
Programming Computers Embedded in the Physical World ∗

Liviu Iftode1, Cristian Borcea2, Andrzej Kochut1, Chalermek Intanagonwiwat2 †, and Ulrich Kremer2

1 Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
2 Department of Computer Science, Rutgers University, Piscataway, NJ, 08854, USA

{iftode, kochut}@cs.umd.edu, {borcea, intanago, uli}@cs.rutgers.edu

Abstract

During the next decade, emerging technologies will help
populating the physical space with ubiquitous networks of
embedded systems (NES). Programming NES requires new
abstractions and computing models since the current pro-
gramming models are not designed for the scale and volatil-
ity encountered in these networks. This paper presents Spa-
tial Programming (SP), a novel programming model for
NES. The key idea in SP is to offer network-transparent ac-
cess to data and services distributed on nodes spread across
the physical space. SP programs access network resources
using a high level abstraction, termed spatial reference,
which addresses the nodes using their spatial and content
properties. An underlying system takes care of mapping spa-
tial references onto target nodes in the network. Our pre-
liminary experience in developing SP applications suggests
that SP can be a viable solution for distributed computing
over NES.

1. Introduction

Recent advances in technology made it feasible to cre-
ate massive networks of embedded systems (NES). Such
networks will represent the infrastructure for future ubiqui-
tous computing environments [27, 23]. For instance, sen-
sors monitoring the environment [14, 13], robots with in-
telligent cameras collaborating to track a given object [17],
or cars on a highway cooperating to adapt to traffic condi-
tions [2] will become a daily reality. In the next decade,
the computational power embedded in these systems will in-
crease significantly. Thus, they will be able to run reduced
versions of traditional operating systems and more complex
applications. We are already witnessing this trend through
the occurrence of cars, cameras, and even watches running

∗This work is supported in part by the NSF under the ITR Grant Number
ANI-0121416
†Current address: Department of Computer Engineering, Chula-

longkorn University, Bangkok, 10330, Thailand

Linux [1].

Although extremely heterogeneous, nodes in NES will
have a common set of characteristics: (1) communicate with
each other using short-range radio (2) are distributed across
the physical space, (3) are mobile and may fail frequently,
and (4) work unattended. These nodes may join or leave the
network at any moment (becoming unreachable due to mo-
bility, energy depletion, failures, or disposal) leading to dy-
namic and volatile network topologies. Additionally, NES
will have to function completely decentralized because de-
ploying more powerful nodes that act as base stations will
not be feasible in many situations (e.g., nodes deployed over
a disaster area).

All these characteristics make NES programmability
a challenging task. Traditional distributed programming
models, such as message passing, are not suitable for NES.
Aspects of mobility, volatility, and scale make it difficult to
program applications as a series of interactions with nodes
identified by fixed addresses (as assumed in the message
passing model). Instead, we want to gather information
from, or perform actions on nodes that have certain prop-
erties, content, or location. Therefore, we are no longer
interested in contacting a particular node, but any node
that may be useful to perform the task. Simpler program-
ming abstractions and more flexible programming models
are needed to let the programmers design and write their ap-
plications without worrying about the underlying network-
ing details.

In this paper, we propose Spatial Programming (SP), a
novel programming model for distributed computing over
massive NES. In SP, space is a first order programming con-
cept which is exposed to applications. SP shields the com-
plexity of programming volatile, ad hoc networks by pre-
senting a high level, uniform abstraction, termed spatial ref-
erence, for naming and accessing network resources. A spa-
tial reference addresses the nodes in the network using their
location and content properties, while an underlying system
takes care of mapping it onto a target node in the network. In
our model, programmers write simple, sequential programs
and access transparently the network resources (i.e., using

Term of Comparison Traditional Target Networks Networks of Embedded Systems
Location Indoor Outdoor
Nodes Functionally Homogeneous Functionally Heterogeneous
Operation Under User’s Control Unattended
Scale Relatively Small Large
Topology Stable Ad Hoc and Volatile
Resources Known A Priori/Infrequent Changes Limited A Priori Knowledge/Highly Dynamic

Table 1. Traditional Distributed Computing Networks vs. Networks of Embedded Systems

spatial references) in a similar fashion to the access to mem-
ory using variables. SP is independent of the underlyingsys-
tem, thus allowing for multiple implementations. Each im-
plementation has to translate the high-level, sequential SP
program into a series of actions performed by the underly-
ing system. A first implementation of SP is currently being
developed over our Smart Messages platform [8]. More de-
tails about this implementation are given in Section 4.

