
FedMTL: Privacy-Preserving Federated Multi-Task
Learning

Pritam Sen, Cristian Borcea

New Jersey Institute of Technology, Newark, New Jersey, USA
{ps37,borcea}@njit.edu

Abstract. Multi-task learning (MTL) enables simultaneous learn-
ing of related tasks, enhancing the generalization performance of
each task and facilitating faster training and inference on resource-
constrained devices. Federated Learning (FL) can further enhance
performance by enabling collaboration among devices, effectively
leveraging distributed data to improve model performance, while en-
suring that the raw data remains on the respective devices. How-
ever, conventional FL is inadequate for handling MTL models trained
on different sets of tasks. This paper proposes FedMTL, a new FL
aggregation technique that handles task heterogeneity across users.
FedMTL generates personalized MTL models based on task simi-
larities, which are determined by analyzing the parameters for the
task-specific layers of the trained models. To prevent privacy leak-
age through these model parameters and to protect the privacy of
the task types, FedMTL employs low-overhead algorithms that are
adaptable to existing techniques for secure aggregation. Extensive
experiments on three datasets demonstrate that FedMTL performs
better than state-of-the-art approaches. Additionally, we implement
the FedMTL aggregation algorithm using secure multi-party compu-
tation, showing that it can achieve the same accuracy with the plain-
text version while preserving privacy.

1 Introduction
The growing volume of data generated by smart phones and IoT de-
vices enables them to train models for many tasks. Multi-task learn-
ing (MTL) [5] proves particularly useful for mobile and IoT devices
that require local model training to uphold privacy (i.e., avoid send-
ing data to a server for centralized training), as the overhead of MTL
is comparatively lower on resource-constrained devices than training
individual models for each task. For example, a device can collect au-
dio signals and employ MTL models for tasks such as speech recog-
nition, speaker identification, and emotion detection. Autonomous
vehicles, likewise, can capture video data to train MTL models for
lane detection, recognizing traffic signs, predicting pedestrian intent,
and detecting obstacles. Text data gathered by mobile devices can
also be used to train MTL models for sentiment analysis, text sum-
marization, spam detection, and named entity recognition.

Although these models can be trained independently by each de-
vice, collaboration among devices can further improve model perfor-
mance by allowing them to learn from each others’ models trained
on similar or different sets of tasks. However, privacy becomes a
concern when gathering raw data from devices for centralized learn-
ing or when clients exchange data for distributed learning. Federated
learning (FL) [27] allows collaborative training across clients while

keeping client data locally. Unfortunately, conventional FL is not ap-
plicable to MTL scenarios, wherein clients do not collectively train
models for similar sets of tasks. In this paper, we focus on designing
an algorithm that allows clients to obtain personalized MTL models
in an FL setting while safeguarding the confidentiality of user data.

Prior studies [34, 20] on federated MTL assume each client per-
forms only one task, and tune the local models through methods such
as (a) minimizing the parameter differences between models or (b)
clustering models into distinct groups to generate average models for
each group. However, these approaches face challenges when clients
work on different sets of tasks due to: (i) Heterogeneity in model
structures arising from differences in the set of tasks, and (ii) Diffi-
culty of clustering models, as a client model with a specific set of
tasks may yield a similar score to models trained by others on dif-
ferent subsets of tasks, making it difficult to assign a unique cluster
ID. Therefore, it is crucial to design an aggregation algorithm that
considers the heterogeneity of tasks executed by each client. Fur-
thermore, the algorithm needs to ensure the privacy of the model
parameters to prevent leakage of the training datasets [14] and of the
tasks executed by each client. While various privacy-preserving tech-
niques exist for secure aggregation [3, 13], they cannot be applied
directly because of the following challenges: (a) The heterogeneity
of model structures may leak the number and types of tasks in the
dataset, and (b) Analyzing encrypted model parameters and apply-
ing complex algorithms on encrypted data incurs high computation
and communication overhead.

To address these issues, we propose FedMTL, a novel algorithm
to support MTL in the FL setting. FedMTL uses new protocols to
enhance the capabilities of each client model by enabling collabora-
tion among models from the participating clients based on similari-
ties in the tasks they execute. FedMTL generates personalized MTL
models based on task similarities, which are determined by analyz-
ing the parameters for the task-specific layers of the trained mod-
els. FedMTL assumes that the supported tasks have unique IDs and
the clients are aware of the task IDs for which the model has been
trained. Furthermore, it uses a hard parameter sharing-based archi-
tecture [5] for local MTL models. This architecture involves sharing
hidden layers for the related tasks while maintaining task-specific
output layers. The architecture enables the MTL model to understand
the overall data structure while gaining expertise in multiple tasks.
The aggregator of FedMTL applies layer-wise aggregation policies
and computes different sets of weights on clients’ model parameters
to improve the personalization of the MTL models. FedMTL aims to
develop a low resource-consumption approach, enabling straightfor-

ward integration with established privacy-preserving techniques for
secure aggregation. In particular, the secure version of FedMTL aims
to preserve the privacy of: (a) the parameters of the client’s models,
(b) the types of the tasks executed by each client, and (c) the size
of the training dataset. To the best of our knowledge, FedMTL is the
first framework that supports privacy-preserving MTL in FL settings.

To evaluate the effectiveness of FedMTL, we implement the pro-
posed FL aggregation algorithm and privacy-preserving protocols us-
ing PyTorch and conduct experiments on benchmark datasets. The
results show that FedMTL outperforms baseline approaches when
each client trains an MTL model for distinct sets of two tasks.
Furthermore, FedMTL demonstrates its adaptability in cases where
clients’ MTL models are trained on different numbers of tasks —
a scenario not directly supported by the state-of-the-art approaches.
Additionally, we conduct ablation studies that demonstrate the sig-
nificance of our aggregation algorithm compared to alternative meth-
ods. We use CrypTen [17] to implement a secure version of FedMTL
aggregation and achieve the same accuracy performance as the plain
text while preserving the privacy of client data.

The rest of this paper is organized as follows. Section 2 discusses
the related work. Section 3 defines the FedMTL aggregation prob-
lem, and Section 4 describes the FedMTL aggregation algorithm.
Section 5 presents the privacy-preserving protocols for FedMTL.
Section 6 shows the system and security analysis of FedMTL, and
Section 7 presents the experimental evaluation of FedMTL. The pa-
per concludes in Section 8.

2 Related Work

Multi-task learning (MTL) [5, 26, 8, 28] enhances task performance
and reduces training and inference time by simultaneously learn-
ing related tasks. To learn the generic patterns of data, as well as
task-specific features, several MTL architectures [36, 31] adopt hard
parameter sharing, which utilizes the same hidden layers for all
tasks and incorporates task-specific output layers. However, these
approaches typically assume a centralized setup, where the model
trainer has full access to all tasks and data. Our research addresses
scenarios where each client has a small amount of data for training
an MTL model focused on a subset of all the supported tasks in the
system, exploring collaboration among clients to enhance the perfor-
mance of the MTL models.

Federated learning (FL) [27] enables collaboration among clients
without sharing private datasets. In FL, each client trains a model
using its private data, and uploads the model to a central server for
aggregation with models from other clients. To address data hetero-
geneity, several works [22, 15] aim to learn a personalized model
for each client, enhancing compatibility with highly non-IID clients.
FedFomo [40] allows each client to compute personalized aggrega-
tion weights by minimizing validation loss using model information
from other clients, leading to high computational and communica-
tion costs, as well as privacy concerns. The work in [15] introduces
a clustering algorithm to represent relationships among clients and
aggregates models within client groups. FedMSplit [7] enables fed-
erated training on multi-modal distributed data, taking into account
modality incongruity across clients while assuming the task remains
consistent. Despite addressing data heterogeneity, all these methods
overlook the task heterogeneity across clients.

To address task heterogeneity, MOCHA [34] employs an opti-
mization algorithm to fit related models trained for separate tasks.
FedU [12] formulates the federated MTL problem using Lapla-
cian regularization to explicitly leverage the relationships among

the models. Since these approaches update models for all clients
simultaneously, it is necessary to re-run the algorithms to support
a newly added client, leading to waste in bandwidth and computa-
tional resources. FedEM [25] enables each client to learn person-
alized models as mixtures of several component models. The work
in [4] employs a clustering-based training approach to address task
heterogeneity by enabling each client to infer its similarity with oth-
ers by comparing their layer-wise weight updates sent to the server,
and then determining how to aggregate weights for selected similar
clients. In contrast to our work, all these prior studies assume each
client executing a single task.

