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Abstract—Traffic congestion causes driver frustration and
costs billions of dollars annually in lost time and fuel con-
sumption. This paper presents three traffic re-routing strate-
gies designed to be incorporated in a cost-effective and easily
deployable vehicular traffic guidance system that reduces the
effect of traffic congestions. This system collects real-time traffic
data from vehicles and road-side sensors and computes proactive,
individually-tailored re-routing guidance which is pushed to
vehicles when signs of congestion are observed on their route.

Extensive simulation results over two urban road networks
show that all three strategies, namely multipath load balancing
considering future vehicle positions (EBKSP), random multipath
load balancing (RKSP), and dynamic shortest path (DSP), sig-
nificantly decrease the average travel time. EBKSP is the best,
with as much as 104% improvement compared to the “no re-
routing” baseline. Additionally, it lowers with 34% the re-routing
frequency compared to the other strategies. Finally, all strategies
offer good improvements even when many drivers ignore the
guidance or when the system adoption rate is relatively low.

I. INTRODUCTION

In 2010, traffic congestion caused urban Americans to travel
4.8 billion hours more and to purchase an extra 1.9 billion
gallons of fuel for a congestion cost of $101 billion. It is
predicted that by 2015, this cost will rise to $133 billion (i.e.,
more than $900 for every commuter) and the amount of wasted
fuel will jump to 2.5 billion gallons (i.e., enough to fill more
than 275,000 gasoline tanker trucks) [1]. While congestion is
largely thought of as a big city problem, delays are becoming
increasingly common in small cities and some rural areas
as well. Hence, finding effective solutions for congestion
mitigation at reasonable costs is becoming a stringent problem.

Static distributed road-side sensors (e.g., induction loops,
video cameras) and vehicles acting as mobile sensors (i.e.,
using embedded vehicular systems or smart phones) can
collect real-time data to monitor the traffic at fine granularity.
For example, the Mobile Millennium project [2] demonstrated
that only a low percentage of drivers need to provide data
to achieve an accurate traffic view. Unlike a large amount
of research which focuses on accurately collecting and cal-
ibrating the data (e.g., predicting travel times in specific
areas at particular times of day or improving the traffic light
cycles) [3], we focus on alleviating congestion by providing

drivers with better alternative routes in real-time. Implicitly,
fuel consumption and pollution will be reduced as well.

Recently, companies such as Google and Microsoft have
started to use infrastructure-based traffic information to com-
pute traffic-aware shortest routes. These solutions are better
than just showing the current traffic conditions to drivers
because they can guide them as function of other factors
such as historic traffic and current weather. However, these
solutions do not try to avoid congestions explicitly (i.e., they
are reactive solutions) and provide the same guidance for
all vehicles on the road at a certain moment as function
of their destination (i.e., pull model in which drivers query
for the shortest route to destination). Therefore, similar to
route oscillations in computer networks, they could lead to
unstable global traffic behavior: when it happens, congestion
is switched from one route to another if a significant number
of drivers use the guidance.

This paper presents three traffic re-routing strategies de-
signed to be incorporated in a cost-effective and easily de-
ployable vehicular traffic guidance system that reduces the
effect of traffic congestions. In this system, vehicles can be
viewed as both mobile sensors (i.e., collect real-time traffic
data) and actuators (i.e., change their path in response to newly
received guidance). The system is cost-effective and easily
deployable because it does not require road-side infrastructure;
it can work using only smart phones carried by drivers. Where
road-side sensors are available, the system can take advantage
of them to supplement the data provided by vehicles to
build an accurate representation of the global real-time traffic
conditions. Periodically, the system evaluates the congestion
levels in the road network. When signs of congestions are
observed on certain road segments, it computes proactive,
individually-tailored re-routing guidance which is pushed to
vehicles which would pass through the congested segments.
It is important to notice that we do not “force” the drivers
to follow alternative routes: the guidance may or may not be
accepted by drivers.

