Programming Computers Embedded in the Physical World *

Liviu Iftode!, Critian Borcea?, Andrzej Kochut!, Chalermek I ntanagonwiwat? T, and Ulrich Kremer?

! Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
2 Department of Computer Science, Rutgers University, Piscataway, NJ, 08854, USA
{iftode, kochut } @cs.umd.edu, {borcea, intanago, uli } @cs.rutgers.edu

Abstract

During the next decade, emerging technologieswill help
populating the physical space with ubiquitous networks of
embedded systems (NES). Programming NES requires new
abstractions and computing models since the current pro-
gramming modelsare not designed for the scale and vol atil -
ity encountered in these networks. This paper presents Spa-
tial Programming (SP), a novel programming mode for
NES The key idea in SP isto offer network-transparent ac-
cessto data and services distributed on nodes spread across
the physical space. SP programs access network resources
using a high level abstraction, termed spatial reference,
which addresses the nodes using their spatial and content
properties. Anunderlying systemtakescare of mapping spa-
tial references onto target nodes in the network. Our pre-
liminary experience in devel oping SP applicationssuggests
that SP can be a viable solution for distributed computing
over NES

1. Introduction

Recent advances in technology made it feasible to cre-
ate massive networks of embedded systems (NES). Such
networkswill represent the infrastructure for future ubiqui-
tous computing environments [27, 23]. For instance, sen-
sors monitoring the environment [14, 13], robots with in-
telligent cameras collaborating to track a given object [17],
or cars on a highway cooperating to adapt to traffic condi-
tions [2] will become a daily redlity. In the next decade,
the computational power embedded inthese systemswill in-
crease significantly. Thus, they will be able to run reduced
versionsof traditional operating systems and more complex
applications. We are already witnessing this trend through
the occurrence of cars, cameras, and even watches running

*Thiswork issupportedin part by the NSF under thel TR Grant Number
ANI-0121416

fCurrent address. Department of Computer Engineering, Chula-
longkorn University, Bangkok, 10330, Thailand

Linux [1].

Although extremely heterogeneous, nodes in NES will
have acommon set of characteristics: (1) communicatewith
each other using short-rangeradio (2) are distributed across
the physical space, (3) are mobile and may fail frequently,
and (4) work unattended. These nodes may join or leave the
network at any moment (becoming unreachable due to mo-
bility, energy depletion, failures, or disposal) leading to dy-
namic and volatile network topologies. Additionally, NES
will have to function completely decentralized because de-
ploying more powerful nodes that act as base stations will
not befeasiblein many situations(e.g., nodesdeployed over
adisaster area).

All these characteristics make NES programmability
a chalenging task. Traditional distributed programming
models, such as message passing, are not suitable for NES.
Aspects of mobility, volatility, and scale make it difficult to
program applications as a series of interactions with nodes
identified by fixed addresses (as assumed in the message
passing model). Instead, we want to gather information
from, or perform actions on nodes that have certain prop-
erties, content, or location. Therefore, we are no longer
interested in contacting a particular node, but any node
that may be useful to perform the task. Simpler program-
ming abstractions and more flexible programming models
are needed to let the programmers design and writetheir ap-
plications without worrying about the underlying network-
ing details.

In this paper, we propose Spatial Programming (SP), a
novel programming model for distributed computing over
massive NES. In SP, spaceisafirst order programming con-
cept which is exposed to applications. SP shields the com-
plexity of programming volatile, ad hoc networks by pre-
senting ahighlevel, uniform abstraction, termed spatial ref-
erence, for naming and accessing network resources. A spa-
tial reference addresses the nodesin the network using their
location and content properties, whilean underlying system
takes care of mappingit onto atarget nodeinthenetwork. In
our model, programmers write simple, sequentia programs
and access transparently the network resources (i.e., using

Term of Comparison | Traditional Target Networks Networ ks of Embedded Systems

Location Indoor Outdoor

Nodes Functionally Homogeneous Functionally Heterogeneous

Operation Under User’s Control Unattended

Scale Relatively Small Large

Topology Stable Ad Hoc and Volatile

Resources Known A Priori/Infrequent Changes | Limited A Priori Knowledge/Highly Dynamic

Table 1. Traditional Distributed Computing Networks vs. Networks of Embedded Systems

spatial references) inasimilar fashion to the access to mem-
ory usingvariables. SPisindependent of theunderlyingsys-
tem, thus allowing for multipleimplementations. Each im-
plementation has to trandate the high-level, sequentia SP
program into a series of actions performed by the underly-
ing system. A first implementation of SPis currently being
developed over our Smart Messages platform [8]. More de-
tails about thisimplementation are given in Section 4.