The rest of this papers is organized as follows. Section 2
presents the motivation and challenges for SP. Section 3 de-
scribes the SP design and shows the basic SP programming
constructs. The current status and future plans are presented
in Section 4. Section 5 discusses the related work, and the
paper concludes in Section 6.

2. Motivation and Challenges

The trend of embedding “intelligence” everywhere in the
physical world will lead to the development of massive net-
works of embedded systems (NES). Traditionally, the main
focus of distributed computing has been on performance or
availability. Instead, the focus of distributedcomputingover
NES will be on programming the physical world (i.e., pro-
gramming real world devices to sense, observe, report, or
perform collaborative tasks). The two major challenges to-
ward this goal are: (1) how to execute collaborative applica-
tions over NES, and (2) how to allow for coordinated actions
among nodes of interest in a decentralized manner.

To develop distributed applications for this huge com-
puting infrastructure, we need to understand the unique set
of characteristics possessed by NES. Table 1 presents a
comparison between the target networks for traditional dis-
tributed computing (e.g., message passing) and NES. Un-
like traditional distributed computing which takes place “in-
door” over relatively small scale networks with stable con-
figurations, distributed computing over NES takes place
“outdoor” over large scale networks with highly dynamic
configurations.

As a consequence, we believe that the traditional mes-
sage passing programming model cannot satisfy the require-
ments of the applications running in this new world. There-

user

motion

camera

camera

space1space2

camera

motion
camera

motion

motion

motion

motion

motion

Figure 1. Object Tracking Example

fore, new programming models are needed. To illustrate this
claim, we present a collaborative object tracking application
example, depicted in Figure 1. Two types of nodes are dis-
tributed across a given geographical region (space1): mo-
tion sensors and intelligent cameras. Each node is capable of
determining its location (i.e., using GPS [18] or other local-
ization methods [25, 9]). The motion sensors remain static
after deployment, but the cameras can be mobile [17]. The
nodes may fail or be deployed far from other devices pre-
venting them from participating in the computation. Since
motion sensors are less expensive, their number is signif-
icantly greater than the number of cameras. Periodically,
a user starts an application (e.g., from a wireless-enabled
PDA) that monitors the status of the motion sensors in the
network. Each time motion is detected, the application turns
on a certain number of cameras located in the proximity of
that sensor (i.e., informally, space2 is dynamically defined
as the neighborhood where the motion was detected). These
cameras are instructed to perform collaborative object track-
ing in order to identify the object that triggered the motion
sensor and monitor its actions. During this process, the ap-
plication accesses repeatedly the selected cameras and uses
the partial results computed at each node to dynamically de-
termine the next action. Once the object tracking completes,
the active cameras are turned off.

The task stated above is difficult and tedious to program
using the traditional message passing programming model.

Characteristics of message passing systems (e.g., Message
Passing Interface (MPI) standard [3]) include explicit man-
agement of communication with possible deadlocks due to
mismatched communication pairs, and “all or nothing” se-
mantics (i.e., not “best effort” semantics). The programmers
would also have to take care of all the details involved in
reaching the area of interest and contacting the target nodes
located there. This is not a trivial task in a volatile network
with unknown configurations. In our example, the program-
mer does not know how many camera nodes are there or
where exactly they are located. Additionally, the network
dynamics (caused by failures, mobility, or deployment of
new nodes) may cause the application to fail since fixed ad-
dressing schemes treat exceptions as failures. To summa-
rize, a better programming model for NES needs to answer
the following questions:

• How to write simple and intuitive programs for NES?