The three re-routing strategies that we propose are: (1)
dynamic shortest path (DSP), which assigns to each vehicle
the current shortest path to destination; (2) random multipath
load balancing (RkSP), which computes k shortest paths for



each vehicle and randomly assigns the vehicle to one of them;
and (3) multipath load balancing considering future vehicle
positions (EBkSP), which computes k shortest paths for each
vehicle and assigns the vehicle to the path with the lowest
popularity as defined by the path entropy. Intuitively, DSP
may move congestion from one spot to another if many drivers
share the same destinations and current positions. RkSP uses
multiple paths to provide for better traffic flow distribution, but
its random nature is far from optimal. EBKSP uses multiple
paths as well, but it is expected to provide better load balancing
because it estimates the future load on each path.

We extensively evaluated these strategies through simula-
tions over two medium-size urban road networks and across
several parameters including the number of alternative paths,
the re-routing period, the congestion threshold, the vehicle
selection level, the vehicle priority, and the driver compliance
rate. The results show that all three strategies significantly
decrease the average travel time. EBKSP is the best, with
as much as 104% improvement compared to the “no re-
routing” baseline. Additionally, it lowers with 34% the re-
routing frequency compared to the other strategies; this is
important because too frequent re-routings may annoy drivers
who can subsequently ignore all guidance. Among the three
strategies, DSP has the best computation time. Nevertheless,
EBKSP will be the preferred strategy in our system due to its
better average travel time and re-routing frequency. Finally, all
strategies offer good improvements even for low compliance
rate (i.e., drivers ignore the guidance) and relatively low
penetration rate (i.e., ratio of vehicles who adopt our system).

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes the system model
and our assumptions. Section IV presents the three re-routing
strategies. Section V shows our simulation results and analysis.
Conclusions and future work are presented in Section VI.

II. RELATED WORK

Services such as INRIX [4] provide real-time traffic infor-
mation at a certain temporal accuracy and allow drivers to
receive travel time estimations for alternative routes. Accord-
ing to Wardrop’s first traffic equilibrium principle [5], such
services could lead to a user-optimum traffic equilibrium. It is
known, however, that no true equilibrium can be found under
congestion [6]. Even more important, the usefulness of such
services is limited by their reactive nature: they cannot avoid
congestions. System such as Google Maps and Microsoft’s
Bing are able to forecast congestion and its duration by
performing advanced statistical predictive analysis of traffic
patterns. Unfortunately, this is still not enough due to non-
recurring congestions, which represent over 50% of all conges-
tions [7]. Our solution moves one step forward by providing
effective methods for proactive re-routing when congestion is
predicted based on real-time traffic information.

An alternative to our work could be the research done
on dynamic user-optimal traffic assignment (DTA) [8]-[10].
These solutions periodically compute the assignment of traf-
fic flows to routes that lead to dynamic user equilibrium.

Unfortunately, there is still a significant gap between the
theoretical or simulation results and potentially deployable
solutions. Some issues are: tractability for large scale road
networks, capability of providing real-time guidance, behavior
in the presence of congestion, ability to work when not all
drivers are part of the system, and robustness to drivers who
ignore the guidance. For example, they assume the set of
Origin-Destination (OD) pairs and the traffic rate between
every OD pair are known. This information is highly dynamic
especially in city scenarios, leading to frequent iterations of
computationally expensive algorithms even when not needed
from a driver benefit point of view. Additionally, the OD set
is large, and the DTA algorithms may not be able to compute
the equilibrium fast enough to inform the vehicles about their
new routes in time to avoid congestions. Our system, on the
other hand, is designed to be effective and fast, although not
optimal, in deciding which vehicles should be re-routed when
signs of congestion occur as well as computing alternative
routes for these vehicles.

The complexity of DTA systems has led scientists to look
for inspiration in Biology and Internet protocols. In [11],
Wedde et al. developed a road traffic routing protocol, Bee-
JamA, based on honey bee behavior. Similarly, Tatomir et
al. [12] proposed a route guidance system based on trail-laying
ability of ants. Inspired by the well-known Internet routing
protocols, Holger et al. [13] proposed decentralized Organic
Traffic Control. However, since they are distributed, these
approaches have only a partial view of the traffic conditions,
which may lead to less accurate re-routing. Also, simply
treating vehicles as packets which always listen to the guidance
ignores the nature of human behavior. Furthermore, these
systems react to real-time data without insight into future
conditions, thus introducing greater vulnerability to switching
congestion from one spot to another.