The rest of this papersisorganized as follows. Section 2
presents the motivation and challengesfor SP. Section 3 de-
scribes the SP design and shows the basic SP programming
congtructs. The current status and future plansare presented
in Section 4. Section 5 discusses the related work, and the
paper concludes in Section 6.

2. Motivation and Challenges

Thetrend of embedding “intelligence’ everywhereinthe
physical world will lead to the devel opment of massive net-
works of embedded systems (NES). Traditionally, the main
focus of distributed computing has been on performance or
availability. Instead, thefocusof distributed computing over
NES will be on programming the physical world (i.e., pro-
gramming real world devices to sense, observe, report, or
perform collaborativetasks). The two major challenges to-
ward thisgoa are: (1) how to execute collaborativeapplica-
tionsover NES, and (2) how to allow for coordinated actions
among nodes of interest in a decentralized manner.

To develop distributed applications for this huge com-
puting infrastructure, we need to understand the unique set
of characteristics possessed by NES. Table 1 presents a
comparison between the target networks for traditional dis-
tributed computing (e.g., message passing) and NES. Un-
liketraditional distributed computing which takes place“in-
door” over relatively small scale networks with stable con-
figurations, distributed computing over NES takes place
“outdoor” over large scale networks with highly dynamic
configurations.

As a consequence, we believe that the traditiona mes-
sage passing programming model cannot satisfy therequire-
ments of the applications runningin thisnew world. There-

. camera
7 motion "~._ ' motion °®
o B
, camera .
S \ motion
/motion . \
/ motion \
@ '\ camera
i @ [
: motion !
| cagera L user
. @ motion i
\\\ /// .
ace2 .-~
sp spacel

Figure 1. Object Tracking Example

fore, new programming modelsare needed. Toillustratethis
claim, we present a collaborativeobject tracking application
example, depicted in Figure 1. Two types of nodes are dis-
tributed across a given geographical region (spacel): mo-
tion sensorsandintelligent cameras. Each nodeiscapabl e of
determiningitslocation (i.e., using GPS[18] or other |ocal-
ization methods [25, 9]). The motion sensors remain static
after deployment, but the cameras can be mobile [17]. The
nodes may fail or be deployed far from other devices pre-
venting them from participating in the computation. Since
motion sensors are less expensive, their number is signif-
icantly greater than the number of cameras. Periodicaly,
a user starts an application (e.g., from a wireless-enabled
PDA) that monitors the status of the motion sensors in the
network. Each time motionisdetected, the applicationturns
on acertain number of cameras located in the proximity of
that sensor (i.e., informally, space2 is dynamically defined
asthe neighborhood where the motion was detected). These
cameras areinstructed to perform collaborative object track-
ing in order to identify the object that triggered the motion
sensor and monitor its actions. During this process, the ap-
plication accesses repestedly the selected cameras and uses
the partial resultscomputed at each nodeto dynamically de-
terminethenext action. Oncethe object tracking completes,
the active cameras are turned off.

The task stated above is difficult and tedious to program
using the traditional message passing programming mode.

Characteristics of message passing systems (e.g., Message
Passing Interface (MPI) standard [3]) include explicit man-
agement of communication with possible deadlocks due to
mismatched communication pairs, and “al or nothing” se-
mantics(i.e., not “best effort” semantics). The programmers
would aso have to take care of dl the details involved in
reaching the area of interest and contacting the target nodes
located there. Thisisnot atrivial task in avolatile network
with unknown configurations. In our example, the program-
mer does not know how many camera nodes are there or
where exactly they are located. Additionaly, the network
dynamics (caused by failures, mobility, or deployment of
new nodes) may cause the application to fail since fixed ad-
dressing schemes treat exceptions as failures. To summa
rize, a better programming model for NES needs to answer
the following questions:

e How to writesimple and intuitiveprograms for NES?
e How to refer to nodesin a network-transparent way?
e How to discover and access resources at nodes?

e How to cope with network dynamics?