Although MAS [43] enables clients to train local models for mul-
tiple tasks, it assumes the clients have data and labels for all possible
tasks. MAS allows the server to pick a subset of tasks, and the clients
train models for that specific subset, ensuring task consistency across
all clients. In contrast, FedMTL assumes that each client holds data
for only a subset of tasks, which may differ among clients, making
it a more realistic scenario. Furthermore, FedMTL does not require
collecting all clients’ models for aggregation, and it enhances per-
sonalized MTL models by leveraging the similarities in task-specific
parameters among participating clients’ models.

To avoid data leakage [42, 39] from uploaded model parame-
ters, several studies [35, 41, 33] propose secure aggregation of local
models. These studies employ techniques such as secure multi-party
computation (SMPC) [9], homomorphic encryption (HE) [30], or a
combination of both. However, none of these works are designed to
support MTL where clients’ model architectures are different, each
working on a different set of tasks. In our work, we introduce an
algorithm designed for computing personalized MTL models with
minimal overhead, which has the flexibility to integrate with estab-
lished privacy-preserving techniques for secure aggregation.

3 FedMTL Aggregation Problem Definition
The goal of FedMTL is to design FL aggregation protocols that
enhance personalized MTL models, without imposing heavy com-
putational burdens on devices. We consider a set of tasks U =
{T1, . . . , TK} supported by FedMTL, where the total number of
supported tasks, K = |U|. Each task Tk, k ∈ {1, . . . ,K}, has
a unique integer ID. We consider a hard-sharing architecture for
the multi-task models, with the model parameters represented as
W = {WS ,WT }, where WS and WTk represent the parameters
for the shared layers and task Tk, respectively (shown in Fig. 1).

In each round, FedMTL picks a set of clients C, where the number
of clients is N = |C|. Each client Ci ∈ C trains an MTL model for
a subset of tasks Ui ⊆ U using data Di = {Xi,Yi}, where Xi

represents the input features and Yi denotes the list of labels for
Ki = |Ui| number of tasks, as Yik is the label for task Tk ∈ Ui.
The set of tasks executed by each client can be different. Training on
local data, each client obtains the local model Wi, which consists
of the parameters of the shared layer WS

i and the parameters of the
task-specific layers (task layers) WT

i . We use WT
i [j] to represent

the parameters for j-th task and W
Tk
i to represent the parameters for

the task with ID k, i.e., Tk.
This work focuses on the aggregation protocol employed by the

server to generate personalized MTL models for each client. As
shown in Fig. 1, the aggregator A collects the model parameters from
N clients Wi, i ∈ {1, . . . , N} and aggregates these parameters
to get the personalized model parameters W∗

i = {WS∗
i ,WT∗

i },
where WS∗

i is the aggregated model parameters of the shared layer
and W

T∗
k

i is the aggregated layer parameters for task Tk.

T1 T3

T2 T4

C1

C2

CN

……

FedMTL

𝑾2
𝑆 ,𝑾2

𝑇1, 𝑾2
𝑇2, 𝑾2

𝑇4

Compute Aggregation Weights
𝑝𝑖,𝑗 𝑞𝑖,𝑗,𝑘

Aggregate
Shared Layers

𝑾𝑖
𝑆∗

Aggregate
Task Layers

𝑾𝑖

𝑇𝑘
∗

A

T3

T1

𝑾2
𝑆∗ ,𝑾2

𝑇1
∗

,𝑾2
𝑇2
∗

, 𝑾2
𝑇4
∗

Figure 1. FedMTL Problem Setup

In the case of personalized FL, the optimization problem can be
represented as in Eq. 1, where the function fi : Rd → R denotes the
expected loss over the data distribution of Ci.

∀i,W∗
i = arg min

wi

fi(Wi) (1)

To achieve this, we define pi,j as the weights of client Ci to aggre-
gate the parameters of the shared layers from the local model of client
Cj , as shown in Eq.2. Additionally, we define qi,j,k as the weights to
aggregate the parameters of task layers of Ci using the parameters of
the local model from Cj for task Tk, as shown in Eq.3. For conven-
tional FL that supports only single-task learning, WS

i contains WTk
i

and Eq. 2 is similar to the vanilla FedAvg if pi,j = 1.

WS∗
i =

∑N
j=1 pi,jW

S
j∑N

j=1 pi,j
(2)

W
T∗
k

i =

∑N
j=1 qi,j,kW

Tk
j∑N

j=1 qi,j,k
(3)

The FedMTL aggregation problem is to determine the weights pi,j
and qi,j,k that enhance personalized MTL models in an FL setting.

4 FedMTL Algorithm
This section first presents our analysis (Section 4.1) of the charac-
teristics of the parameters across different layers of the local MTL
models and the similarities of the models trained by the users exe-
cuting different sets of tasks. This analysis provides insights into the
rationale behind our algorithm’s design by highlighting the similar-
ities in parameters at different layers of the local models. Then, we
introduce the aggregation algorithm (Section 4.2) of FedMTL that
improves the personalized MTL models by leveraging similarities
between task-specific parameters to aggregate local models.

4.1 MTL Model Parameter Analysis

To inform the design of FedMTL, we consider at MTL model
running over the CelebA dataset [24] and randomly partition it
among 60 clients using the symmetric Dirichlet distribution. We
consider 4 tasks, where each task Tk, k ∈ {1, . . . , 4} consists of
detecting 5 different face attributes. The clients are grouped into
6 groups of equal size, where each group Gi, i ∈ {1, . . . , 6},
trains an MTL model for the i-th set of tasks from the list:
[[T1], [T2], [T3], [T1, T2], [T1, T3], [T1, T4]]. As local MTL models,
we use the LeNet [19] architecture as the base, with a task-specific
linear layer for each task. We then collect the trained model parame-
ters after executing 20 epochs and visualize those weight updates by
t-SNE [38] in Fig. 2.

We analyze the parameters of the MTL models in terms of (i) task
layers and (ii) shared layers. Fig. 2(a) shows the parameters of the

10 8 6 4 2 0 2 4

4

2

0

2

4

1:[1]
2:[2]
3:[3]
4:[1]
4:[2]
5:[1]
5:[3]
6:[1]
6:[4]

(a)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

1

0

1

2

3

4

5

6

1:[1]
2:[2]
3:[3]
4:[1,2]
5:[1,3]
6:[1,4]

(b)

25 20 15 10 5 0 5 10 15
25

20

15

10

5

0

5

10

15

1:[1]
2:[2]
3:[3]
4:[1,2]
5:[1,3]
6:[1,4]

(c)

Figure 2. t-SNE visualization of 60 MTL model parameters: (a) task
layers, (b) top shared layers, (c) bottom shared layers

task layers mapped into 2-dimensions, where the label Gi : [Tk]
represents the parameters WTk for the task Tk of the clients in group
Gi. We observe that the parameters of the task layers are very similar
for the clients performing the same set of tasks. Such similarity can
even be across task groups; for example, parameters for task T1 from
all groups of clients are very close, even though the task is executed
in conjunction with different tasks.

We analyze the shared layers WSl , 1 ≤ l ≤ L, of the MTL mod-
els, where L is the number of shared layers. For a linear layer in the
LeNet model, which is closer to the task layer (i.e., l → L), the pa-
rameters exhibit similarity among clients within the same group (as
shown in Fig. 2(b)), as these models are trained for the same set of
tasks. For some clients in groups G4, G5, G6, these parameters are
close to the parameters of the clients in group G1, since there is a
common task T1 in all of these groups. Fig. 2(c) shows the parame-
ters of the convolution layer, which is the bottom layer (i.e., l → 1)
in the shared layers of the LeNet model. For these bottom layers, the
parameters do not show any specific pattern. This analysis leads us to
the following insight for the design of FedMTL: although the shared
layers learn generic patterns of data, some layers are influenced more
by the tasks, as these parameters are significantly updated by the
gradients computed based on the losses associated with each task.
Our experimental results in Section 7 further demonstrate that the
parameters in task-specific layers are similar across clients perform-
ing the same task. Therefore, FedMTL should treat the shared layers
and task-specific layers separately, prioritizing the parameters in the
task-specific layers to evaluate similarity across clients’ models.