III. SYSTEM MODEL

Our traffic guidance system is composed of: (1) a cen-
tralized traffic monitoring and re-routing service (which can
physically be distributed across several servers), and (2) a
vehicle software stack for periodic traffic data reporting (po-
sition, speed, direction) and showing alternative routes to
drivers. Vehicles run this software either on an embedded
vehicular system or a smart phone. Vehicles are equipped with
GPS receivers and can communicate with the service over
the Internet when needed. When starting a trip, each vehicle
informs the service of its current position and destination; the
service sends back a route computed according to its strategy.
It is assumed that the service knows the road network as well
as the capacity and legal speed limits on all roads.

Logically, the traffic guidance system operates in four
phases executed periodically: (1) data collection and represen-
tation; (2) traffic congestion prediction; (3) vehicle selection
for re-routing; and (4) choosing alternative routes for each such
vehicle and pushing the guidance to the vehicles. Since data
collection has been studied extensively in the literature, we
assume that the centralized service receives traffic data from



vehicles and road-side sensors where available. We discuss in
detail each of the other phases in this section and Section IV.

A. Traffic data representation and estimation

The road network is represented as a directed, weighted
graph, where nodes correspond to intersections, edges to
road segments, and weights to estimated travel times. The
weights are updated periodically as new traffic data becomes
available. Several methods can be employed to estimate the
travel time over a road segment. For instance, using vehicle
probe data collected from on-board GPS devices to reconstruct
the state of traffic is a well-studied topic [2], [14]. We use the
Greenshield’s model [15] to estimate the travel time since it
is used extensively in dynamic traffic assignment models by
transportation researchers. The model considers that there is
a linear relationship between the estimated road speed V; and
the traffic density K; (vehicles per meter) on road segment ¢,
as seen in Equation 1:

K;

jam

Vi=Vp(1- ) Ti=Li/Vi (1)
where K., and V; are the traffic jam density and
the free flow speed for road segment ¢, while 7; and
L; are the estimated travel time and length for the
same segment. The free flow speed V; is defined as
the average speed at which a motorist would travel if
there were no congestion or other adverse conditions.
To simplify our implementation, we consider that the
free flow speed is the speed limit. Basically, K;/K;qm
is the ratio between the current_number_of_vehicles

and the max_number_of_vehicles. The
current_number_of_vehicles is obtained
from the traffic data collected by the service,
whereas the maz_number_of_vehicles =

length_of_road/(avg_vehicle_length + min_gap).

B. Congestion prediction

Periodically, the service checks the road network to detect
signs of congestion. A road segment is considered to exhibit
congestion signs when K;/Kqm,m > d, where § € [0,1] is
a threshold. Choosing the right value for § is particularly
important for the service performance. If it is too low, the
service could trigger unnecessary re-routing; this may lead to
an increase in the drivers’ travel times. If it is too high, the
re-routing process could be triggered too late and congestion
will not be avoided. The evaluation in section V-B confirms
these hypotheses.

C. Selection of vehicles to be re-routed

When a certain road segment presents signs of congestion,
the service looks for nearby vehicles to re-route. Specifically,
we select vehicles from incoming segments (i.e., segments
which bring traffic into the congested one). To decide how
far from congestion to look for candidates for re-routing, the
service uses a parameter L (level), which denotes the furthest
distance (in number of segments) the vehicle can be away

from the congested segment. Basically, the service performs
a breadth first search (BFS) on the inverted network graph
(i.e., the road network graph is directed), starting from the
congested segments with maximum depth L and considers all
these cars as candidates for re-routing.

IV. RE-ROUTING STRATEGIES

Recent research has proved that real-time traffic flow data
and road travel time can be determined based on data reported
by vehicles or road-side sensors [2], [16], [17]. The question is
how to utilize this knowledge in an intelligent fashion to avoid
congestion and reduce the drivers’ travel times. This section
presents our three re-routing strategies; all of them use the
estimated travel time in the computation of the (k-)shortest
path(s) for each of the vehicles selected as described in the
previous section.