Our proposed programming model, Spatia Program-
ming (SP), is specially designed to provide solutionsto the
above questions. The key idea in SP is to offer network-
transparent access to data and services distributed on nodes
spread across the physical space in a similar fashion to ac-
cess to memory using virtual addresses. The main benefits
of SPare;

e Simple to understand programming model which al-
lowsfor rapid development of NES applications.

o Network-transparent computation that uses network
resources similar to normal variables.

e Possibility to program on-the-fly unattended networks
for new tasks even after network deployment.

o Best-effort computation which tolerates the network
dynamics while providing a certain quality of result to
applications.

3. Spatial Programming M odel

In this section, we detail the main SP concepts and ex-
plain how they address the unique set of challenges posed
by NES programmability.

3.1. Spatial References

A spatial reference, represented as a tuple {space:tag},
refers to nodes in the network in the same fashion a pro-
gram addresses memory locations using virtual addresses.
The space is a geographica scope for athe node being ad-
dressed. The tag is a content-based name for the same node
(i.e., it names certain data or service provided by that node).
These can bethree examples of spatia references for our ap-
plication:

{spacel: notion}, {space2:canera}, {space2:user}

Thefirst spatia reference refers to a node hosting a mo-
tion tag in spacel. The second onerefers to a camera node
located in space2. The third reference is invalid because
there is no node with a user tag in space? (in such a case,
an exception israised to the application).

3.1.1. Why do we need spatial information?

Unlike traditiona distributed systems where the physical
location of the nodes does not matter, the spatial distribu-
tion of nodes across physical space is akey feature of mas-
sive NES. These networkswill span buildings, large facili-
ties such as campuses or airports, or even roads and forests.
NES applicationswill prefer to expresstheir interest for data
and services in terms of locations within well-defined ge-
ographical regions, rather than by naming particular nodes
in the network. For instance, in the motivating example,
we need to activate a number of intelligent cameras to dis-
cover and track the object that triggered the motion sensor.
These cameras haveto bewithinaphysica range of thetrig-
ger node because otherwise no causal relation can be estab-
lished. Therefore, SP considers space as a first order pro-
gramming concept and exposes it to applications through
spatial references.

3.1.2. Why do we need content-based naming?

Applications running in NES will refer to resources (data,
properties, or services), not individua nodes. From an ap-
plication point of view, nodes with the same properties, lo-
cated in the same region, might be interchangeable. Fixed
naming schemes, such as IP addressing, will be almost ir-
relevant in this case. For example, it might be desirable to
reach anodethat has amotion sensor, but afixed bindingbe-
tween the desired property and auniqueidentifier for anode
is inappropriate. If the destination node becomes unavail-
able, the application can fail even though multiple nodes
providingthe same property areavailable. Therefore, SPre-
lies on anaming scheme based both on space and content.

3.1.3. How to define the spaces?

The application may use statically defined spaces or create
dynamically new spaces. Static definitions are used to de-
scribe physical spaces that do not change over time and are
commonly provided in the form of names associated with
geographical regions (e.g., using topological maps). Dy-
namic definitionstypically specify composed spaces (using
the union, difference, or intersection operators) or relative
spaces (defined relativetothe position of areferenced node).
The relative spaces are of particular importance to SP be-
cause they allow an application to “remember” and access
a space where a certain event took place even after the node
that produced or detected this event is no longer there. For
our exampl e, thisis how we can define and use two dynamic
spaces:
(1) diff=spacel-space2
{diff:canera}

(2) space2=rangeO ({spacel: noti on}, Range)
{space2: caner a}

In the first case, we refer to a camera node located in
spacel, but not in space2. The second example shows
how to define the “proximity” of a node using the rangeOf
operator (i.e, it defines space?2 as a a circular region
with the center at the position of the node referenced by
{spacel:motion} and radius equals Range). Similarly,
northOf, southOf, eastOf, and westOf define semi-circles
relative to the position of areferenced node.