4.2 FedMTL Aggregation

When dealing with MTL in FL settings, the model parameters Wi,
cannot be directly aggregated due to the heterogeneity in model ar-
chitecture arising from variations in the number and types of tasks ex-
ecuted by the clients. Therefore, we consider aggregating the shared
layers and task layers separately. Although the shared layers from all
clients have the same structure, identical weights pi,j should not be
assigned for aggregation in Eq. 2, as the shared layers are learned
differently by clients executing different sets of tasks. Regarding the
task layers, the i-th client’s task layers, denoted as WTk

i for task Tk,
can be improved by learning from the task layers WTk

j , j ∈ N (C),
where N (C) is the subset of clients executing Tk. Based on the
observations presented in Section 4.1, we propose employing the
FedMTL algorithm to aggregate the local models, thereby enhanc-
ing both the task layers and the shared layers to create a personalized
MTL model for each client. In each round, FedMTL first computes
the similarity score for each pair of clients by analyzing the task lay-
ers of each client’s MTL model, and then uses the similarity scores
to compute the aggregation weights pi,j and qi,j,t to aggregate the
shared and the task layers as in Eq. 2 and 3, respectively.

Computation of Similarity Scores. To compute the similarity
score for a pair of clients (Ci, Cj), FedMTL compares the parame-
ters of the task layers and identifies the one-to-one mapping between
the task layers of the two clients that maximizes the overall score.
The overall similarity score also captures the similarity in the shared
layers; if the task layers are similar, there is a high likelihood that
the shared layers are as well. FedMTL analyzes the parameters of
the task layers instead of relying on matching task IDs, as data from
different domains can be used for the same task, and thus, does not
guarantee similarities in the model parameters.

For a pair of clients, FedMTL first computes the cosine similar-
ities of all pairs of tasks between these clients, denoted as Ai,j ∈
RKi×Kj , using Eq. 4. Then, FedMTL uses a standard Hungarian al-
gorithm [18], HScore, to find the one-to-one task mapping with max-
imum cumulative score Hi,j (Eq. 5). The similarity score for client
Ci with respect to clients Cj , denoted as Si,j ∈ [0, 1], is computed
by dividing the score Hi,j by the number of tasks Ki, as shown in
Eq. 6. Here, Si,j might not necessarily be the same as Sj,i, since the
number of tasks executed by the clients can differ.

Ai,j [m][n] = cos(WT
i [m],WT

j [n]);

m ∈ {1, . . .Ki}, n ∈ {1, . . .Kj}
(4)

Hi,j = HScore(Ai,j) (5)

Si,j = Hi,j/Ki (6)

Aggregation of the MTL models. To obtain the personalized
MTL model for a client Ci, FedMTL assigns varying weights to all
clients’ MTL models based on the similarity score, as calculated in
Eq. 6. To mitigate adverse effects arising from highly dissimilar mod-
els belonging to another client Cj , FedMTL sets Si,j = 0 if the score
Si,j falls below a threshold value Zi, effectively excluding models
that differ significantly from aggregation. The threshold value Zi is
adaptable, 0 ≤ Zmin ≤ Zi ≤ Zmax ≤ 1, allowing clients to select
their threshold based on the current model’s (Wi) performance. In
our experiments, initially, the threshold value is set low, Zi = Zmin,
to encourage learning from a diverse set of clients. As a client partic-
ipates in multiple rounds and achieves improved model performance,
Zi is programmatically increased in each round by (1 − Zmin)/R,
where R is the total number of rounds. This adjustment facilitates
learning from more similar models, thereby reducing the need for
substantial changes in the parameters, and can be continued until the
model’s accuracy converges on the test dataset. The updated score is
expressed as in Eq. 7.

Si,j =

{
0 if Si,j < Zi

Si,j otherwise
(7)

For Ci, FedMTL computes the aggregation weights pi,j , using
Eq. 8, and then uses pi,j in Eq. 2 to compute WS∗

i to aggregate
the shared layers from all clients Cj , j ∈ {1, . . . , N}. Here, Dj de-
notes the size of the training dataset of client Cj , and Si,j represents
the pairwise similarity scores of the client models, which are used to
compute the aggregation weights. Eq. 8 is equivalent to the aggrega-
tion weights for FedAvg, if Si,j = 1.

pi,j = Si,j ×Dj (8)

Similarly, FedMTL computes the weights qi,j,k using Si,j as in
Eq. 9 and uses qi,j,k in Eq. 3 to obtain the parameters of the task
layers WTk

i for task Tk of Ci, by aggregating the parameters of the
corresponding task W

Tk
j from Cj .

qi,j,k =

{
Si,j ×Dj if Tk ∈ Uj

0 otherwise
(9)

FedMTL uses the same aggregation weights for all parameters in a
model, such that the scaled model captures a similar parameter distri-
bution as the local model. Following this approach, the personalized
model of a client is the linear combination of all the models of users
executing a similar subset of tasks.

5 Privacy-Preserving FedMTL

Improved performance through personalization in FedMTL comes
with a trade-off in privacy, as the aggregator needs access to infor-
mation about the tasks executed by each client and their local model
parameters. To preserve the privacy of client data in FL, we can use
an established cryptographic technique E , such as SMPC or HE, for
secure aggregation. We assume that fundamental operations (e.g., ad-
dition, multiplication, comparison, etc.) are supported in E . However,
it is required to design secure protocols which the clients invoke to
protect the numbers/types of the tasks and the model parameters be-
fore uploading them to the server. Furthermore, server-side protocols
must be developed to implement the aggregation algorithm within the
specified cryptographic domain. In this section, we specifically ex-
plore secret sharing [11, 6] in SMPC, as the cryptographic technique
to design a secure FedMTL system. The secret-sharing scheme al-
lows sharing of a secret x among P servers, such that the servers can
use their shares to compute a function, while each server learns noth-
ing about the secret. Next, we describe the threat model, the overview
of the privacy-preserving FedMTL, and the secure protocols to be
followed at the client and server sides.

5.1 Threat Model

We consider an honest-but-curious adversary in a P -party SMPC set-
tings, where each of the P servers honestly follows the protocols, but
may individually attempt to learn clients’ private data. We assume
that the application developer is responsible for setting up the dis-
tributed trust, and the parties (client and servers) will communicate
using a secure channel.

In our threat model, we consider that at most P − 1 servers can
collude to learn clients’ sensitive data and global statistics. A secure
version of FedMTL guarantees the following privacy properties:

• Individual model parameters of the clients are not revealed to any-
one other than the source client itself.

• IDs of the tasks executed by each client are protected.
• Size of the training dataset used by each client is protected.
• Secure aggregation of encrypted models produces correct person-

alized models, achieving the same level of accuracy as if the ag-
gregation were done using plain text data.

5.2 System Overview

Figure 3 shows the secure FedMTL system with P aggregators and
N clients. The aggregators communicate with each other to com-
pute the required parameters encrypted in secret-shared format, en-
suring privacy against the threat model. In additive (or arithmetic)
secret sharing (A-SS) [11, 6], P values (x1, . . . , xP) are chosen
uniformly at random, subject to the requirement that

∑P
i=1 xi = x

(mod L), where L = 2l represents l-bit integers. This can be done

S1

S2

SP

C1

C2

CN

……….

≪𝑾2 ≫,≪ 𝐷2 ≫

≪𝑾2
∗ ≫

Figure 3. Secure FedMTL system using SMPC

by choosing x1, . . . , xP−1 ∈ ZL uniformly at random, and then set-
ting xP = x −

∑P−1
i=1 si (mod L). The reconstruction algorithm

simply adds all the shares modulo L, that is, x = (
∑

p∈P [x]p)
(mod L). We denote the sharing of x across the parties p ∈ P by

⟨⟨x⟩⟩ =
{
⟨⟨x⟩⟩p

}
p∈P

, where ⟨⟨x⟩⟩p indicates p ’s share of x. Funda-

mental operations are already supported in A-SS; certain functions,
such as addition, can be performed locally, while others, such as mul-
tiplication and comparison, require communication between servers.