• How to refer to nodes in a network-transparent way?

• How to discover and access resources at nodes?

• How to cope with network dynamics?

Our proposed programming model, Spatial Program-
ming (SP), is specially designed to provide solutions to the
above questions. The key idea in SP is to offer network-
transparent access to data and services distributed on nodes
spread across the physical space in a similar fashion to ac-
cess to memory using virtual addresses. The main benefits
of SP are:

• Simple to understand programming model which al-
lows for rapid development of NES applications.

• Network-transparent computation that uses network
resources similar to normal variables.

• Possibility to program on-the-fly unattended networks
for new tasks even after network deployment.

• Best-effort computation which tolerates the network
dynamics while providing a certain quality of result to
applications.

3. Spatial Programming Model

In this section, we detail the main SP concepts and ex-
plain how they address the unique set of challenges posed
by NES programmability.

3.1. Spatial References

A spatial reference, represented as a tuple {space:tag},
refers to nodes in the network in the same fashion a pro-
gram addresses memory locations using virtual addresses.
The space is a geographical scope for a the node being ad-
dressed. The tag is a content-based name for the same node
(i.e., it names certain data or service provided by that node).
These can be three examples of spatial references for our ap-
plication:

{space1:motion}, {space2:camera}, {space2:user}

The first spatial reference refers to a node hosting a mo-
tion tag in space1. The second one refers to a camera node
located in space2. The third reference is invalid because
there is no node with a user tag in space2 (in such a case,
an exception is raised to the application).

3.1.1. Why do we need spatial information?

Unlike traditional distributed systems where the physical
location of the nodes does not matter, the spatial distribu-
tion of nodes across physical space is a key feature of mas-
sive NES. These networks will span buildings, large facili-
ties such as campuses or airports, or even roads and forests.
NES applications will prefer to express their interest for data
and services in terms of locations within well-defined ge-
ographical regions, rather than by naming particular nodes
in the network. For instance, in the motivating example,
we need to activate a number of intelligent cameras to dis-
cover and track the object that triggered the motion sensor.
These cameras have to be within a physical range of the trig-
ger node because otherwise no causal relation can be estab-
lished. Therefore, SP considers space as a first order pro-
gramming concept and exposes it to applications through
spatial references.

3.1.2. Why do we need content-based naming?

Applications running in NES will refer to resources (data,
properties, or services), not individual nodes. From an ap-
plication point of view, nodes with the same properties, lo-
cated in the same region, might be interchangeable. Fixed
naming schemes, such as IP addressing, will be almost ir-
relevant in this case. For example, it might be desirable to
reach a node that has a motion sensor, but a fixed bindingbe-
tween the desired property and a unique identifier for a node
is inappropriate. If the destination node becomes unavail-
able, the application can fail even though multiple nodes
providing the same property are available. Therefore, SP re-
lies on a naming scheme based both on space and content.

3.1.3. How to define the spaces?

The application may use statically defined spaces or create
dynamically new spaces. Static definitions are used to de-
scribe physical spaces that do not change over time and are
commonly provided in the form of names associated with
geographical regions (e.g., using topological maps). Dy-
namic definitions typically specify composed spaces (using
the union, difference, or intersection operators) or relative
spaces (defined relative to the positionof a referenced node).
The relative spaces are of particular importance to SP be-
cause they allow an application to “remember” and access
a space where a certain event took place even after the node
that produced or detected this event is no longer there. For
our example, this is how we can define and use two dynamic
spaces:

(1) diff=space1-space2
{diff:camera}

(2) space2=rangeOf({space1:motion},Range)
{space2:camera}

In the first case, we refer to a camera node located in
space1, but not in space2. The second example shows
how to define the “proximity” of a node using the rangeOf
operator (i.e., it defines space2 as a a circular region
with the center at the position of the node referenced by
{space1:motion} and radius equals Range). Similarly,
northOf, southOf, eastOf, and westOf define semi-circles
relative to the position of a referenced node.

