. The stack frames have
also been kept constant (131 bytes for two ac-
tivation records). The cost of serializing these
two stack frames is 0.235 ms. Commonly, the
data bricks in an SM consist of a mixture of ob-
jects and primitive types. We have used two types
of data bricks in this evaluation which repre-
sent a practical lower and upper bound for typi-
cal data bricks: an array of integers, and an array
of objects. The object array represents an up-
per bound since each of its elements causes a call to
the top level VM serialization method, while the in-
teger array represents a lower bound since there
is only one call to the top level VM serializa-
tion method.



Figure 5: Cost of Data Brick Serialization

Figure 6: Cost of Data Brick De-Serialization

Figure 5 shows that the serialization cost is be-
low 6 ms for data bricks as large as 16 KB. Com-
monly, the SMs process the data at source, and
therefore, they carry small size data. The applica-
tions that we developed carry less than 2 KB, which
costs less than 1 ms to serialize. Figure 6 presents
the cost of de-serialization for the same data bricks.
We observe that this cost is with as much as 30%
larger than the cost of serialization. This increase is
caused by the memory allocation costs during ob-
ject de-serializations.

6.1.2. SM Transfer. To evaluate the total
cost of migrating an SM (serialization, trans-
fer, de-serialization), we have performed two
sets of experiments. In the first, we have var-
ied the code brick size while keeping the data brick
size and stack frame size fixed at 53 bytes and 131
bytes, respectively. In the second, we have var-

Figure 7: Effect of Code Brick Size on Single Hop
Migration

Figure 8: Effect of Data Brick Size on Single Hop
Migration

ied the data brick size while keeping the code brick
size and stack frame size fixed at 1197 bytes and
131 bytes.

Figures 7 and 8 show the results of these two ex-
periments for two cases: the code is not cached, and
the code is cached. In Figure 7, the time to trans-
fer the SM when the code is cached represents, es-
sentially, the overhead of the three-way handshake
protocol since the size of the data bricks and stack
frames is small. Figure 8 demonstrates that the data
brick size contributes significantly to the total cost
of migration. Thus, it is important to have a serial-
ization mechanism with minimal space overhead.

6.2. Cost of Tag Space Operations

Tables 2 shows the cost of the tag space opera-
tions for application tags. The readTag primitive has
the lowest cost since it performs the least number of



Tag Space Operation Time (µs)
createTag 43.4
deleteTag 55.9
readTag 20.8
writeTag 31.7
blockSM 45.8

Table 2: Time for Tag Space Operations

Tag Name Time(ms)
gps location 0.20
neighbor list 0.34
image capture (32-KB) 341.23
light sensor 0.11
battery lifetime 25.63
system time 0.09
free memory 0.12

Table 3: Cost of Reading I/O Tags

operations. When an SM reads a tag, the VM inter-
preter acquires a lock, performs a lookup in the tag
space, and returns the data to the SM. The write-
Tag operation costs slightly higher since the inter-
preter has to check and unblock any SMs blocked
on the tag. The createTag primitive involves an ad-
ditional step to register a timer for the tag lifetime,
while blockSM needs to append the SM to the queue
and suspend the current task. The deleteTag primi-
tive has the highest cost since the interpreter needs
to wake up all SMs blocked on the tag, remove the
timer for the tag lifetime, and remove the tag struc-
ture from the tag space.

Table 3 presents the access time to several I/O
tags that are currently implemented in our proto-
type: GPS location query, neighbor discovery, cam-
era image capture, light sensor, and system status
inquiry (battery lifetime, system time, and amount
of free memory). A typical node with a video cam-
era and a GPS receiver attached is shown in Fig-
ure 9. The gps location is updated by a user level
process which reads from the GPS serial interface.
The location of the neighbors along with their iden-
tifiers can be returned by reading the neighbor list
tag. This tag is typically used by geographical rout-
ing algorithms carried and executed by SMs. To
get the information about neighbor nodes, we have
implemented a neighbor discovery protocol which
maintains a cache of known neighbors. For the im-
age capture tag, the system also performs YUYV to

Figure 9: Prototype Node with Video Camera and
GPS Receiver Attached

RGB format conversion on the captured image be-
fore returning it to the tag reader. All the other tag
values are obtained directly from Linux using sys-
tem calls.