To preserve the data privacy in FedMTL, each client Ci uploads
the parameters of the shared layers, task layers, and size of the dataset
in encrypted format to the aggregator servers as ⟨⟨WS

i ⟩⟩, ⟨⟨WT
i ⟩⟩ and

⟨⟨Di⟩⟩ respectively. The servers invoke secure protocols to compute
⟨⟨WS∗

i ⟩⟩ and ⟨⟨WT∗
i ⟩⟩ which are downloaded and decrypted by Ci

to get the personalized model W∗
i = {WS∗

i ,WT∗
i } in plain text.

Since each of the P aggregator servers can monitor the compu-
tation’s control flow, it is essential to use oblivious operations that
avoid data-dependent control flow. This ensures the security of the in-
put, output, and intermediate results throughout the aggregation pro-
cess. The secure aggregation protocols in FedMTL provides the secu-
rity guarantees described in Section 5.1 to ensure that honest clients
no longer have to put their complete trust in all servers for privacy.
As long as one server is functioning correctly, privacy is guaranteed.

5.3 Secure Aggregation Protocols

FedMTL employs secure protocols designed to ensure the privacy of
client data during the FL workflow. Next, we present the workflow
(Algorithm 1) and the protocols for the clients and the servers.

Model initialization. To participate in the privacy-preserving
FedMTL workflow, a client requests the aggregator to get the list of
supported tasks U, and the complete MTL model architecture with
the shared layers WS and task layers WTk , 1 ≤ k ≤ K = |U|,
initialized with WS(0)

and WTk
(0)

. The maximum number of pa-
rameters for the task layers is dtm = maxTk∈U|WTk |. Since these
parameters are not confidential, a client can connect to any aggrega-
tor to receive this data in plain text.

The client Ci selects a set of tasks Ui ⊆ U, and create the local
MTL model W(0)

i = {WS(0)

i ,WT (0)

i }, where WT (0)

i contains the

initial parameters WTk
(0)

i for Tk ∈ Ui.
Client side data preparation. At each round, the aggregator ran-

domly selects a subset of clients C, N = |C|, as in traditional
FL. Then, it invokes the protocol FSU (defined below) for each
client Ci, initiating the client to train the MTL model using its
training dataset of size Di. After training the model for a prede-
fined number of epochs as in traditional FL, Ci gets the model
Wi = {WS(r)

i ,WT (r)

i } and sets the threshold Zi in it’s r-th com-
munication round. Then, Ci follows the steps below to upload its
private data for secure aggregation.

• FSU encrypts the parameters of the shared layers as ⟨⟨WS
i ⟩⟩,

thereby securing all the values in the vector WS
i .

Algorithm 1 Secure FedMTL Aggregation
Input: Communication Round R, number of tasks K, initial model
parameters W(0) = {WS(0)

,WTk
(0)

}, 1 ≤ k ≤ K
Output: MTL models W∗

i for Ci

1: for r = 1, . . . , R do
2: Randomly selects a subset of clients C, N = |C|
3: for client Ci ∈ C do
4: ⟨⟨WS

i ⟩⟩, ⟨⟨WT ′
i ⟩⟩, ⟨⟨Mi⟩⟩, ⟨⟨Di⟩⟩, ⟨⟨Zi⟩⟩ = Ci.FSU ()

5: ⟨⟨WT ′′
i ⟩⟩ = ⟨⟨Mi⟩⟩⊺ × ⟨⟨WT ′

i ⟩⟩
6: end for
7: ⟨⟨S⟩⟩ = FH(⟨⟨WT ′′

⟩⟩), where ⟨⟨WT ′′
[i]⟩⟩ = ⟨⟨WT ′′

i ⟩⟩
8: for client Ci ∈ C do
9: ⟨⟨WS∗

i ⟩⟩ = FS(⟨⟨WS⟩⟩, ⟨⟨S⟩⟩, ⟨⟨D⟩⟩)
10: ⟨⟨WT∗∗

i ⟩⟩ = FT (⟨⟨WT ′′
⟩⟩, ⟨⟨S⟩⟩, ⟨⟨D⟩⟩)

11: ⟨⟨WT∗
i ⟩⟩ = ⟨⟨Mi⟩⟩ × ⟨⟨WT∗∗

i ⟩⟩
12: W∗

i = Ci.FSR(⟨⟨WS∗
i ⟩⟩, ⟨⟨WT∗

i ⟩⟩)
13: end for
14: end for

• As WTk
i may vary in size for different tasks Tk ∈ Ui, FSU en-

sures uniform size dtm by padding zeros at the end, thereby pro-
tecting the type of the task.

• To protect the number of tasks, FSU generates fake task-specific
vectors, each of size dtm with zero value, and appends those vec-
tors to WT

i to generate WT ′
i ∈ RK′

i×dtm , where K′
i = |WT ′

i |,
Ki ≤ K′

i ≤ K.
• FSU generates a mapping Mi ∈ {0, 1}K

′
i×K that maps the index

of each task-specific parameter WT ′
i to the ID of that task. Thus,

Mi[j][k] = 1, if Ui[j] = Tk, otherwise 0.
• FSU uploads ⟨⟨WS

i ⟩⟩, ⟨⟨WT ′
i ⟩⟩, ⟨⟨Mi⟩⟩, ⟨⟨Di⟩⟩, ⟨⟨Zi⟩⟩.

In this way, FSU protects the dataset size, the actual number and
type of the executed tasks, and the associated model parameters for
both the shared and task layers.

Server side aggregation. At each round, FedMTL computes the
task-specific parameter from Ci for all T tasks, WT ′′

i ∈ RK×dtm by
performing matrix multiplication of M⊺

i and WT ′
i , where M⊺

i is the
transpose of matrix Mi. Using matrix multiplication in the secret-
sharing scheme, the aggregator servers get the share of ⟨⟨WT ′′

i ⟩⟩ for
all clients (Line 5). Then, for each pair of clients (i,j), 1 ≤ i, j ≤ N ,
it uses the secret-sharing version of the Hungarian algorithm FH and
computes ⟨⟨Si,j⟩⟩ following Eq. 5, 6, 7. Next, the aggregator servers
invoke: (i) FS , to securely compute Eq. 8 and 2 to get the parameters
of the shared layers ⟨⟨WS∗

i ⟩⟩ (Lines 9), (ii) FT , to securely compute
Eq. 9 and 3 to get the parameters of the task layers ⟨⟨WT∗∗

i ⟩⟩ and
mapped into the parameters for the required tasks ⟨⟨WT∗

i ⟩⟩ for Ci

using the matrix ⟨⟨Mi⟩⟩ (Lines 10-11). FH , FS and FT are computed
securely using standard techniques for addition, multiplication and
comparison operations in A-SS domain.

Retrieving personalized models. Client Ci invokes FSR (Line
12) to download ⟨⟨WS∗

i ⟩⟩ and ⟨⟨WT∗
i ⟩⟩ from the aggregator and de-

crypts them to obtain the updated model W∗
i = {WS∗

i ,WT∗
i }.

Subsequently, the client can proceed with training the model for the
upcoming round.