A. Dynamic Shortest Path

Dynamic Shortest Path (DSP) is a classical re-routing
strategy that assigns the selected vehicles to the path with
lowest travel time. The advantage of this strategy lays in
its simplicity and consequently reasonable computational cost
O(E + Vlog(V)), where E is the number of road segments
and V is the number of intersections. We expect this strategy
to provide good results when the number of re-routed vehicles
is low. In this case, the risk of switching congestion from one
spot to another is low.

B. Random k Shortest Paths

Random k Shortest Paths (RkSP) computes for each vehicle
to be re-routed its k-shortest paths. Then, it assigns each
selected vehicle to one of the k paths randomly. The goal
is to avoid switching congestion from one spot to another
by balancing the re-routed traffic among several paths. The
price to pay is a higher computational complexity, O(kV (E +
Vliog(V'))) [18], which increases linearly with k. Although a
larger k will allow better traffic balancing, it also increases
the difference in the travel time among the k paths. Therefore,
to prevent an excessive increase of the travel time for some
drivers, RkSP limits the maximum allowed relative difference
between the fastest and the slowest path to 20%. In section V,
we experimentally vary k to measure its impact.

C. Entropy Balanced k Shortest Paths

While RkSP addresses the main potential shortcoming of
DSP (i.e., moving congestion to another spot), it has its own
deficiencies. First, it increases the computational time, which
matters because the alternative paths must be computed and
pushed to vehicles before they pass the re-routing intersection.
Second, it assigns paths randomly to vehicles, which is far
from optimal both from a driver point of view and the
global traffic point of view. Therefore, we propose an Entropy
Balanced k Shortest Paths (EBkSP) strategy to improve on
RKkSP at the cost of slightly increased complexity. The idea
is to perform a more intelligent path selection by considering
the impact that each selection has on the future density of



the affected road segments. We expect this optimization to
improve the traffic from a global point of view. In addition,
EBKSP ranks the cars to be re-routed based on an urgency
function that quantifies the degree to which the congested road
affects the driver travel time. Thus, the more affected vehicles
will have priority and be re-routed first.

To avoid creating new congestions through re-routing, we
associate a “popularity” measure to road segments in EBkSP.
Future congestion occurs if many drivers take the same road
segment within the same future time window. ' As we assume
that the drivers share their route information, it is possible to
estimate the future footprint of each driver in the road network.

Definition 1. A footprint counter, fc, of a road segment is
the total number of vehicles that are assigned to paths that
include this segment.

Similar to entropy in information theory, we define the path
popularity as follows.

Definition 2. Let (p1, ..., p) be the set of paths computed for
the vehicle which will be assigned next. Let (r1,...,1y) be
the union of all segments of (p1,...,px), and let (fcy, ..., fcn)
be the set of footprint counters associated with these seg-
ments. The popularity of p; is defined as Pop(p;) =
eB®i). E(p;) is the weighted entropy of p; and is com-
puted as E(p;) = —> 1wt In %, N =", fc, and
w; = &2 is a weight factor. Cuyg is the average road
capacityt()f the network and C; is the road capacity of r;..

The value of E(p;) measures the probability that a number
of vehicles will be on the path p; in a time window. According
to the above definition, we have 0 < Pop(p;) < m. Pop(p;)
has the maximum value m when every previously assigned
vehicle traverses entirely p; (i.e., they take the same path).
Pop(p;) has the minimum value when no one takes the path
p;. Intuitively: the higher the popularity of a path, the higher
the probability that more drivers will take this path.

In addition to path popularity, EBKSP uses an urgency
function to rank the vehicles to be re-routed.

Definition 3. Given a set of vehicles V = (v1,v2, 03, ..., U)
to be re-routed, we define two urgency functions to compute
the re-routing priority of a vehicle in V:

o Relative Congestion RCI=(RemTT-
RFFTT)RFFTT

o Absolute Congestion Impact: ACI=RemTT-RFFTT

where RemTT is the remaining travel time, and RFFTT is
the remaining free flow travel time for the vehicle.