7. Applications

To prove that virtually any protocol or applica-
tion can be written using SMs, we have implemented
two previously proposed applications: SPIN [10]
and Directed Diffusion [12]. They present different
paradigms for content-based communication and
computation in sensor networks: SPIN is a proto-
col for data dissemination, and Directed Diffusion
implements data collection.

7.1. SPIN using Smart Messages

SPIN is a family of adaptive protocols that dis-
seminates information among nodes in a sensor net-
work. We present an implementation of SPIN-1
which is a three-stage handshake protocol for data
dissemination. Each time a node obtains new data,
it disseminates this data in the network by send-
ing an advertisement to its neighbors. The node re-
ceiving the advertisement checks if it has already
received or requested that data. If not, it sends a
request message back to the sender asking for the
advertised data. The initiator sends the requested
data, and then, the process is executed recursively
for the entire network.

As an example of a Cooperative Computing pro-
gram, Figure 10 presents the code for our implemen-
tation of SPIN using SMs. The tag space at each
node hosts two tags: the value of the most recent
data received (tagData), and the timestamp associ-
ated with this data (tagTimestamp).



1 DisseminateSM(String tag, int timeout){
2 int timestamp;
3 Data data;
4 String tagData=tag+"data";
5 String tagTimestamp=tag+"timestamp";
6 Address src, dest;
7 while(true){ // SM at source
8 TagSpace.blockSM(tagData, timeout);
9 timestamp = TagSpace.readTag(tagTimestamp);

10 if (!SmartMessage.spawnSM()){ // child SM
11 while(true){ // SM at every node
12 src = SmartMessage.getLocalAddress();
13 SmartMessage.sys_migrate(all); // migrate to all neighbors
14 if (timestamp.CompareTo((Integer)TagSpace.readTag(tagTimestamp))<=0){
15 System.exit(0); // the same or more recent data exists at this node
16 }
17 TagSpace.writeTag(tagTimestamp, timestamp);
18 dest = SmartMessage.getLocalAddress();
19 SmartMessage.sys_migrate(src); // migrate back to source
20 data = TagSpace.readTag(tagData);
21 SmartMessage.sys_migrate(dest); // bring data to destination
22 TagSpace.writeTag(tagData, data);
23 }
24 }
25 }
26 }

Figure 10: SPIN with Smart Messages

The protocol is initiated by injecting a Dissem-
inate SM into a node that produces data. This SM
blocks on tagData (line 8) waiting for new data.
Each time new data is produced, the SM reads the
tagTimestamp and spawns itself (lines 9-10). The
“child” SM migrates to the neighbors to advertise
the new data (line 13). If a destination node does not
have this data or more recent data, the “child” SM
updates the tagTimestamp and migrates back to the
source to bring the data (lines 14-22). Upon data ar-
rival, the “child” SM executes recursively the same
algorithm until the data is disseminated in the en-
tire network.

7.2. Directed Diffusion using Smart
Messages

In Directed Diffusion, a sink node requests data
by sending “interests” for named data. Data match-
ing an interest is then “drawn” from source nodes
toward the sink node. Intermediate nodes can cache
and aggregate data; they may also direct interests
based on previously cached data. At the beginning,
the sink may receive data from multiple paths, but
after a while it will reinforce the path providing the
best data rate. All future data will arrive on the re-
inforced path only.

For the implementation of Directed Diffusion us-

ing SMs, the tag space at each node hosts three tags:
the most recent data value (tagData), the best data
rate available at that node (tagDataRate), and the
best next hop toward the source (tagBestRoute). Di-
rected Diffusion is initiated by injecting an SM at
the sink. The execution of this SM has two main
phases: (1) exploration starts at the sink and floods
the network to find data of interest, and (2) rein-
forcement chooses the best path and brings data
from source to sink.

If the information of interest is not locally avail-
able (no tagDataRate value), the explore SM spawns
itself; the “child” SM migrates to all neighbors,
while the “parent” SM blocks on tagDataRate. This
operation is performed recursively at every node
until an SM reaches a node containing the tag-
DataRate. At this point, the “child” SM migrates
back to its parent carrying the discovered data rate.
If the new data rate is better than the value stored
in tagDataRate, the SM updates tagDataRate with
the new value and tagBestRoute with its source as
the best node in the path toward the source of data.
This update unblocks the “parent” SM which will
carry the data rate one hop back. Eventually, the
sink node is reached and the reinforcement phase
begins.