3.1.4. How to define the tags?

Generally, content-based naming can involve arbitrary ex-
pressions on content names and content values. In spatial
references, tags are just strings that name content or services
at nodes. The tags are not globally unique since they name
content or services that can be provided by multiple nodes.
Although the namespace for massive NES can be extremely
large, we expect that certain semantic rules will be adopted
and enforced to make tag naming intuitive and manageable.

3.1.5. How to distinguish among similar nodes?

To make it possible to refer to more than one node with the
same spatial and content properties, we introduce the notion
of reference instance. The reference instance is denoted by
a particular index of a spatial reference. In our example, the
references presented below represent two different nodes:

{space2:camera[0]}, {space2:camera[1]}

Commonly, a programmer is not aware of the exact
number of the nodes with a certain content in a given
space. For instance, an attempt to use the reference
{space2:camera[2]} in our application will trigger an in-
valid reference exception.

3.2. Reference Consistency

An application that refers to a node with given spatial and
content properties is guaranteed to contact the same node
each time it makes subsequent successful references. This
property provides the ability to perform arbitrary distributed
computations over a subset of nodes of interest. For in-
stance, in our example, the application needs to access the
selected camera nodes multiple times, but the order and type
of access are determined at runtime. Therefore, the underly-
ing system needs to maintain bindings between spatial refer-
ences and the nodes they address. These bindings are main-
tained per-application (similar to a page table) and are per-
sistent during the SP program execution. When the first ac-
cess to a network resource takes place, a new binding for a
spatial reference is created. The data stored in a binding is
implementation-specific, but it must include a unique ID for
the referenced node and the location of this node (i.e., x, y
coordinates). This data allows an application to visit repeat-
edly nodes and locations as long as the spatial reference is
valid.

In some situations, reference consistency is not neces-
sary, or it is even preferably to be avoided. For instance, an
application that needs to contact periodically N temperature
sensors located in a certain region and compute the average
temperature may accept any sensor that provides the desired
combination of space and content. In such a case, if a refer-
enced node cannot be found in its space, the spatial reference
can be rebound to a similar node rather than returning an ex-
ception for a failed access.

3.3. Accessing Resources

Spatial references allow network-transparent access to
resources located on the referenced nodes. Applications use
network resources in a similar fashion to normal variables.
An application programmer does not perform any network-
related operation to obtain the requested resources. The un-
derlying system takes care of name resolution, access to re-
sources, routing, communication, and security.

A node can contain multiple resources, which can be in-
dividually accessed by an SP application using the dot no-
tation for spatial references. For instance, our object track-
ing application can access different properties on a camera
node:

(1) {space2:camera[1]}.active=ON;
(2) {space2:camera[1]}.focus=location;
(3) img={space2:camera[1]}.image;

These examples show how network resources, named by
tags, can be used in a program in the same way as normal
variables. In the first two lines, we assign values for two
properties on a camera node (i.e., we turn the camera on, and

we focus it toward a certain point in space). In the third line,
we store the image acquired by the camera into a variable.

Besides accessing resources that already exist at nodes, a
program can dynamically create/remove its own resources.
For instance, an application may need to create new re-
sources in order to store data in the network (i.e., similar to
creating files in a file system), or it may even create new ser-
vices on nodes of interest (e.g., an image recognition service
on a camera node). The primitives that offer these function-
alities are illustrated below:

create({space2:camera[1]}.partialResult);
res=analyzeImage({space2:camera[1]}.image);
{space2:camera[1]}.partialResult=res;

.........
remove(space2:camera[1]}.partialResult);

In this example, the application creates a new resource,
partialResult, to store the result of analyzing a newly ac-
quired image. An application can perform collaborative ob-
ject tracking using partial results from multiple cameras.
When the partialResult is not needed any longer, the appli-
cation can remove it.

A natural question that can be raised at this point is: how
are the network resources shared? For now, the resource
sharing policy in SP is very simple: the resources provided
by nodes are shared (i.e., the system does not guarantee that
an application accessing the same resource twice gets the
same result), and the resources created by applications are
private. More complex policies and their interaction with
the underlying system will be considered for the future de-
sign refinements.