Impact:

RCT measures the impact of congestion on a vehicle
relative to its remaining travel time, whereas AC'I emphasizes
the absolute increase in the travel time. In section V-B, we
evaluate EBKSP under these two urgency functions.

After vehicle selection and prioritization according to the
urgency function, we assign each driver the path with least

IThe time window size equals the period used by the system to evaluate
congestion.

Algorithm 1 EBKSP re-routing pseudo-code

procedure main

updateEdgeWeights()

congestedRoads=detectCongestion(edgeWeights)

if #congestedRoads>0 then
selected Vehicles=selectVehicles(congestedRoads)
sorted Vehicles=sortByUrgency(selected Vehicles)
odPairs=updateODPairs(selected Vehicles)
allPaths=compuate_all_kShortestPaths(odPairs)
doReroute(allPaths, sortedVehicles)

end if

end procedure

procedure doReroute(allPaths, sortedVehicles)

for all vehicle in sortedVehicles do
{origin, dest}=getVehicleOD(vehicle)
kPaths=getkPaths(allPaths, origin, dest)
newpath = getLeastPopularPath(kPaths)
setRoute(vehicle, newpath)
updateFootprint(vehicle, newpath)

end for

end procedure
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Fig. 1: A simple re-routing example

popularity among previously assigned vehicles. Specifically,
the most urgent vehicle is assigned the current best path
without considering others. Then, the future footprints is
updated based on the new path. When assigning the second
vehicle, the popularity score can be calculated and only the
least popular path will be chosen. Algorithm 1 presents the
EBKSP’s pseudo code. Besides what was described so far, the
pseudo-code shows an optimization related to shortest path
computation. Instead of computing the k-shortest paths for
each vehicle to be re-routed, we compute these paths for
the origin-destination (OD) pairs that have selected vehicles
traveling between them (i.e., the set of OD pairs is much
smaller than the set of vehicles to be re-routed). The same
procedure is used in RkSP and DSP.

Figure 1 shows an example. We assume vehicles (vq, va, v3)
have been assigned to their paths before v4, and each road
has the same capacity (i.e., w; = 1). The footprints of
(v1, v2, v3) in the next time window are C'(ab, bg, gh, hi,ij),
Ca(fg, gh, hi,ij), and Cs(ch,hk). For wvs, which travels
from ab to ij, there are three alternatives with simi-
lar travel times: pi(ab,bg,gh,hi,ij), p2(ab,be,ch,hi,ij),
and ps(ab,be, cd,di,ij). The union of their segments is
(ab, bg, gh, hi,ij,be, ch,cd, di), and their footprint counters
are (1,1,2,2,2,0,1,0,0). Consequently, N=9, Ey (p1)=1.49,
Ev(p2)=1.16 and Ey (p3)=0.58. Hence, vs will be assigned
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to p3 because it is the least popular.

V. EVALUATION

The objective of our simulation-based evaluation is to study
the performance of the three re-routing strategies under various
scenarios. Specifically, we address the following questions:

o What is the average travel time, average number of
re-routings and computation time among the proposed
strategies?

o« How does each parameter (e.g. number of alternative
paths, re-routing period, congestion threshold, car selec-
tion level, etc.) influence the performance?

« How robust is the system under various compliance rates
(i.e., percentage of drivers who follow the guidance) and
penetration rates (i.e., percentage of vehicles that have
our software)?

A. Simulation setup

We employed SUMO [19] and TraCI [20] for our simula-
tions. SUMO is an open source, highly portable, microscopic
road traffic simulation package designed to handle large road
networks. TraCl is a library providing extensive commands to
control the behavior of the simulation including vehicle state,
road configuration, and traffic lights. We implement the re-
routing strategies algorithms using TraCIl. Essentially, when
SUMO is called with the option to use TraCI, SUMO starts
up, loads the scenario, and then waits for a command. Thus,
variables in the simulation can be changed (e.g., new paths
assigned to certain vehicles). Then, a new command can be
sent with how many seconds to run the simulation before
stopping and waiting for another command.