During the reinforcement phase, a collect SM mi-
grates to the best next hop starting from the sink.



Figure 11: Directed Diffusion using Smart Messages

At each intermediate node, this SM spawns; the
“child” SM migrates to the best next hop, while the
“parent” SM blocks waiting for data. When the SM
reaches the source, it spawns new SMs to carry the
data one hop back at the promised data rate. Re-
cursively, a blocked SM is awaken by the data ar-
rival, and it will carry the data back until it reaches
the sink.

8. Simulation Results

For large scale evaluation, we have developed an
event-driven simulator extended with support for
SM execution. The simulator is written in Java to
allow rapid prototyping of applications. To get ac-
curate results, both the communication and the ex-
ecution time have to be accounted for. The simu-
lator provides accurate measurements of the execu-
tion time by counting, at the VM level, the num-
ber of cycles per VM instruction. To account for
the execution time, we have simulated each node
with a Java thread, and we have implemented a
new mechanism for scheduling these threads inside
JVM. The communication model used in our simu-
lator is “generic wireless”, with contention solved at
the message level. Before any transmission, a node
“senses” the medium and backs-off in case of con-
tention.

The main goal in conducting the simulation ex-
periments was to quantify the data convergence
time for our implementations of SPIN and Directed
Diffusion using SMs and to compare these results
with the results for traditional message passing im-
plementations. We define the data convergence time
as the time when a certain percentage of the total
number of nodes have received the data (SPIN), or
the data rate (Directed Diffusion). In both cases,

Figure 12: SPIN using Smart Messages

due to flooding, all nodes end up receiving the data
and the data rate. SPIN completes after all nodes
have received the data, while Directed Diffusion will
start the reinforcement phase after all nodes have re-
ceived the data rate. We use the same network con-
figuration for all experiments. The network has 256
nodes distributed uniformly over a square area, and
each node has the same transmission range. The av-
erage number of neighbors per node is 4.

The first set of experiments evaluate the data
convergence time when only one SM is injected in
the network. Figure 11 presents the data conver-
gence time for a single Directed Diffusion SM, with
the sink and source located at the diagonal cor-
ners of the square region. We plot the data con-
vergence time for three different cases of the same
SM and a base case for the same application us-
ing passive communication (no SM). The top curve
shows the time when code caching is not used. In the
second curve, we can see an improvement of more
than 4 times in performance when code caching is
activated during the first execution of the SM in
the network. The code is cached when an SM vis-
its a node for the first time and will be used by
subsequent SMs during the same execution. The ef-
fects of caching are very important in this case be-
cause the SMs visit a node multiple times in Di-
rected Diffusion: they travel the network both for-
ward (looking for the source) and backward (diffu-
sion of data rate). In the third curve we can ob-
serve a 30% decrease in the completion time when
the code is already cached at all nodes. The fourth
curve shows the data convergence time for a tradi-
tional implementation: the protocol is implemented
at each node, only data is transferred through the
network, and the execution time is not accounted
for. We observe that the degradation in performance



Figure 13: Directed Diffusion - Multiple Smart Mes-
sages

for our implementation, when the code is cached at
all nodes, compared to the traditional implementa-
tion is only 5%. We believe that this is a reasonable
price for the flexibility to program any user-defined
distributed application in NES.

Figure 12 plots the same curves for a single SPIN
SM launched in the network at a node located in
a corner of the square area. During the first execu-
tion, code caching leads to a 3 times improvement in
performance (i.e., reducing the size of SMs is essen-
tial for a protocol based on flooding and three-stage
communication). The third curve shows a 30% de-
crease in the completion time (similar to Directed
Diffusion) when the code is already cached at all
nodes. The completion time increases from 10% to
15% compared to the traditional implementation.