3.4. Programming for Uncertainty

Since NES are extremely volatile, SP should make it easy
for programmers to deal with network configuration dynam-
ics. This dynamics involves constant change in the location
of nodes as well as intermittent network connectivity. For
example, a reference made to a node may become invalid if
this node has moved away from the area of interest or it sim-
ply ceased to exist. Additionally, the programmer does not
even know if, or how many resources of interest exist within
a certain space.

3.4.1. How long does it take to reach a node?

Unlike traditional computer systems where the access time
to resources is finite and an upper bound can be determined,
in a volatile and dynamic network such as NES, it is difficult
to estimate how long it takes to access a network resource
(even the existence of a certain resource in a given space
is unknown). The operations on network resources in NES
may take a substantial amount of time or may not be able
to complete at all. Instead of waiting an indefinite amount

of time to complete, many applications would be willing to
trade the quality of result (as long as this result is seman-
tically acceptable) for the response time. Therefore, to al-
low applications to make progress even in adverse network
conditions, SP proposes “best effort” computing. Under this
paradigm, a programmer is allowed to set time constraints
on spatial references. The underlying system does not guar-
antee that it will be able to locate and access a resource in
a certain amount of time, but it guarantees to raise a time-
out violation exception to the application if the access does
not succeed in that time period. In such a situation, the ap-
plication decides about further actions (e.g., retry, look for a
similar resource, continue without this resource). The code
presented below illustrates a time constrained access to a re-
source on a node referenced by {space2:camera}.

try{
{space2:camera,timeout}.active = ON;

}catch(Timeout e){
// application decides further actions

}

Commonly, a programmer sets each timeout based on the
constraint imposed by the user on the total execution time
(e.g., each new access can have the entire remaining time).

3.4.2. What happens if a referenced node moves?

When the nodes are mobile, the semantics of spatial refer-
ences requires that once the reference is bound to a node,
the underlying system locates the same node in the respec-
tive space each time the reference is used again (i.e., refer-
ence consistency). If a node moves out of its space, the ap-
plication receives an invalid reference exception. If the pro-
grammer has knowledge about the mobility patterns of cer-
tain nodes, however, the space for the spatial references as-
sociated with these nodes can be modified using space cast-
ing. In our example, if a referenced camera moves within
space2, the reference remains semantically valid. But, if it
moves outside space2, space casting can be used to expand
its geographical scope to space1:

(1) {space2:camera}
(2) {space1:(space2:camera)}

If the new space for a node is unknown, a programmer
can use the Anywhere space constant to cast a spatial refer-
ence to any space.

3.5. Putting It All Together: Program Example

Table 2 shows a comparison between traditional message
passing distributedcomputing and SP, which emphasizes the
novel concepts introduced by SP. These concepts allow for
a large spectrum of NES distributed applications, ranging

Term of Comparison Traditional Distributed Computing Spatial Programming
Focus Performance/Availability Programming Physical World
Naming Fixed Addresses Combination of Space and Content
Communication Managed Explicitly by Programmers Transparent
Semantics All or Nothing Best Effort
Re-programmability Difficult after Network Deployment Easy to Execute New Applications

Table 2. Traditional Distributed Computing vs. Spatial Programming

1 if ({space1:motion[i]}.detect==true){
2 space2=rangeOf({space1:motion[i]},Range);
3 location={space1:motion[i]}.location;
4 try{
5 for(j=0,k=0;j<Nc;k++)
6 if ({space2:camera[k],timeout}.active==OFF){
7 {space2:camera[k]}.active=ON;
8 {space2:camera[k]}.focus=location;
9 activeCameras[j++]={space2:camera[k]};
10 }
11 }catch(Timeout e){
12 if (j<Nc/2)
13 // restart monitoring the motion sensors
14 else
15 // else continue with the next instruction
16 }
17 result=objectTracking(activeCameras);
18 for(k=0;k<j;k++)
19 activeCameras[k].active=OFF;
20 return result;
21 }

Figure 2. Spatial Programming Code Example

from as simple as computing the average/maximum temper-
ature over a given geographical region to complex collabo-
rative applications such as distributed object tracking. Typi-
cal applications for SP are those which execute a distributed
algorithm over a set of nodes selected based on their content
and spatial properties.