3.1.4. How to define the tags?

Generdly, content-based naming can involve arbitrary ex-
pressions on content names and content values. In spatia
references, tagsarejust stringsthat name content or services
at nodes. The tags are not globally unique since they name
content or services that can be provided by multiple nodes.
Although the namespace for massive NES can be extremely
large, we expect that certain semantic rules will be adopted
and enforced to make tag naming intuitiveand manageable.

3.1.5. How to distinguish among similar nodes?

To make it possibleto refer to more than one node with the
same spatial and content properties, weintroduce the notion
of reference instance. The reference instance is denoted by
aparticular index of a spatial reference. In our example, the
references presented below represent two different nodes:

{space2: canera[0]}, {space2:canera[l]}

Commonly, a programmer is not aware of the exact
number of the nodes with a certain content in a given
space. For instance, an attempt to use the reference
{space2:camera[2] } in our application will trigger an in-
valid reference exception.

3.2. Reference Consistency

An applicationthat refersto anodewith given spatial and
content properties is guaranteed to contact the same node
each time it makes subsequent successful references. This
property providesthe ability to perform arbitrary distributed
computations over a subset of nodes of interest. For in-
stance, in our example, the application needs to access the
selected camera nodes multipletimes, but theorder and type
of access are determined at runtime. Therefore, the underly-
ing system needs to maintai n bindingsbetween spatia refer-
ences and the nodesthey address. These bindingsare main-
tained per-application (similar to a page table) and are per-
sistent during the SP program execution. When the first ac-
cess to a network resource takes place, a new binding for a
spatial reference is crested. The data stored in abindingis
implementation-specific, but it must includeauniquelD for
the referenced node and the location of thisnode (i.e, X, y
coordinates). Thisdataallowsan applicationto visit repeat-
edly nodes and locations as long as the spatial reference is
valid.

In some situations, reference consistency is not neces-
sary, or itiseven preferably to be avoided. For instance, an
application that needs to contact periodicaly N temperature
sensors located in a certain region and compute the average
temperature may accept any sensor that providesthedesired
combination of space and content. In such acase, if arefer-
enced node cannot befoundinitsspace, thespatia reference
can berebound to asimilar noderather than returning an ex-
ception for afailed access.

3.3. Accessing Resources

Spatial references alow network-transparent access to
resources|ocated on the referenced nodes. Applicationsuse
network resources in a similar fashion to normal variables.
An application programmer does not perform any network-
related operation to obtain the requested resources. The un-
derlying system takes care of name resolution, access to re-
sources, routing, communication, and security.

A node can contain multiple resources, which can bein-
dividualy accessed by an SP application using the dot no-
tation for spatial references. For instance, our object track-
ing application can access different properties on a camera
node:

(1) {space2:canera[1l]}.active=0CN,
(2) {space2:canera[1l]}.focus=location;
(3) ing={space2: canera[l]}.i mage;

These examples show how network resources, named by
tags, can be used in a program in the same way as normal
variables. In the first two lines, we assign values for two
propertieson acameranode(i.e., weturnthecameraon, and

wefocusit toward acertain pointin space). Inthethirdline,
we store the image acquired by the camerainto avariable.

Besides accessing resourcesthat already exist at nodes, a
program can dynamically create/remove its own resources.
For instance, an application may need to create new re-
sources in order to store datain the network (i.e., similar to
cregting filesin afile system), or it may even create new ser-
viceson nodesof interest (e.g., animage recognition service
onacamera node). The primitivesthat offer these function-
ditiesareillustrated bel ow:

create({space2:canera[1l]}.partial Result);
res=anal yzel nage({space2: canera[1] }.i nage) ;
{space2: canera[1] }. parti al Resul t =res;

remove(space2: canera[1] }.partial Result);

In this example, the application creates a new resource,
partial Result, to store the result of analyzing a newly ac-
quired image. An application can perform collaborative ob-
ject tracking using partial results from multiple cameras.
When the partial Result is not needed any longer, the appli-
cation can removeit.

A natura question that can beraised at thispointis: how
are the network resources shared? For now, the resource
sharing policy in SPisvery simple: the resources provided
by nodes are shared (i.e., the system does not guarantee that
an application accessing the same resource twice gets the
same result), and the resources created by applications are
private. More complex policies and their interaction with
the underlying system will be considered for the future de-
sign refinements.