The second set of experiments quantify the per-
formance of our applications when multiple SMs run
simultaneously in the network. Figures 13 and 14
show the data convergence time for both Directed
Diffusion and SPIN with the code already cached
at nodes. For these experiments, data convergence
time is the time when a certain percentage of nodes
have received the data (or data rate) for all the SMs
running in parallel. The nodes at which the SMs
start are distributed uniformly in the network. The
results show that data convergence time increases
with the number of SMs, but only during the ini-
tial flooding phase because of increased contention
in the network. After that, the shapes of the curves
are the same, independent of the number of SMs.
The results also indicate that SPIN completes faster
than Directed Diffusion in all cases (i.e., 2.3 s com-
pared to 3.4 s for the top curves in the figures). The
cause is that SPIN floods only the neighbors and
then brings the data to them, while Directed Diffu-

Figure 14: SPIN - Multiple Smart Messages

sion needs to flood the entire network until it finds
the source and then brings the data rate back to all
nodes. In the initial phase Directed Diffusion gener-
ates more messages in the network leading to higher
contention, but its performance will increase as soon
as the reinforcement phase begins.

9. Related Work

SMs have been influenced by the design of mo-
bile agents for IP-based networks [26, 17, 8, 20]. A
mobile agent may be viewed as a task that explic-
itly migrates from node to node assuming that the
underlying network assures its transport between
them. SMs apply the general idea of code migra-
tion, but focus more on flexibility, scalability, re-
programmability, and ability to perform distributed
computing over unattended NES. Unlike mobile
agents, SMs are defined to be responsible for their
own routing in a network. A mobile agent names
nodes by fixed addresses and commonly knows the
network configuration a priori, while an SM names
nodes by content and discovers the network con-
figuration dynamically. Furthermore, the SM soft-
ware architecture defines the common system sup-
port that each node must provide. The goal of this
architecture is to reduce the support required from
nodes since nodes in NES possess limited resources.

The SM self-routing mechanism shares some of
the design goals and leverages work done in ac-
tive networks (AN) [7, 24, 21]. SMs differ, however,
from AN in several key features. The main differ-
ence between them is in terms of programmabil-
ity. Unlike AN which target faster communication in
IP-based networks, Cooperative Computing define a
distributed computing model for NES whereby sev-



eral SMs can cooperate, exchange data, and syn-
chronize with each other through the tag space. Ad-
ditionally, the AN model does not contain the mi-
gration of execution state whereas our model does.
The migration of execution state for SMs trades
off overhead for flexibility in programming sophisti-
cated tasks which require cooperation and synchro-
nization among several entities. For example, this
execution state allows SMs to make routing deci-
sions based on the results of the computation done
at previously visited nodes.

Research in mobile ad hoc networking [14, 22,
18, 13] has resulted in numerous routing protocols.
These protocols have generally been designed for IP-
based networks and have primarily targeted tradi-
tional mobile computing applications over networks
of mobile personal computers. We have leveraged
some of these protocols into routing algorithms used
by the SM self-routing mechanism.

Sensor networks represent the first step toward
large networks of embedded systems. Most of the re-
search in this area has focused on hardware [15,23],
operating systems [11], or network protocols [12,
10, 4]. Cooperative Computing provides a solution
for developing user-defined distributed applications
in sensor networks, a crucial issue which has been
only marginally tackled so far. As we have demon-
strated, Cooperative Computing provides enough
flexibility to enable the implementation of previ-
ously proposed protocols over our computing plat-
form.

SensorWare [6] is similar to Cooperative Com-
puting in the sense that both are frameworks
for programmable NES based on code migra-
tion. Therefore, both are suitable to re-program
the network. However, SensorWare supports mo-
bile control scripts and accesses the resources
through virtual devices whereas Cooperative Com-
puting support mobile Java code (i.e., Java is sup-
ported on many embedded systems today [1]), ex-
ecution state migration, and uniform access to
resources through tags.

Mate [19] is an efficient virtual machine for sen-
sor networks which can significantly simplify the
code development and dissemination effort. The
main difference between Cooperative Computing
and this research is that Mate targets just the re-
programmability of the network, but the program-
ming model is still the traditional message passing.
SMs on the other hand are based on execution mi-
gration. An SM transfers not only the code, but also
the execution state through the network.