5.4 Secure FedMTL Example

Fig. 4 illustrates the privacy-preserving FedMTL aggregation for 2
clients in a single round. Client C1 trains the model for tasks T1

[5, 10, 10, 25] [10, 15, 20, 30]

[10, 20] [4, 5, 8] [12, 25] [40, 50]

C1
C2

[5, 10, 10, 25] [10, 15, 20, 30]

[10, 20, 0]

[4, 5, 8]

C1
C2D1 = 100, Z1 = 0.8

1 0 0
0 1 0
0 0 0

[0, 0, 0]

[12, 25, 0] 1 0 0
0 0 1[40, 50, 0]

𝑾1
𝑇1

𝑾1
𝑆

M1 M2

D1 = 50, Z2 = 0.8

[10, 20, 0]

[4, 5, 8]

[0, 0, 0]

[12, 25, 0]

[40, 50, 0]

[0, 0, 0]

A12 =
0.99 0 0.97
0.6 0 0.62
0 0 0

1 0.8

0.8 1
S =

[6.4, 11.4, 12.8, 26.4]

[10.5, 21.4, 0]

[4, 5, 8]

C1
C2

[0, 0, 0]

𝑾1
𝑇1
∗

[6.9, 11.9, 13.8, 26.9]

[10.7, 21.9, 0]

[40, 50, 0]

FedMTL
Aggregator

1 1

2

3

4

Z1 = 0.8
Z2 = 0.8

𝑾1
𝑇2

𝑾1
𝑇𝑥

𝑾2
𝑇1

𝑾2
𝑇3

𝑾2
𝑆

𝑾1
𝑇2
∗

𝑾1
𝑇𝑥
∗

𝑾2
𝑇1
∗

𝑾2
𝑇3
∗

𝑾1
𝑆∗ 𝑾2

𝑆∗

Figure 4. Example of privacy-preserving FedMTL aggregation of the
MTL models from two clients C1 and C2

and T2, while client C2 trains the model for tasks T1 and T3. Sub-
sequently, for each client Ci, FedMTL invokes the FSU protocol
to prepare the data for upload, which includes the parameters of the
shared layers WS

i , parameters of the task layers WTk
i , task-mapping

Mi, dataset size Di, and threshold value Zi, as shown in step 1⃝
(Fig. 4). For each task layer, clients pad the parameter vector with
zero values such that all task layers have the same number of param-
eters, thereby protecting the types of the tasks. Additionally, a client
can add one or more fake tasks to protect the actual number of tasks
for which the MTL model is trained. For instance, C1 adds a fake
task WTx

1 in. Fig. 4. In step 2⃝, FSU encrypts all the values and
uploads the encrypted data to the aggregator servers.

The FedMTL aggregator invokes FH to calculate the similari-
ties Ai,j between the task layers of Ci and Cj . It then employs the
Hungarian assignment algorithm and uses the threshold value Zi to
compute the similarity matrix S. In step 3⃝, the similarity matrix S
is employed by protocols FS and FT to calculate the aggregation
weights pi,j and qi,j,t for aggregating the shared and task layers of
the clients’ models, respectively. Finally, in step 4⃝, the aggregated
model parameters are downloaded by the clients.

6 System Overhead and Security Analysis

This section presents first the overhead analysis of FedMTL without
privacy protection, and then the overhead and security analysis of the
privacy-preserving version of FedMTL.

6.1 Overhead Analysis of FedMTL without Privacy

The FedMTL aggregation incurs similar computation and commu-
nication overhead as state-of-the-art approaches that analyze model
parameters at the server to provide personalized models. We consider
N number of clients participating in training, with the model param-
eters denoted as d = ds+K×dtm, where ds is the number of param-
eters in the shared layer, dtm is the maximum number of parameters
in the task-specific layer and K is the number of tasks. In FedMTL,
there is no additional computational overhead at the client side other
than the training of the MTL models. For aggregation, the computa-
tional complexity at the server side is O(N2(d+K2×dtm+K3)).
Typically, d ≫ dtm and when T is small, the complexity becomes
O(N2d), which is similar to FedAMP [16]. For FedFomo [40] and
MOCHA [34], the complexity at the server is O(Nd); however,
both approaches offload additional computation onto clients. Other
state-of-the-art approaches, such as FedAvg [27], FedProx [21], and
pFedMe [37], have a lower computational cost of O(Nd), but they
do not perform well in the case of task-heterogeneity.

In FedMTL, each client uploads the model parameters, dataset
size, task-mapping, and threshold value to the aggregator. The dataset
size, task-mapping, and threshold value are very small and can be
represented in a few bytes. Therefore, the amount of data (including
upload and download) that each client needs to transmit per commu-
nication round in FedMTL is approximately 2 · ∆, where ∆ repre-
sents the size of the model. FedMTL’s overhead is lower compared
to state-of-the-art approaches, such as FedFomo, MOCHA, FedAMP,
FedDWA, etc. The overhead of FedMTL is the same as that of Fe-
dAvg, FedProx, pFedMe. However, FedMTL outperforms them in
terms of accuracy while demonstrating the capability of aggregation
even when clients train MTL models on different sets of tasks.

6.2 Overhead of Secure FedMTL

The overhead associated with the secure aggregation of FedMTL de-
pends on the cryptographic technique used to protect the privacy of
the data. We present the overhead analysis in the case of using SMPC
for privacy-preserving FedMTL as discussed in Section 5.

In secure FedMTL, each client Ci incurs negligible computa-
tional overhead in preparing the data for uploading, as it only in-
volves preparing the task-map of size K′

i × K and updating the
K′

i number of vectors of size dtm that contain the parameters of
the task-layers. At the server side, the computational complexity is
O(N2 × (d + K2 × dtm + K3)), which is the same as the plain
text in asymptotic notation. However, in a secret-shared domain that
utilizes Beaver triples [2] to evaluate multiplication operations, one
multiplication in plain text is equivalent to four multiplications and
three additions in A-SS format.

In secure FedMTL using SMPC, each client needs to transmit ap-
proximately 2 × P × ∆ of data (including upload and download)
per communication round. Here, ∆ represents the size of the model,
and P is the number of aggregator servers. The same amount of data
transmission is required for other state-of-the-art approaches, such as
FedAvg, when using SMPC for secure aggregation.

To execute the secure protocols in FedMTL, aggregator servers
need to communicate with each other. For example, when compar-
ing two B-bit numbers, the standard implementation requires log(B)
rounds of communication. FedMTL protocols, such as, FS and FT ,
involve only multiplication operations, and can be computed in a sin-
gle round. The computation of similarity scores using the FH pro-
tocol involves calculating the score for each pair of clients; thus, the
simple implementation requires a large number of communication
rounds. However, by processing data in batches, the number of com-
munication rounds can be reduced.

6.3 Security Analysis of Secure FedMTL

FedMTL employs the standard additive secret-shared (A-SS) ap-
proach to upload the clients’ private data to the aggregator servers.
Thus, data at rest (model parameters, dataset size, task-mapping
threshold value) is information-theoretically secure [10] against the
threat model following Axiom 1. For aggregation, FedMTL uses ex-
isting A-SS protocols, which are secure following Axiom 2. After
the axioms, we present two theorems to show that Secure FedMTL
preserves the privacy of client data throughout the FL workflow.

Axiom 1. A value x is information-theoretically secure in additive
secret-shared format even if P − 1 out of P parties collude.

Axiom 2. There exist secure protocols for fundamental operations
(arithmetic operations, comparisons, sorting) that preserve the pri-
vacy of the input and output of each operation.

Theorem 1. FSU secures each client’s uploaded data to the aggre-
gator servers, protecting the parameters of the trained MTL model
and the number and types of executed tasks from attacks described
in the threat model.

Proof. In FedMTL, each value in the vectors representing the pa-
rameters of the shared layers and task-specific layers is encrypted in
A-SS format. Therefore, the parameters of the trained MTL model
are secure, following Axiom 1. Since the size of the vectors for each
task-layer is the same, the adversary cannot identify the type of the
task by observing the volume of data. Additionally, since each client
can add fake task-layers, the adversary cannot learn the actual num-
ber of executed tasks by observing the number of task-layers. Thus,
the parameters, as well as the number and types of tasks, are pro-
tected against the threat model.

Theorem 2. The private data of each client is protected against the
threat model throughout the execution of the secure protocols (FH ,
FS , FT) for FedMTL aggregation.

Proof. In FedMTL aggregation, FH computes the similarity score
for each pair of clients, involving addition, element-wise multiplica-
tion, matrix-multiplication, and comparison operations in the secret-
shared domain. Since the similarity score is calculated over all pos-
sible pairs of tasks, one from each client, it does not leak the number
or types of tasks. Finally, FS and FT compute the aggregated pa-
rameters using the matrix-multiplication operation. Since these oper-
ations are secure in the secret-shared domain following Axiom 2, the
clients’ private data is protected against the threat model throughout
the FedMTL workflow.

7 Evaluation
The evaluation has several goals: demonstrate the feasibility of
FedMTL when clients execute different numbers and types of
tasks, compare the performance of FedMTL with state-of-the-art ap-
proaches, conduct ablation studies to assess the performance of the
proposed algorithm compared to alternative approaches, and demon-
strate the performance of the privacy-preserving version of FedMTL
in terms of accuracy and overhead.