3.4. Programming for Uncertainty

SinceNES are extremely volatile, SP should makeit easy
for programmersto deal with network configurationdynam-
ics. Thisdynamicsinvolves constant change in thelocation
of nodes as well as intermittent network connectivity. For
example, areference made to anode may becomeinvalidif
thisnode has moved away from thearea of interest or it ssim-
ply ceased to exist. Additionally, the programmer does not
even know if, or how many resources of interest exist within
acertain space.

3.4.1. How long does it take to reach a node?

Unliketraditional computer systems where the access time
toresourcesisfiniteand an upper bound can be determined,
inavolatileand dynamic network such as NES, it isdifficult
to estimate how long it takes to access a network resource
(even the existence of a certain resource in a given space
is unknown). The operations on network resources in NES
may take a substantial amount of time or may not be able
to complete at al. Instead of waiting an indefinite amount

of time to complete, many applications would be willing to
trade the quality of result (as long as this result is seman-
tically acceptable) for the response time. Therefore, to a-
low applicationsto make progress even in adverse network
conditions, SP proposes*best effort” computing. Under this
paradigm, a programmer is allowed to set time constraints
on spatid references. The underlying system does not guar-
antee that it will be able to locate and access a resource in
a certain amount of time, but it guarantees to raise atime-
out violation exception to the application if the access does
not succeed in that time period. In such a situation, the ap-
plication decides about further actions (e.g., retry, look for a
similar resource, continue without thisresource). The code
presented bel ow illustratesatime constrained accesstoare-
source on anode referenced by {space2:camera}.

try{

{space2: canera, tineout}.active = ON,
}catch(Ti neout e){

/1 application decides further actions
}

Commonly, aprogrammer sets each timeout based on the
congtraint imposed by the user on the total execution time
(e.g., each new access can have the entire remaining time).

3.4.2. What happensif areferenced node moves?

When the nodes are mobile, the semantics of spatia refer-
ences requires that once the reference is bound to a node,
the underlying system locates the same node in the respec-
tive space each time the reference is used again (i.e., refer-
ence consistency). If anode moves out of its space, the ap-
plication receives aninvalid reference exception. If the pro-
grammer has knowledge about the mobility patterns of cer-
tain nodes, however, the space for the spatial references as-
sociated with these nodes can be modified using space cast-
ing. In our example, if areferenced camera moves within
space2, the reference remains semantically valid. But, if it
moves outsi de space2, space casting can be used to expand
its geographical scope to spacel:

(1) {space2: canera}
(2) {spacel: (space2: canera)}

If the new space for a node is unknown, a programmer
can use the Anywhere space constant to cast a spatia refer-
ence to any space.

3.5. Putting It All Together: Program Example

Table 2 shows acomparison between traditional message
passi ng distributed computing and SP, which emphasizes the
novel concepts introduced by SP. These concepts alow for
a large spectrum of NES distributed applications, ranging

Term of Comparison

Traditional Distributed Computing

Spatial Programming

Re-programmability

Focus Performance/Avail ability Programming Physical World
Naming Fixed Addresses Combination of Space and Content
Communication Managed Explicitly by Programmers | Transparent

Semantics All or Nothing Best Effort

Difficult after Network Deployment

Easy to Execute New Applications

Table 2. Traditional Distributed Computing vs. Spatial Programming

1if ({spacel:notion[i]}.detect==true){

2 space2=rangeC ({spacel: motion[i]}, Range)

3 location={spacel:notion[i]}.|ocation

4 try{

5 for(j=0, k=0;j<Nc; k++)

6 if ({space2:canera[k],tineout}.active==0FF){
7 {space2: canera[k] }.active=ON

8 {space2: canera[k] }. focus=l ocati on

9 activeCaneras[j ++] ={ space2: canera[k] }

}
11 }catch(Tineout e){
12 if (j<Nc/2)

13 /] restart nonitoring the notion sensors
14 el se

15 /1 else continue with the next instruction
16 }

17 resul t=object Tracki ng(acti veCaner as)
18 for(k=0; k<j; k++)

19 activeCaneras[k].active=OFF

20 return result;

Figure 2. Spatial Programming Code Example

from as simple as computing the average/maxi mum temper-
ature over a given geographical region to complex collabo-
rative applicationssuch as distributed obj ect tracking. Typi-
cal applicationsfor SP are those which execute a distributed
algorithm over a set of nodes selected based on their content
and spatial properties.