We downloaded two wurban road maps from Open-
StreetMap [21] in osm format. One is a section of Brooklyn,
NY and the other is in Newark, NJ. We use the Netconvert
tool in SUMO to convert the maps into SUMO usable format,
and the Trafficmodeler tool [22] to generate vehicle trips.
Netconvert removes the pedestrian, railroad, and bus routes,
and sets up a static traffic light at each intersection. All roads
have one lane in each direction, with the same speed limit.
The statistics of the two networks are shown in Table 1. By
default, the shortest distance paths are automatically calculated
and assigned to each vehicle at the beginning of simulation.
Therefore, we modified the shortest path algorithm in SUMO
to be based on the travel time instead of distance. Figure 2
illustrates the simulation process.  Figures 3 (a) (b) show
the traffic flow in both networks. We used Trafficmodeler to
generate a total of 1000 cars in the Brooklyn network from the

TABLE I Statistics of the two road networks

Brooklyn Newark
Network area 75.85km? || 24.82km?
Total number of road segments 551 578
Total length of road segments 155.55km 111.41km
Total number of intersections 192 195

(a) Brooklyn

(b) Newark

Fig. 3: Traffic flow in the road networks

left area to the right area in an interval of 1000 seconds. The
origins and the destinations are randomly picked from the left
area and the right area, respectively. In the Newark network,
908 cars were generated having the origins picked randomly
from the peripheral road segments and the destinations on the
road segments inside the hot spot circle.

In the simulations, we use the default settings in SUMO
13.0.1 for vehicle length=5m, the minimal gap=2.5m, the car
following model (Krauss [23]), and the driver’s imperfec-
tion=0.5. For each scenario, we average the results over 15
runs. Initially, we assume an ideal scenario in which all drivers
have the system and accept the route guidance. We relax these
assumptions in the last part of the evaluation. Table II defines
the parameters used in our evaluation.

B. Results and Analysis

Average travel time. Figure 4 presents the average travel
time obtained with the three strategies on both networks. The
“noreroute” bars indicate the travel time in the absence of
any re-routing strategy. The results show that all the proposed
strategies improve the travel time significantly. EBkSP has the
best results; compared to “noreroute”, it reduces the travel
time by up to 81% and 104% on Brooklyn and Newark,
respectively. Compared to DSP, it is better by 15% and 25%.

The results confirm our hypotheses in Section IV. DSP
can improve the travel time, since it re-routes dynamically
the vehicles by considering the traffic conditions. However, in

some cases, if many vehicles have similar current positions and
TABLE II: Parameters used in the evaluation

period

threshold ¢

The frequency of triggering the re-routing
Congestion threshold; if K;/Kjqm > 6, the
road segment is considered congested

urgency Urgency policy: RCI or AC'T
Network depth to select vehicles for re-routing
level L starting from the congested segment and using
BFS on the inverted network graph
# The max number of alternative paths for each
paths &

vehicle; by default £k = 3
Percentage of drivers who accept the guidance
Percentage of vehicles which have our software

compliance rate
penetration rate
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destinations, new congestion can be create by the re-routing
process. RkSP avoids this shortcoming since it balances the
flows among several paths. Nevertheless, a randomly picked
path is not necessarily the best one. Finally, EBKSP offers the
best performance by carefully selecting the path for each re-
routed vehicle. The rationale is that the possibility of creating
new congestion is lower if the driver takes the least popular
path among k paths with similar travel time.

Our experiments also demonstrated that levels 3 and 4 work
best for selecting a relatively optimal number of vehicles for
re-routing (they have similar performance for Brooklyn, and
level 3 is better for Newark). Lower levels do not select enough
cars. As shown in Figure 5, level 4 leads to more re-routings.
Thus, we believe level 3 is a better choice for the system.