7.1 Experimental Setup

Dataset description, Data and Task distribution. We evaluate
FedMTL on two face attribute datasets (CelebA and LFWA) [23] and
one indoor scene dataset, NYUD2 [29], which are commonly used
to evaluate MTL models. For CelebA/LFWA, we consider K = 8
tasks, each involving the classification of L = 5 face attributes. For
NYUD2, we consider K = 4 tasks, each involving L = 3 cate-
gories for pixel-wise semantic segmentation. Additionally, to assess
FedMTL’s effectiveness in scenarios with both data and task hetero-
geneity, we merge CelebA and LFWA to form a unified face attribute
dataset, referred to as FaceA.

For each dataset, we select a number of samples D and distribute
the samples among N clients using a symmetric Dirichlet distribu-
tion. We set N = 60, 80 and 20 for CelebA/LFWA, FaceA, and
NYUD respectively. Each client Ci splits its dataset into training,
validation, and test sets with a distribution of 70%, 15%, and 15%,
respectively. In FedMTL, Ci can select any number of tasks to partic-
ipate in the FL workflow. Then, to choose tasks from the set U, where
K = |U|, within the dataset, each client Ci (where i ∈ 1, . . . , N)
selects a random number of tasks Ki such that 1 ≤ Ki ≤ K. Subse-
quently, the client randomly picks Ki tasks from the task-set U. The
values for N , D, and K for the datasets are shown in Table 1.

Table 1. Dataset parameters

Dataset D N K L

CelebA 12,000 60 8 5
LFWA 9,000 60 8 5
FaceA 16,000 80 8 5

NYUD2 1,449 20 4 3

0 10 20 30 40 50 60
Client ID

0

50

100

150

200

Nu
m

be
r o

f s
am

pl
es

(a)

1 2 3 4 5 6 7 8
Number of tasks

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f c
lie

nt
s

(b)

1 2 3 4 5 6 7 8
Task ID

0
5

10
15
20
25
30
35
40

Nu
m

be
r o

f c
lie

nt
s

(c)

Figure 5. Sample distribution of tasks among N = 60 clients: (a) Number
of samples per client, (b) Distribution of clients across different numbers of

tasks, (c) Distribution of clients across different tasks

Table 2. Number of parameters in MTL models

Model Architecture #Parameters in the shared layers #Parameters in a task-layer

LeNet 1,628,210 2,505
MobileNet_v2 2,223,872 6,405

SegNet 24,943,296 37,123

We consider two different task-distributions: (a) D1: where each
client selects Ki = 2 tasks, (b) D2: each client selects Ki tasks
where 1 ≤ Ki ≤ K.

To provide an illustration for one dataset, Figure 5 shows the num-
ber of samples per client and task distributions for the CelebA dataset
using a random seed.

Implementation Details. For the CelebA/LFWA/FaceA datasets,
we use LeNet [19] and MobileNetv2 [32] model architectures. For
NYUD2 we use SegNet model architecture [1]. For client Ci, we
replace the last layer of each model with Ki task layers, where
each task layer is a linear layer with L number of neurons for
CelebA/LFWA/FaceA and a sequence of convolution layers with L
output channels for NYUD2. Table 2 shows the number of shared
parameters and task-layer parameters in each model.

We evaluate the performance of FedMTL by comparing it with
state-of-the-art approaches, implemented using the open source li-
brary PFLlib 1 and use the default hyper-parameters.

To implement secure FedMTL aggregation, we employ
CrypTen [17], which provides APIs for creating arithmetic
shares of private data and supports P-party SMPC computations.
We use 64 bits (B = 64) to represent values in A-SS format. The
experiments are conducted on a 3.4GHz Intel Core i7, with parties
running in separate processes. We implemented the Secure FedMTL
prototype to demonstrate the feasibility of the proposed system using
CrypTen’s basic APIs, without focusing on latency optimizations.
It is possible to reduce both the latency and the overall overhead
through pre-computation and parallel data processing.

Comparison methods. We compare FedMTL with the follow-
ing approaches: (i) FedAvg [27], which is the vanilla FL technique,
(ii) FedProx [21], which employs a proximal term to formulate the
clients’ optimization objectives to mitigate the adverse influence of
heterogeneity on FL (iii) MOCHA [34], which considers each client
as a separate task and applies MTL with model similarity penaliza-
tion, (iv) pFedMe [37], which uses a regularized loss function to
optimize the personalized model w.r.t each client’s local data dis-
tribution, (v) FedFomo [40], which computes personalized aggre-

1 https://github.com/TsingZ0/PFLlib

Table 3. Comparison of FedMTL with Baselines

Dataset # CelebA LFWA FaceA NYUD2

Acc (%) Acc (%) Acc (%) mIoU (%) PixAcc (%)
FedMTL 83.3 70.9 78.3 37.2 74.4
FedAvg 76.0 64.7 68.5 28.9 62.0
FedProx 76.4 64.7 69.3 30.4 63.9
MOCHA 81.7 67.9 76.9 34.9 71.1
pFedMe 76.2 64.7 69.2 30.3 64.2
FedFomo 80.9 68.9 76.1 35.1 72.0
FedAMP 81.9 68.4 77.1 35.4 71.3

gation weights via minimizing the validation loss on each client
based on the model information collected from other clients, and (vi)
FedAMP [16], which employs federated attentive message passing
to facilitate collaboration among similar clients.

Training and Aggregation Settings. For the experiments, we as-
sume 100% client participation, although FedMTL would still work
in the case of partial participation. The number of local training
epochs is set to 1, and the number of global communication rounds
is set to 20. We employ mini-batch SGD as the local optimizer
in all approaches. The batch size for each client is set to 32 for
CelebA/LFWA/FaceA, and 2 for NYUD2. For aggregation, we vary
the threshold Z from 0.75 to 0.95 linearly. We conduct tests for all
methods over 3 runs and report the average results.

Evaluation Metrics. For CelebA/LFWA/FaceA, we report the av-
erage test accuracy of the personalized MTL models across all par-
ticipant devices. For NYUD2, we report mIoU and pixel accuracy for
the semantic segmentation task.

7.2 Results and Analysis

Comparison with Baselines. We compare FedMTL with state-of-
the-art approaches when clients are executing the same number
of tasks (using task-distribution D1). The model architecture re-
mains the same across clients, which is required for the baseline
approaches. The results presented in Table 3 show that FedMTL
achieves better performance compared to other methods for all
datasets. FedAvg, FedProx, and pFedMe achieve low accuracy be-
cause they aggregate local models without considering task hetero-
geneity, and the accuracy is impacted by the aggregation of model
parameters from conflicting tasks. FedFomo and FedAMP manage
to tackle this adverse effect by applying regularization or person-
alized aggregation weights. In contrast, FedMTL assigns aggrega-
tion weights based on similarities in task layers, enabling clients
to achieve higher accuracy. FedMTL avoids the complex client-side
analysis in FedFomo and FedAMP, reducing computation and com-
munication overhead in resource-constrained devices.

Data and Task Heterogeneity. We consider N = 80 clients,
where Ci can use data samples from either CelebA or LFWA within
FaceA. The tasks U, K = |U| = 8, are distributed among the N
clients according to D1. The results for the FaceA dataset, presented
in Table 3, indicate that FedMTL outperforms other approaches by
effectively handling both data and task heterogeneity.

To analyze in more detail, we create 2 groups, where the group G1

and G2 have data from CelebA and LFWA respectively. There are 20
clients in each group. Each group is divided into 4 sub-groups where
the clients in each sub-group Gig , i ∈ {1, 2}, g ∈ {1, 2, 3, 4} train
MTL model locally for two tasks: [Ta, Tb], where a = 2g − 1, b =
2g, 1 ≤ a, b ≤ 8. As shown in Fig. 6(a), the parameters of the task
layers of the clients in the same group Gig are very similar. Although
G1g and G2g work on the same tasks, the task layers are not very sim-
ilar since the datasets are different. Since FedMTL assigns weights
based on the similarities of task-specific parameters, it enables the

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

0.2

0.4

0.6

0.8

1.0

(a)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 6. Similarity scores: (a) task-layers (b) shared-layers

0 5 10 15 20
Round

50
55
60
65
70
75
80

Av
g

Gl
ob

al
 A

cc
ur

ac
y

(%
)

FedAvg
FedProx
MOCHA
pFedMe

FedFomo
FedAMP
FedMTL

(a)

0 5 10 15 20
Round

35
40
45
50
55
60
65
70

Av
g

Gl
ob

al
 A

cc
ur

ac
y

(%
)

FedAvg
FedProx
MOCHA
pFedMe

FedFomo
FedAMP
FedMTL

(b)

0 5 10 15 20
Round

50

55

60

65

70

75

Av
g

Gl
ob

al
 A

cc
ur

ac
y

(%
)

FedAvg
FedProx
MOCHA
pFedMe

FedFomo
FedAMP
FedMTL

(c)

Figure 7. Test accuracy during training for 3 datasets: (a) CelebA, (b)
LFWA, (c) FaceA

clients to aggregate models considering task and domain heterogene-
ity, thus performing better compared to other approaches.