To illustrate such an application, Figure 2 presents the
source code for our object tracking example. Once the mo-
tion isdetected at one of the monitored motion sensors(i.e.,
{spacel:motion[i]} in the figure), a relative space is cre-
ated around that sensor in order to perform object tracking
within its proximity (lines 1-2). Any camera node located
in space? that is not active (i.e., working for other applica
tions) is turned on, focused to the location of motion, and
added to the set of active cameras until the desired number
of Nc active cameras has been reached (lines 3-10). During
the object tracking (line 17), the cameras may be accessed
multi pletimes duetothereference consi stency feature of SP
The actionstaken at acamera node depend on the partid re-
sults computed at previoudly visited nodes. The application

ends by turning off the set of active cameras (lines 18-19).
For the sake of simplicity, we ignored the time constraints
on spatia references throughout this example for most of
the accesses to network resources. We show, however, what
happensif aatimeout occursin the process of constructing
the set of active cameras. In such a situation, a timeout vi-
olation exception israised (line 11), and the application has
to decide what its further actions are (“best effort” comput-
ing). Our application accepts a possibly lower quality of re-
sult and goes ahead if at least half of the desired number of
cameras is found. Otherwise, it restarts monitoring the mo-
tion sensors (lines 12-16). If a camera moves out of space?
during the object tracking (line 17), the application may just
ignoreit (if enough active cameras), or may use space cast-
ingto re-discover it (consi dering the execution time and nor-
mal motion speeds, the camera should bein the proximity of
space?).

4. Statusand Future Work

Inthefollowing, we briefly outlinethe current statusand
future ideas for improving the SP design and implemen-
tation. We plan to further investigate what other features
should be added to SPto make it even moreflexibleand eas-
ier to use in such complex environments as NES. We also
plan to analyze the tradeoffs between various design choices
that we face in implementing SP.

At thistime, we are in the process of implementing SP
using Smart Messages (SM) [8]. SMs consist of code and
data sections as well as alightweight execution state. They
migratethrough the network, searching for nodes of interest,
and execute at each nodein the path. SMsname the nodes of
interest by content and self-routeto them using other nodes
as “stepping stones’. Nodesin the network support SMs by
providingavirtual machine and name-based memory, called
Tag Space. The Tag Space is used for naming, inter-SM
communication, synchronization, and interaction with the
local host.

The use of SMs as the underlying system for SP offers
several advantages. They providethe ability to program the
network on-the-fly (including the possibility to dynamically
install new services at nodes), while requiring only amini-

mal system support. The Tag Space offersauniformview of
the network resources (both in terms of naming and access
to resources). SMs are resilient to network volatility, being
ableto adapt to network conditions[7].

SP requires a set of programming constructs that can be
added as extensionsto any programming language or can be
implemented as library calls. The decision whether to im-
plement the SP constructs as language extensions or as li-
brary calls hasto be evaluated both in terms of performance
and ease of programming. Weare currently workingto com-
pletean SM runtime system for SP, and an SP programming
language will be developed in the near future. To investi-
gate the practicality of SP over SM, we have designed and
manually trand ated asimple SP applicationintoan SM pro-
gram. The application has been executed over an SM plat-
form consisting of a modified version of Sun’s Java KVM
and a testbed composed of HP iPAQs running Linux and
equipped with 802.11 wirel ess cards for communication.

For networks of resource constrained devices, such as
sensor networks, a more traditional implementation may
yield better performance. Therefore we plan to have an SP
implementation on top of Directed Diffusion [15]. Other
possible implementations might involve more traditional
client-server or clustering-based approaches for relatively
stable networks.

5. Related Work

Recent projects [11, 6, 4] have presented programming
models for ubiquitous/pervasive computing. SP shares
some of their goals, but its main design goal is to define
and implement a programming model that providesasimple
way to program the physical spaces and to decoupl e the ac-
cess to spatially distributed network resources from the net-
working details.