To illustrate such an application, Figure 2 presents the
source code for our object tracking example. Once the mo-
tion is detected at one of the monitored motion sensors (i.e.,
{space1:motion[i]} in the figure), a relative space is cre-
ated around that sensor in order to perform object tracking
within its proximity (lines 1-2). Any camera node located
in space2 that is not active (i.e., working for other applica-
tions) is turned on, focused to the location of motion, and
added to the set of active cameras until the desired number
of Nc active cameras has been reached (lines 3-10). During
the object tracking (line 17), the cameras may be accessed
multiple times due to the reference consistency feature of SP.
The actions taken at a camera node depend on the partial re-
sults computed at previously visited nodes. The application

ends by turning off the set of active cameras (lines 18-19).
For the sake of simplicity, we ignored the time constraints
on spatial references throughout this example for most of
the accesses to network resources. We show, however, what
happens if a a timeout occurs in the process of constructing
the set of active cameras. In such a situation, a timeout vi-
olation exception is raised (line 11), and the application has
to decide what its further actions are (“best effort” comput-
ing). Our application accepts a possibly lower quality of re-
sult and goes ahead if at least half of the desired number of
cameras is found. Otherwise, it restarts monitoring the mo-
tion sensors (lines 12-16). If a camera moves out of space2
during the object tracking (line 17), the application may just
ignore it (if enough active cameras), or may use space cast-
ing to re-discover it (considering the execution time and nor-
mal motion speeds, the camera should be in the proximity of
space2).

4. Status and Future Work

In the following, we briefly outline the current status and
future ideas for improving the SP design and implemen-
tation. We plan to further investigate what other features
should be added to SP to make it even more flexible and eas-
ier to use in such complex environments as NES. We also
plan to analyze the tradeoffs between various design choices
that we face in implementing SP.

At this time, we are in the process of implementing SP
using Smart Messages (SM) [8]. SMs consist of code and
data sections as well as a lightweight execution state. They
migrate through the network, searching for nodes of interest,
and execute at each node in the path. SMs name the nodes of
interest by content and self-route to them using other nodes
as “stepping stones”. Nodes in the network support SMs by
providinga virtual machine and name-based memory, called
Tag Space. The Tag Space is used for naming, inter-SM
communication, synchronization, and interaction with the
local host.

The use of SMs as the underlying system for SP offers
several advantages. They provide the ability to program the
network on-the-fly (including the possibility to dynamically
install new services at nodes), while requiring only a mini-

mal system support. The Tag Space offers a uniform view of
the network resources (both in terms of naming and access
to resources). SMs are resilient to network volatility, being
able to adapt to network conditions [7].

SP requires a set of programming constructs that can be
added as extensions to any programming language or can be
implemented as library calls. The decision whether to im-
plement the SP constructs as language extensions or as li-
brary calls has to be evaluated both in terms of performance
and ease of programming. We are currently working to com-
plete an SM runtime system for SP, and an SP programming
language will be developed in the near future. To investi-
gate the practicality of SP over SM, we have designed and
manually translated a simple SP application into an SM pro-
gram. The application has been executed over an SM plat-
form consisting of a modified version of Sun’s Java KVM
and a testbed composed of HP iPAQs running Linux and
equipped with 802.11 wireless cards for communication.

For networks of resource constrained devices, such as
sensor networks, a more traditional implementation may
yield better performance. Therefore we plan to have an SP
implementation on top of Directed Diffusion [15]. Other
possible implementations might involve more traditional
client-server or clustering-based approaches for relatively
stable networks.