Average number of re-routings. It is important that that
the number of re-routings for a given vehicle during a trip stay
low. From the driver point of view, changing the path to her
destination too often can be distracting and annoying. This can
eventually lead to a rejection of the guidance system by the
drivers. From the system point of view, having a low number
of re-routings means decreasing the computational burden on
the system because the re-routing process is costly. Figure 5
compares the number of re-routings across the three proposed
strategies. The results indicate that EBKSP produces the least
number of re-routings. Specifically, compared to DSP, EBkSP
reduces the average number of re-routings by up to 34% on
both Brooklyn and Newark. Compared to RkSP, EBkSP is
better by a margin of 22% and 17%. The reason is that by
considering future path information in the re-routing decision,
EBKSP can not only mitigate the current congestion, but also
avoid creating new congestions; hence, the lower necessity for
recurrent re-routing.

To confirm this analysis, we also measured the number of
congested segments in each iteration for Brooklyn. Figure 6
shows the results. As traffic is generated during the first 1000s,

Newark(L=4,56=0.9)

—4—DSP —-RkSP EBKSP

25 a\

Number of detected congested
segments

0 —Ty
1 2 3 4 5 6 7 8 9 10
Number of iterations

Fig. 6: Number of congested road segments on the Brooklyn network over
time/iterations. (6=0.7, period=450s, L=3, urgency=ACI, k=3)

the number of congested roads increases for all strategies in the
first iterations. Then, all strategies manage to rapidly decrease
the number of congested roads. As expected, EBKSP reduces
the number of congested roads faster than the others.

CPU time. So far, the results have confirmed our hypothe-
sis that EBKSP is the best strategy for fighting congestion,
followed by RkSP and DSP. At the same time, the time
complexity of the three algorithms inverts the ranking: DSP
has the best computational efficiency, followed by RkSP and
EBKSP. However, this complexity analysis is pertinent only
when we consider the re-routing of a single vehicle. From
the system point of view, the global computational complexity
also depends on the number of re-routings processed in a time
window; this number is a function of the number of congested
road segments and the congestion severity (i.e., how many
vehicles are selected for re-routing).

Figure 7 (a) shows the global CPU time consumed for
re-routing by the three methods. DSP has the least CPU
time, whereas RkSP needs higher computation time to achieve
lower average travel time. Meanwhile, EBKSP requires less
computation time than RkSP even though they have the same
k-shortest path computation complexity. The reason is that
EBKSP decreases the total number of re-routings processed
in a period; this decrease becomes apparent when we look
at the number of OD pairs in Figure 7 (b). DSP induces the
most re-routings. However, since its complexity is the lowest,
its computation time is the lowest as well. Nevertheless, since
EBKSP performs significantly better in terms of average travel
time and re-routing frequency, it will typically be the preferred
strategy.

Number of alternative paths. k is a determinant parameter
for the performance of both RkSP and EBKLSP. A larger
k value allows for better traffic balancing but introduces
higher computational complexity. Furthermore, the maximum
allowed difference between the slowest path and the fastest
path is 20% in our setting. Therefore, large k£ values may
not be necessary because they would lead to computing many
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useless paths. Figure 8 compares the performance of RkSP and
EBKSP with different & values on the Brooklyn network. When
k =1 the two methods degenerate into DSP, which produces
the largest travel time at the lowest CPU cost. RkSP does
not exhibit any performance improvement for k£ > 2, while
EBKSP consistently produces lower travel times with higher &
values. From Figure 8 (b), we can see that the computation cost
increases linearly with & for both methods. However, EBKSP is
faster than RkSP especially for larger & (e.g., EBKSP requires
23% less cpu time than RkSP when k equals 5). In conclusion,
EBKSP has a much more robust and efficient performance than
RKSP. Choosing the k value is a matter of trade-off between
improving the average travel time and the computational cost.

Urgency function. EBkSP uses an urgency function to
sort the list of vehicles selected for re-routing. To measure
the performance difference between the two proposed ranking
policies — RCI and ACT (cf. Definition 3), we conducted
the ANOVA statistics test over the average travel time from
30 EBKSP runs. The results show that ACI produces lower
average travel time than RCI (p<0.01) in a 95% confidence
interval. Hence, we use ACT as our default urgency function
in all the other experiments.