SPisclosdly related to Spatia Views, an iterative spatial
programming mode for NES [22]. Spatia Views providea
more restrictive, higher level programming mode than SP.
Thismode allowsthe specification of sets of nodes of inter-
est, cdled views, together with a sequential program to be
executed on each nodein aview. In addition, language con-
structs are provided to group nodes according to their phys-
ical location, and to specify constraintsthat haveto be satis-
fied by aprogram execution (e.g., resources, time, quality of
result). SP can serve as atarget languagefor aSpatial Views
compiler, but not vice versa since SP provides fine grained
access to network resourceswhichisnot availablein Spatia
Views.

A research complementary to oursis TAG [24], which
defines an SQL-like language for sensor networks. Both
SP and TAG provide simple programming constructs that
shield the programmer from the underlying network. There
are two main differences between SP and TAG. First, SP

focuses on a flexible abstraction that allows programming
for uncertainty in highly dynamic networks, while TAG fo-
cuses on a set of queries executed efficiently in the network.
Second, the programmer has the control over execution in
SP, while TAG depends entirely on the compiler (i.e., essen-
tially SP offers an imperative language, while TAG offersa
declarative language).

Content-based naming has been recently presented for
both Internet [5, 26] and sensor networks [15]. The spa
tial references used in SP are similar abstractions to these
content-based names, but they incorporate spatial informa-
tion and present a uniform view of space and network to ap-
plications. Another difference is that SP targets ubiquitous
computing environmentsand isindependent of the underly-
ing implementation.

Although geographical [20, 21] and content-based rout-
ing [15, 12] have been extensively studied, asimpleand in-
tuitive programming model that allows the user to express
thecomputationintermsof physical locationand content (or
services) provided by nodesis still missing. SP offers such
amodel, and itsunderlying implementati on takes advantage
of these routing agorithms (especially of those developed
for ad hoc networks).

Recent work on sensor networks has focused on new
communication paradigms [15], system architectures for
fixed-function sensor networks [14], and energy efficient
data collection for mobile sensor networks designed to sup-
port wildlifetracking [16]. Sensor networks can represent a
platform for SP. Since they are deployed across large geo-
graphical regions, SP providesaviable solution to alleviate
the task of writing programs for them.

The design of Smart Messages (SMs), our first SP plat-
form, has been influenced by avariety of other research ef-
forts, particularly mobile agents for | P-based networks[19,
10]. SMs leverage the general idea of code migration, but
focus more on flexibility, re-programmability, and ability to
perform distributed computing over unattended NES. Un-
like mobile agents, SMs address nodes by content, discover
the network configuration dynamically, are responsible for
their own routing, and require minima system support at
nodes.

6. Conclusions

Inthispaper, we have presented the design of Spatial Pro-
gramming (SP). SP isanovel programming model for net-
works of embedded systems (NES) deployed in the physi-
cal space. To our best knowledge, SP isthe first attempt to
design and implement a programming model for NES. SP
provides asimple and intuitiveway of programming nodes
spread across the physical space without dealing with net-
work complexity. The implementation of a simple SP ap-
plication over Smart Messages and the preliminary experi-

mental results provide us with the confidence that SP can be
aviable programming model for massive NES.

References

(1]
(2]
(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Linux Devices. http://www.linuxdevices.com.

Sensoria Corporation. http://www.sensoria.com.
TheMessagePassing Interface (MPI) Standard. http://www-
unix.mes.anl.gov/mpi/.

S. Adhikari, A. Paul, and U. Ramachandran. D-Stampede:
Distributed Programming System for Ubiquitous Comput-
ing. In Proceedingsof the 22nd International Conferenceon
Distributed Computing Systems (ICDCS), pages 209-216,
July 2002.