Efficiency. To evaluate the efficiency of FedMTL aggregation al-
gorithm, we record the evolution of average test accuracy over global
communication rounds for CelebA, LFWA, and FaceA datasets, with
tasks distributed according to the D1 distribution. As illustrated in
Figure 7, FedMTL achieves higher accuracy than other state-of-the-
art approaches and converges within a few rounds.

Different Numbers of Tasks. We evaluate the effectiveness of
FedMTL in the case of task heterogeneity, where each client works
on a different number of tasks (D2 task-distribution). The task distri-
butions are presented in Figure 5. We do not compare the results with
existing techniques, as they cannot support this scenario directly.
FedMTL works well in addressing task heterogeneity and achieves
82.5% and 70.5% accuracy for CelebA and LFWA respectively, and
36.7% mIoU for NYUD2.

Ablation Studies. We conduct ablation studies to compare differ-
ent versions of FedMTL in scenarios where clients execute varying
sets of tasks. Specifically, we consider the following versions:
• FedMTL-X: To aggregate the shared layers from all clients, it

computes the aggregation weights pi,j for Ci by setting Si,j = 1
in Eq. 8, and ignores the task layers from other clients by setting
qi,j,t = 1 if j = i, otherwise qi,j,t = 0.

• FedMTL-G: To aggregate the shared layers and task layers of task
Tt for Ci, it computes the aggregation weights by setting Si,j = 1
in Eq. 8 and 9.

• FedMTL-T: To aggregate the shared layers from all clients, it com-
putes pi,j for Ci by setting Si,j = 1 in Eq. 8, and aggregates the
task-layers by computing the similarity scores following Eq. 4 to
Eq. 7 and setting qi,j,t values using Eq. 9 as in FedMTL.

• FedMTL-J: It computes the similarity between two client’s models
based on the IDs of tasks, instead of task-specific parameters. The
similarity score for a pair of clients (Ci, Cj) is computed by Ji,j =
|Ui∩Uj |
|Ui∪Uj |

, Ji,j ∈ [0, 1], where Ui and Uj are the set of tasks
executed by Ci and Cj respectively. It computes the aggregation
weights using Eq. 8 and 9, where Si,j = Ji,j .

• FedMTL-E: For Ci, it only considers the clients executing the
same set of tasks. The similarity score for a pair of clients (Ci, Cj)
is computed based on the types of tasks as Ei,j = (Ui == Uj),

0 5 10 15 20
Round

0.50

0.55

0.60

0.65

0.70

0.75

Av
g

Gl
ob

al
 A

cc
ur

ac
y

(%
)

FedMTL-X
FedMTL-G
FedMTL-T
FedMTL-J

FedMTL-E
FedMTL-0.8
FedMTL-0.9
FedMTL

(a)

0 5 10 15 20
Round

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Av
g

Gl
ob

al
 A

cc
ur

ac
y

(%
)

FedMTL-X
FedMTL-G
FedMTL-T
FedMTL-J

FedMTL-E
FedMTL-0.8
FedMTL-0.9
FedMTL

(b)

Figure 8. Average global accuracy for FaceA dataset with (a) D1 task
distribution (b) D2 task distribution

Ei,j ∈ {0, 1}. It computes the aggregation weights using Eq. 8
and 9, where Si,j = Ei,j .

• FedMTL-Z: It applies our proposed algorithm to aggregate the
models based on the similarity scores from the task-specific pa-
rameters and uses a fixed threshold value Z.
Comparison with Alternative Approaches. Figure 8 shows the av-

erage accuracy per round for FaceA with different task distribu-
tions. It illustrates that our approach, FedMTL, utilizing the similar-
ities of task layers, achieves the highest accuracy, 78.3% and 78.5%
for D1 and D2 task distribution, respectively. FedMTL outperforms
FedMTL-X and FedMTL-G since these approaches fail to learn the
task layers from the participating clients effectively. FedMTL-T ag-
gregates the task-layers based on the similarity score computed us-
ing parameters of the task-layers, and aggregates the shared layers
as in conventional FedAvg. However, this approach fails to perform
well because shared layers are generic for all clients and may be ad-
versely affected by client models trained on dissimilar sets of tasks.
While FedMTL-J and FedMTL-E take into account task heterogene-
ity, they are adversely affected when clients execute the same task
from a different domain. This occurs because the similarity scores are
measured based on task ID, potentially assigning identical weights to
model parameters from different domains.

Effect of hyper-parameter. We also examine the impact of the
threshold value Z used as a hyper-parameter in our similarity score
algorithm. Figure 8 shows the average global test accuracy for FaceA
dataset using FedMTL-Z with Z = 0.8 (FedMTL-0.8) and Z = 0.9
(FedMTL-0.9). By setting a constant threshold value, FedMTL-0.8
and FedMTL-0.9 either allow learning from many clients, potentially
affecting personalization negatively, or limit learning from a few
highly similar models. Figure 8 also shows that FedMTL achieves
the highest accuracy as it increases the threshold Z in each round.

Secure Version of FedMTL. In the privacy-preserving version of
FedMTL, we encrypt the model parameters, dataset size, and task
mapping before uploading the data to the P -aggregators. We evaluate
the accuracy of the secure FedMTL for CelebA, LFWA, FaceA and
NYUD2 datasets using task-distribution D1. For each dataset, we get
the same accuracy performance as the plain text version. As shown
in Figure 9, the overhead of privacy-preserving FedMTL w.r.t. the
plain text version decreases as the number of clients N or number of
tasks T increases. This is due to the fact that, while both versions in-
cur increased computation overhead as N or T increases, the number
of communication rounds among the computing parties in the secure
version of FedMTL remains constant. For the aggregation of MTL
models using the LeNet architecture, the amount of data transferred
from a client to each aggregator server is around 12.5MB. However,
as the number of aggregator servers P increases, the communication
overhead also rises due to increased communication among the com-
puting parties. Given that FedMTL aggregation does not require real-
time processing, it remains feasible for real-world scenarios. For ex-

20 40 60 80 100
N

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ra
tio

 o
f a

gg
re

ga
tio

n
tim

e

P = 2
P = 3
P = 4

(a)

2 4 6 8 10
K

10

15

20

25

30

Ra
tio

 o
f a

gg
re

ga
tio

n
tim

e

P = 2
P = 3
P = 4

(b)

Figure 9. Ratio of aggregation time between the secure and plain-text
versions of FedMTL in P -party setting for varying (a) number of

participating clients N and (b) number of tasks K.

ample, with P = 3, N = 80, K = 8, the secure aggregation of MTL
models using the LeNet architecture takes around 45 seconds. About
71% of the total time is spent on aggregating shared parameters (FS)
because there are significantly more shared parameters compared to
parameters in the task layers. However, it is possible to reduce this
overhead through pre-computation and parallel data processing.

To evaluate secure FedMTL considering network delay and band-
width restrictions, we performed an experiment with 3 AWS in-
stances (t2.micro, US-East-1 region) as the computing parties. For
the MTL models using the LeNet architecture, FedMTL takes around
52 seconds to complete the secure aggregation of models from N =
80 clients. This indicates that network latency has minimal impact
on the overall aggregation time.