Re-routing period. Within the traffic guidance system, the
re-routing process is triggered periodically at a pre-defined
time interval. A shorter re-routing period leads to higher reac-
tivity of the system, and thus to better travel times. However,
the price to pay is increased computation cost, communication
overhead, and potentially re-routings. At extreme cases, it
might not even be possible to compute the alternative routes
fast enough to push them to vehicles before they reach the
re-routing intersections.

Figure 9 (a) shows the average travel time for different re-
routing periods. Generally, the lower the period, the lower the
average travel time is. Also, the strategies exhibit the closest
results for the lowest period. As the period increases, the
system’s reactivity decreases, which translates into increased
travel time. However, EBKSP consistently produces the lowest
travel time even when the period is large. Furthermore, the
performance loss is lower than with the other two strategies.
Given the trade-offs between the average travel time on the
one side and the computation cost, communication overhead,
and number of re-routings on the other side, we chose a period
of 450s for the other experiments.

Congestion threshold. Another key element determining
the system reactivity is the congestion threshold (i.e., the
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density value on a road segment above which the system
considers it as congested). Choosing a low density threshold
may trigger unnecessary re-routing, which in turn leads to
increased computational burden and re-routings. On the other
hand, if the threshold is too large, congestion may be detected
too late and the re-routing could be less effective. Figure 9 (b)
confirms these hypotheses. When the threshold increases,
the average travel time decreases due to better accuracy of
congestion identification. However, above a certain threshold
value, the congestion relief mechanism is triggered too late,
leading to an increase of the average travel time. It is important
to notice that the threshold depends on the network layout and
type of the roads. For example, we observed that longer road
segments work better with larger thresholds, while shorter road
segments work better with slightly lower thresholds; in all the
other experiments, we used 6=0.7 for Brooklyn and §=0.9 for
Newark.

Compliance rate. It is unrealistic to assume that every
driver follows the re-routing guidance. The drivers’ compli-
ance rate (i.e., the proportion of drivers who accept the guid-
ance) is an important factor for the re-routing strategy design.
Therefore, we measured the average travel time while varying
the compliance rate. Figure 10 (a) indicates that the average
travel time can be significantly improved by all three strategies
even under low compliance rates. Logically, Figure 10 (b)
shows the performance improves for higher compliance rates.
Somewhat surprisingly, we observe the performance degrades
slightly for very high compliance rates. We believe this is due
to our conservative approach to re-route more vehicles than
necessary; thus, the strategies can be optimized even further.

Penetration rate. To understand how easy is to deploy
our solution in real life, we study the effect of penetration
rate (i.e., proportion of vehicles which have our software)
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on the average travel time. Figure 11 (a) shows the results
when traffic data is collected only from vehicles (no support
from road-side sensors). When the penetration rate is low, the
performance is the same as “noreroute”. This is because the
service does not have enough data to accurately detect signs of
congestion. Once the penetration rate is greater than 0.3, we
observe increasing benefits. From 0.6 onward, EBkSP starts to
perform better because a larger number of re-routed vehicles
require good load balancing.

To simplify system adoption, we believe that data from road-
side sensors (in conjunction with data from vehicles) can be
leveraged to detect congestion more accurately. Figure 11 (b)
demonstrates, indeed, that the performance can be significantly
improved in such a case even for low penetration rates; thus,
the initial adopters will have an incentive to use the system.
The results also show EBKSP remains the best strategy.

VI. CONCLUSION AND FUTURE WORK

This article presented three strategies for vehicular traffic
re-routing that show very promising results compared to the
“no re-routing” case. The EBKSP strategy balances best the
trade-offs between low average travel time and low overhead
along several parameters. The results also show that significant
benefits can be achieved even with low compliance rate and
moderate penetration rate. The experiments demonstrated how
the performance can be tuned by varying parameters such
as re-routing period, number of alternative paths, and density
threshold. As future work, we plan to explore two directions.
First, we will design an adaptive approach for vehicle selection
that considers additional parameters such as road segment
length, measured compliance rate, and estimated penetration
rate. Second, we will investigate a hybrid architecture that
off-loads parts of the computation and decision process in the
network and uses V2V communication to better balance the
need for privacy, scalability, and low overhead with the main
goal of low average travel time.
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