5. Related Work

Recent projects [11, 6, 4] have presented programming
models for ubiquitous/pervasive computing. SP shares
some of their goals, but its main design goal is to define
and implement a programming model that provides a simple
way to program the physical spaces and to decouple the ac-
cess to spatially distributed network resources from the net-
working details.

SP is closely related to Spatial Views, an iterative spatial
programming model for NES [22]. Spatial Views provide a
more restrictive, higher level programming model than SP.
This model allows the specification of sets of nodes of inter-
est, called views, together with a sequential program to be
executed on each node in a view. In addition, language con-
structs are provided to group nodes according to their phys-
ical location, and to specify constraints that have to be satis-
fied by a program execution (e.g., resources, time, quality of
result). SP can serve as a target language for a Spatial Views
compiler, but not vice versa since SP provides fine grained
access to network resources which is not available in Spatial
Views.

A research complementary to ours is TAG [24], which
defines an SQL-like language for sensor networks. Both
SP and TAG provide simple programming constructs that
shield the programmer from the underlying network. There
are two main differences between SP and TAG. First, SP

focuses on a flexible abstraction that allows programming
for uncertainty in highly dynamic networks, while TAG fo-
cuses on a set of queries executed efficiently in the network.
Second, the programmer has the control over execution in
SP, while TAG depends entirely on the compiler (i.e., essen-
tially SP offers an imperative language, while TAG offers a
declarative language).

Content-based naming has been recently presented for
both Internet [5, 26] and sensor networks [15]. The spa-
tial references used in SP are similar abstractions to these
content-based names, but they incorporate spatial informa-
tion and present a uniform view of space and network to ap-
plications. Another difference is that SP targets ubiquitous
computing environments and is independent of the underly-
ing implementation.

Although geographical [20, 21] and content-based rout-
ing [15, 12] have been extensively studied, a simple and in-
tuitive programming model that allows the user to express
the computation in terms of physical locationand content (or
services) provided by nodes is still missing. SP offers such
a model, and its underlying implementation takes advantage
of these routing algorithms (especially of those developed
for ad hoc networks).

Recent work on sensor networks has focused on new
communication paradigms [15], system architectures for
fixed-function sensor networks [14], and energy efficient
data collection for mobile sensor networks designed to sup-
port wildlife tracking [16]. Sensor networks can represent a
platform for SP. Since they are deployed across large geo-
graphical regions, SP provides a viable solution to alleviate
the task of writing programs for them.

The design of Smart Messages (SMs), our first SP plat-
form, has been influenced by a variety of other research ef-
forts, particularly mobile agents for IP-based networks [19,
10]. SMs leverage the general idea of code migration, but
focus more on flexibility, re-programmability, and ability to
perform distributed computing over unattended NES. Un-
like mobile agents, SMs address nodes by content, discover
the network configuration dynamically, are responsible for
their own routing, and require minimal system support at
nodes.

6. Conclusions

In this paper, we have presented the design of Spatial Pro-
gramming (SP). SP is a novel programming model for net-
works of embedded systems (NES) deployed in the physi-
cal space. To our best knowledge, SP is the first attempt to
design and implement a programming model for NES. SP
provides a simple and intuitive way of programming nodes
spread across the physical space without dealing with net-
work complexity. The implementation of a simple SP ap-
plication over Smart Messages and the preliminary experi-

mental results provide us with the confidence that SP can be
a viable programming model for massive NES.

References

[1] Linux Devices. http://www.linuxdevices.com.
[2] Sensoria Corporation. http://www.sensoria.com.
[3] The MessagePassing Interface (MPI) Standard. http://www-

unix.mcs.anl.gov/mpi/.
[4] S. Adhikari, A. Paul, and U. Ramachandran. D-Stampede:

Distributed Programming System for Ubiquitous Comput-
ing. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS), pages 209–216,
July 2002.

[5] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The Design and Implementation of an Intentional Nam-
ing System. In Proceedings of the 17th ACM Symposium on
Operating SystemsPrinciples (SOSP), pages186–201,1999.