10. Conclusions

We have described a programming model for
large scale networks of embedded systems, in which
distributed applications are implemented as collec-
tions of Smart Messages. The model overcomes the
scale, heterogeneity, and connectivity issues encoun-
tered in these networks by using execution migra-
tion, content-based naming, and self-routing. The
experimental results for our prototype implemen-
tation demonstrate the feasibility of Cooperative
Computing. The implementation and simulation re-
sults for two sensor network applications show that
our model represents a flexible, yet simple solution
for programming large networks of embedded sys-
tems.

Acknowledgments

This work was supported in part by the NSF
under the grant ANI-0121416. The authors would
like to thank Ulrich Kremer and Chalermek In-
tanagonwiwat for our frequent discussions regard-
ing the design of Cooperative Computing. We also
like to thank Philip Stanley-Marbell, Deepa Iyer,
and Akhilesh Saxena for their contributions at var-
ious stages of this project.

References

[1] Java 2 Platform, Micro Edition (J2ME).
http://java.sun.com/j2me/.

[2] Axis Communications. http://www.axis.com.

[3] Sensoria Corporation. http://www.sensoria.com.

[4] Blum, B., Nagaraddi, P., Wood, A., Abdelza-
her, T., Son, S., and Stankovic, J. An En-
tity Maintenance and Connection Service for Sen-
sor Networks. In Proceedings of the First Interna-
tional Conference on Mobile Systems, Applications,
and Services (MobiSys 2003) (San Francisco, CA,
May 2003), pp. 201–214.

[5] Borcea, C., Intanagonwiwat, C., Saxena, A.,
and Iftode, L. Self-Routing in Pervasive Comput-
ing Environments using Smart Messages. In Pro-
ceedings of the 1st IEEE International Conference
onPervasive Computing andCommunications (Per-
Com 2003) (Dallas-Fort Worth, TX, March 2003),
pp. 87–96.

[6] Boulis, A., Han, C., and Srivastava, M. De-
signandImplementationofaFramework forEfficient
and Programmable Sensor Networks. In Proceed-
ings of the First International Conference on Mobile
Systems, Applications, and Services (MobiSys 2003)
(San Francisco, CA, May 2003), pp. 187–200.



[7] D. Wetherall. Active Network Vision Reality:
Lessons from a Capsule-based System. In Proceed-
ings of the 17th ACM Symposium on Operating Sys-
tems Principles (SOSP 1999) (Charleston, SC, De-
cember1999),ACMPress,NewYork,NY,pp. 64–79.

[8] Gray, R., Cybenko, G., Kotz, D., and Rus, D.
Mobile Agents: Motivations and State of the Art.
In Handbook of Agent Technology, J. Bradshaw, Ed.
AAAI/MIT Press, 2002.

[9] Heideman, J., Silva, F., Intanagonwiwat, C.,
Govindan, R., Estrin, D., and Ganesan, D.
Building Efficient Wireless Sensor Networks with
Low-Level Naming. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP
2001) (Banff, Canada, October 2001), ACM Press,
New York, NY, pp. 146–159.

[10] Heinzelman, W. R., Kulik, J., and Balakrish-
nan,H. AdaptiveProtocols for InformationDissem-
ination in Wireless Sensor Networks. In Proceedings
of the Fifth annual ACM/IEEE International Con-
ference onMobileComputing andNetworking (Mobi-
Com 1999) (Seattle,WA,August 1999),ACMPress,
New York, NY, pp. 174–185.

[11] Hill, J., Szewczyk, R., Woo, A., Hollar, S.,
Culler, D., and Pister, K. System Architecture
Directions for Networked Sensors. In Proceedings of
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-IX) (Cambridge,MA,November
2000), ACM Press, New York, NY, pp. 93–104.

[12] Intanagonwiwat, C., Govindan, R., and Es-
trin, D. Directed Diffusion: A Scalable and Ro-
bustCommunicationParadigmforSensorNetworks.
In Proceedings of the Sixth annual ACM/IEEE In-
ternational Conference on Mobile Computing and
Networking (MobiCom 2000) (Boston, MA, August
2000), ACM Press, New York, NY, pp. 56–67.

[13] Jinyang Li, John Janotti, Douglas De Couto,
David R. Karger and Robert Morris. A Scal-
able Location Service for Geographic Ad Hoc Rout-
ing. In Proceedings of the Sixth annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom) (August 2000), pp. 120–130.