8 Conclusion
We presented FedMTL, a novel FL aggregation technique that en-
ables clients to obtain improved personalized MTL models for their
sets of tasks by collaborating with other clients. FedMTL com-
putes aggregation weights for each client by analyzing the param-
eters of task-specific layers in MTL models and applies a layer-
wise aggregation policy on the models from participating clients.
The FedMTL aggregation can be integrated with established privacy-
preserving techniques for secure aggregation, thus guaranteeing the
privacy of clients’ private data. The experimental results demon-
strated that FedMTL outperforms state-of-the-art FL aggregation ap-
proaches and can work in cases where clients are involved in differ-
ent sets of tasks. We also implemented a secure version of FedMTL
using secret-sharing SMPC, which achieves the same accuracy per-
formance as plain text while preserving the privacy of client data. In
future work, we intend to investigate the performance of FedMTL in
cases involving varying data sizes across tasks within a single client.
Additionally, we plan to explore scenarios where clients do not ex-
plicitly share their task IDs with the aggregator.

Acknowledgement
This research was supported by the National Science Foundation
(NSF) under Grants No. NS 2237328 and DGE 2043104.

References
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convo-

lutional encoder-decoder architecture for image segmentation. IEEE
transactions on pattern analysis and machine intelligence, 39(12):
2481–2495, 2017.

[2] D. Beaver. Efficient multiparty protocols using circuit randomization.
In Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings, volume 576 of Lecture Notes in Computer Science,
pages 420–432. Springer, 1991. doi: 10.1007/3-540-46766-1_34.

[3] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth. Practical secure aggregation
for privacy-preserving machine learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, page 1175–1191, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450349468. doi: 10.1145/3133956.
3133982. URL https://doi.org/10.1145/3133956.3133982.

[4] R. Cai, X. Chen, S. Liu, J. Srinivasa, M. Lee, R. Kompella, and Z. Wang.
Many-task federated learning: A new problem setting and a simple
baseline. In 2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 5037–5045, June 2023.
doi: 10.1109/CVPRW59228.2023.00532.

[5] R. Caruana. Multitask learning. Machine Learning, 28, 07 1997. doi:
10.1023/A:1007379606734.

[6] D. Chaum, I. Damgård, and J. van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. In
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory
and Applications of Cryptographic Techniques, Santa Barbara, Cal-
ifornia, USA, August 16-20, 1987, Proceedings, volume 293 of Lec-
ture Notes in Computer Science, pages 87–119. Springer, 1987. doi:
10.1007/3-540-48184-2_7.

[7] J. Chen and A. Zhang. Fedmsplit: Correlation-adaptive federated multi-
task learning across multimodal split networks. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD ’22, page 87–96, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450393850. doi: 10.1145/
3534678.3539384. URL https://doi.org/10.1145/3534678.3539384.

[8] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich. Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks. In International conference on machine learning, pages 794–
803. PMLR, 2018.

[9] R. Cramer, I. B. Damgård, et al. Secure multiparty computation. Cam-
bridge University Press, 2015.

[10] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical covertly secure mpc for dishonest majority – or: Breaking the
spdz limits. In J. Crampton, S. Jajodia, and K. Mayes, editors, Com-
puter Security – ESORICS 2013, pages 1–18, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-40203-6.

[11] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computa-
tion from somewhat homomorphic encryption. IACR Cryptology ePrint
Archive, 2011:535, 01 2011. doi: 10.1007/978-3-642-32009-5_38.

[12] C. T. Dinh, T. T. Vu, N. H. Tran, M. N. Dao, and H. Zhang. A new
look and convergence rate of federated multitask learning with laplacian
regularization. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–11, 2022. doi: 10.1109/TNNLS.2022.3224252.

[13] Y. Dong, X. Chen, L. Shen, and D. Wang. Eastfly: Efficient and secure
ternary federated learning. Computers & Security, 94:101824, 2020.

[14] J. Geng, Y. Mou, F. Li, Q. Li, O. Beyan, S. Decker, and C. Rong.
Towards general deep leakage in federated learning. arXiv preprint
arXiv:2110.09074, 2021.

[15] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran. An efficient frame-
work for clustered federated learning. Advances in Neural Information
Processing Systems, 33:19586–19597, 2020.

[16] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang. Per-
sonalized cross-silo federated learning on non-iid data. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 35, pages
7865–7873, 2021.

[17] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim,
and L. van der Maaten. Crypten: Secure multi-party computation
meets machine learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, volume 34, pages 4961–4973. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
2754518221cfbc8d25c13a06a4cb8421-Paper.pdf.

[18] H. W. Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998. doi: 10.1109/5.726791.

[20] R. Li, F. Ma, W. Jiang, and J. Gao. Online federated multitask learning.
In 2019 IEEE International Conference on Big Data (Big Data), pages
215–220, 2019. doi: 10.1109/BigData47090.2019.9006060.

[21] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith.
Federated optimization in heterogeneous networks. Proceedings of Ma-
chine learning and systems, 2:429–450, 2020.

[22] J. Liu, J. Wu, J. Chen, M. Hu, Y. Zhou, and D. Wu. Feddwa: Personal-
ized federated learning with dynamic weight adjustment. In E. Elkind,
editor, Proceedings of the Thirty-Second International Joint Conference

on Artificial Intelligence, IJCAI-23, pages 3993–4001. International
Joint Conferences on Artificial Intelligence Organization, 8 2023. doi:
10.24963/ijcai.2023/444. URL https://doi.org/10.24963/ijcai.2023/444.
Main Track.

[23] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in
the wild. In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 3730–3738, 2015. doi: 10.1109/ICCV.2015.425.

[24] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[25] O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal. Fed-
erated multi-task learning under a mixture of distributions. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, editors, Advances in Neural Information Processing Sys-
tems, volume 34, pages 15434–15447. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
82599a4ec94aca066873c99b4c741ed8-Paper.pdf.

[26] B. McCann, N. S. Keskar, C. Xiong, and R. Socher. The natural lan-
guage decathlon: Multitask learning as question answering, 2019. URL
https://openreview.net/forum?id=B1lfHhR9tm.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

[28] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stitch net-
works for multi-task learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3994–4003, 2016.

[29] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmen-
tation and support inference from rgbd images. In ECCV, 2012.

[30] P. Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In International conference on the theory and applications
of cryptographic techniques, pages 223–238. Springer, 1999.

[31] L. Pascal, P. Michiardi, X. Bost, B. Huet, and M. A. Zuluaga. Maximum
roaming multi-task learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 9331–9341, 2021.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4510–4520, 2018.

[33] J. Shu, T. Yang, X. Liao, F. Chen, Y. Xiao, K. Yang, and X. Jia. Clus-
tered federated multitask learning on non-iid data with enhanced pri-
vacy. IEEE Internet of Things Journal, 10(4):3453–3467, 2023. doi:
10.1109/JIOT.2022.3228893.

[34] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar. Federated
multi-task learning. Advances in neural information processing sys-
tems, 30, 2017.

[35] J. So, B. Guler, and A. Avestimehr. Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning. IEEE Jour-
nal on Selected Areas in Information Theory, PP:1–1, 01 2021. doi:
10.1109/JSAIT.2021.3054610.

[36] A. C. Stickland and I. Murray. BERT and pals: Projected atten-
tion layers for efficient adaptation in multi-task learning. CoRR,
abs/1902.02671, 2019. URL http://arxiv.org/abs/1902.02671.

[37] C. T. Dinh, N. Tran, and J. Nguyen. Personalized federated learning
with moreau envelopes. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 21394–21405. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf.

[38] L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605, 2008. URL http://
jmlr.org/papers/v9/vandermaaten08a.html.

[39] Z. Ying, Y. Zhang, and X. Liu. Privacy-preserving in defending against
membership inference attacks. In Proceedings of the 2020 Workshop on
Privacy-Preserving Machine Learning in Practice, pages 61–63, 2020.

[40] M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M. Alvarez. Person-
alized federated learning with first order model optimization. arXiv
preprint arXiv:2012.08565, 2020.

[41] Z. Zhang, J. Li, S. Yu, and C. Makaya. Safelearning: Secure aggregation
in federated learning with backdoor detectability. IEEE Transactions on
Information Forensics and Security, 18:3289–3304, 2023. doi: 10.1109/
TIFS.2023.3280032.

[42] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. Advances in
neural information processing systems, 32, 2019.

[43] W. Zhuang, Y. Wen, L. Lyu, and S. Zhang. Mas: Towards
resource-efficient federated multiple-task learning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages
23414–23424, 2023.