[6] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman,
and D. Zukowski. Challenges: An Application Model for
Pervasive Computing. In Proceedings of the Sixth annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), pages 266–274, August 2000.

[7] C. Borcea, C. Intanagonwiwat, A. Saxena, and L. Iftode.
Self-Routing in Pervasive Computing Environments using
Smart Messages. In Proceedings of the 1st IEEE Interna-
tional Conference on Pervasive Computing and Communi-
cations (PerCom), March 2003.

[8] C. Borcea, D. Iyer, P. Kang, A. Saxena, and L. Iftode. Coop-
erative Computing for Distributed Embedded Systems. In
Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems (ICDCS), pages 227–236, July
2002.

[9] L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating
Tiny Sensors in Time and Space: A Case Study. In Proceed-
ings of the International Conference on Software/Hardware
Codesign (ICCD 2002). Invited Paper, October 2002.

[10] R. S. Gray, G. Cybenko,D. Kotz, and D. Rus. Mobile agents:
Motivations and State of the Art. In J. Bradshaw, editor,
Handbook of Agent Technology. AAAI/MIT Press, 2001.

[11] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth,
S. Swanson, T. Anderson, B. Bershad, G. Borriello, S. Grib-
ble, and D. Wetherall. Systems Directions for Pervasive
Computing. In Proceedingsof the 8th Workshop on Hot Top-
ics in Operating Systems (HotOS-VIII), May 2001.

[12] M. Gritter and D. Cheriton. An Architecture for Content
Routing Support in the Internet. In Proceedings of the 3rd
USENIX Symposium on Internet Technologies and Systems
(USITS), March 2001.

[13] J. Heideman, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building Efficient Wireless Sen-
sor Networks with Low-Level Naming. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles
(SOSP), pages 146–159, October 2001.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Networked
Sensors. In Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 93–104, Novem-
ber 2000.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In Proceedings of the Sixth annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), pages 56–67, August 2000.

[16] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and
D. Rubenstein. Energy-Efficient Computing for Wildlife
Tracking: Design Tradeoffs and Early Experiences with Ze-
braNet. In Proceedings of the Tenth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 2002.

[17] B. Jung and G. S. Sukhatme. Cooperative Tracking us-
ing Mobile Robots and Environment-Embedded,Networked
Sensors. In the 2001 IEEE International Symposium on
Computational Intelligence in Robotics and Automation.

[18] E. Kaplan, editor. Understanding GPS: Principles and Ap-
plications. Artech House, 1996.

[19] N. Karnik and A. Tripathi. Agent Server Architecture for the
Ajanta Mobile-Agent System. In Proceedingsof the 1998 In-
ternational Conferenceon Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’98), July 1998.

[20] B. Karp and H. Kung. Greedy Perimeter Stateless Routing
for Wireless Networks. In Proceedings of the Sixth annual
ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), pages 243–254, August 2000.

[21] Y.-B. Ko and N. H. Vaidya. Location-Aided Routing(LAR)
in Mobile Ad Hoc Networks. In Proceedings of the
Fourth annual ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom), pages 66–75,
October 1998.

[22] U. Kremer, L. Iftode, J. Hom, and Y. Ni. Spatial Views: Iter-
ative Spatial Programming for Networks of Embedded Sys-
tems. Technical Report DCS-TR-493, Rutgers University,
June 2002.

[23] M. Satyanarayanan. Pervasive Computing: Vision and Chal-
lenges. IEEE Personal Communications, August 2001.

[24] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG:
a Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI). To Appear., December
2002.

[25] N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. Teller.
The Cricket Compass for Context-Aware Mobile Applica-
tions. In Proceedings of the 7th annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking
(MobiCom), pages 1–14, 2001.

[26] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Ac-
tive Names: Flexible Location and Transport of Wide-Area
Resources. In Proceedings of the Second USENIX Sympo-
sium on Internet Technologies and Systems (USITS), pages
151–164, October 1999.

[27] M. Weiser. The computer for the twenty-first century. Sci-
entific American, September 1991.