[14] Johnson, D., and Maltz, D. Dynamic Source
Routing in Ad Hoc Wireless Networks. T. Imielin-
ski and H. Korth, (Eds.). Kluwer Academic Publish-
ers, 1996.

[15] Juang, P., Oki, H., Wang, Y., Martonosi, M.,
Peh, L., and Rubenstein, D. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet. In Proceed-
ings of the Tenth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS-X) (San Jose, CA, Oc-
tober 2002), ACM Press, New York, NY, pp. 96–107.

[16] Jung, B., and Sukhatme, G. S. Cooperative
Tracking using Mobile Robots and Environment-
Embedded, Networked Sensors. In the 2001 IEEE

International Symposium on Computational Intelli-
gence in Robotics and Automation.

[17] Karnik, N., and Tripathi, A. Agent Server Ar-
chitecture for the Ajanta Mobile-Agent System. In
Proceedings of the 1998 International Conference
on Parallel and Distributed Processing Techniques
and Applications (PDPTA’98) (Las Vegas, NV, July
1998), pp. 66–73.

[18] Karp, B., and Kung, H. Greedy Perimeter State-
less Routing for Wireless Networks. In Proceedings
of the Sixth annual ACM/IEEE International Con-
ference onMobileComputing andNetworking (Mobi-
Com 2000) (Boston,MA,August 2000),ACMPress,
New York, NY, pp. 243–254.

[19] Levis, P., and Culler, D. Mate: A Virtual Ma-
chine for Tiny Networked Sensors. In Proceedings
of the Tenth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS-X) (San Jose, CA, October
2002), ACM Press, New York, NY, pp. 85–95.

[20] Milojicic, D., LaForge, W., and Chauhan, D.
Mobile objects and agents. In USENIX Conference
onObject-orientedTechnologies andSystems (1998),
pp. 1–14.

[21] Moore, J., Hicks, M., and Nettles, S. Practical
Programmable Packets. In Proceedings of the 20th
Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2001) (An-
chorage, AK, April 2001), pp. 41–50.

[22] Perkins, C., and Royer, E. Ad Hoc On Demand
Distance Vector Routing. In Proceedings of the 2nd
IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA 1999) (New Orleans, LA,
February 1999), pp. 90–100.

[23] Priyantha, N., Miu, A., Balakrishnan, H., and
Teller,S.TheCricketCompass forContext-Aware
Mobile Applications. In Proceedings of the 7th an-
nual ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom 2001)
(July 2001), ACM Press, New York, NY, pp. 1–14.

[24] Schwartz, B., Jackson, A., Strayer, W., Zhou,
W., Rockwell, R., and Partridge, C. Smart
packets: Applying active networks to network man-
agement. ACM Transactions on Computer Systems
18, 1 (2000), 67–88.

[25] Stanley-Marbell, P., and Iftode, L. Scylla:
A smart virtual machine for mobile embedded sys-
tems. In 3rd IEEE Workshop on Mobile Comput-
ing Systems and Applications, WMCSA2000 (Mon-
terey, CA, December 2000), pp. 41–50.

[26] White, J. Mobile Agents. J. M. Bradshaw (Ed.),
MIT Press, 1997.

[27] Xu, G., Borcea, C., and Iftode, L. Toward a Se-
curity Architecture for Smart Messages: Challenges,
Solutions, and Open Issues. In Proceedings of the 1st
International Workshop on Mobile Distributed Com-
puting (MDC’03) (May 2003).


	1 Introduction
	2 The Cooperative Computing Model
	3 Node Architecture
	3.1 Admission Manager
	3.2 Code Cache
	3.3 Virtual Machine
	3.4 Tag Space

	4 Smart Messages
	4.1 Smart Message Life Cycle
	4.1.1 Admission.
	4.1.2 Scheduling and Execution.
	4.1.3 Migration.

	4.2 Smart Message Self-Routing

	5 Programming Interface
	6 Prototype Implementation and Evaluation
	6.1 Cost of SM Migration
	6.1.1 Data Brick Serialization and De-Serialization.
	6.1.2 SM Transfer.

	6.2 Cost of Tag Space Operations

	7 Applications
	7.1 SPIN using Smart Messages
	7.2 Directed Diffusion using Smart Messages

	8 Simulation Results
	9 Related Work
	10 Conclusions