W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The Design and Implementation of an Intentional Nam-
ing System. In Proceedingsof the 17th ACM Symposiumon
Operating SystemsPrinciples(SOSP), pages186—201, 1999.
G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman,
and D. Zukowski. Challenges: An Application Model for
Pervasive Computing. In Proceedings of the Sixth annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), pages 266-274, August 2000.
C. Borcea, C. Intanagonwiwat, A. Saxena, and L. Iftode.
Self-Routing in Pervasive Computing Environments using
Smart Messages. In Proceedings of the 1st IEEE Interna-
tional Conference on Pervasive Computing and Communi-
cations (PerCom), March 2003.

C.Borcea, D. lyer, P. Kang, A. Saxena, and L. Iftode. Coop-
erative Computing for Distributed Embedded Systems. In
Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems (ICDCS), pages 227236, July
2002.

L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating
Tiny Sensorsin Time and Space: A Case Study. In Proceed-
ings of the International Conference on Software/Hardware
Codesign (ICCD 2002). Invited Paper, October 2002.

R. S. Gray, G. Cybenko, D. Kotz, and D. Rus. Mobileagents:
Motivations and State of the Art. In J. Bradshaw, editor,
Handbook of Agent Technology. AAAI/MIT Press, 2001.

R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth,
S. Swanson, T. Anderson, B. Bershad, G. Borriello, S. Grib-
ble, and D. Wetherall. Systems Directions for Pervasive
Computing. In Proceedingsof the 8th Workshop on Hot Top-
icsin Operating Systems (HotOS-VIII), May 2001.

M. Gritter and D. Cheriton. An Architecture for Content
Routing Support in the Internet. In Proceedings of the 3rd
USENIX Symposium on Internet Technologies and Systems
(USITS), March 2001.

J. Heideman, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building Efficient Wireless Sen-
sor Networks with Low-Level Naming. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles
(SOSP), pages 146-159, October 2001.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Networked
Sensors. In Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

and Operating Systems (ASPLOS), pages 93-104, Novem-
ber 2000.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In Proceedings of the Sixth annual
ACM/IEEE International Conference on Mobile Computing
and Networ king (MobiCom), pages 5667, August 2000.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and
D. Rubenstein. Energy-Efficient Computing for Wildlife
Tracking: Design Tradeoffs and Early Experienceswith Ze-
braNet. In Proceedings of the Tenth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 2002.

B. Jung and G. S. Sukhatme. Cooperative Tracking us-
ing Mobile Robotsand Environment-Embedded, Networked
Sensors. In the 2001 |EEE International Symposium on
Computational Intelligence in Robotics and Automation.

E. Kaplan, editor. Understanding GPS: Principles and Ap-
plications. Artech House, 1996.

N. Karnik and A. Tripathi. Agent Server Architecturefor the
AjantaMobile-Agent System. In Proceedingsof the 1998 In-
ternational Conferenceon Parallel and Distributed Process-
ing Techniquesand Applications (PDPTA'98), July 1998.
B. Karp and H. Kung. Greedy Perimeter Stateless Routing
for Wireless Networks. In Proceedings of the Sixth annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), pages 243-254, August 2000.
Y.-B. Ko and N. H. Vaidya. Location-Aided Routing(LAR)
in Mobile Ad Hoc Networks. In Proceedings of the
Fourth annual ACM/IEEE Inter national Conferenceon Mo-
bile Computing and Networking (MobiCom), pages 6675,
October 1998.

U. Kremer, L. Iftode, J. Hom, and Y. Ni. Spatial Views: Iter-
ative Spatial Programming for Networks of Embedded Sys-
tems. Technical Report DCS-TR-493, Rutgers University,
June 2002.

M. Satyanarayanan. Pervasive Computing: Visionand Chal-
lenges. |EEE Personal Communications, August 2001.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG:
aTiny AGgregation Service for Ad-Hoc Sensor Networks.
In Proceedingsof the 5th Symposium on Operating Systems
Design and Implementation (OSDI). To Appear., December
2002.

N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. Teller.
The Cricket Compass for Context-Aware Mobile Applica-
tions. In Proceedings of the 7th annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking
(MobiCom), pages 1-14, 2001.

A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Ac-
tive Names: Flexible Location and Transport of Wide-Area
Resources. In Proceedings of the Second USENIX Sympo-
sium on Internet Technologies and Systems (USITS), pages
151-164, October 1999.

M. Weiser. The computer for the twenty-first century. Sci-
entific American, September 1991.

