
https://doi.org/10.1007/s10707-019-00389-4

Mobile participatory sensing with strong privacy
guarantees using secure probes

Iulian Sandu Popa1,2 ·Dai Hai Ton That3 ·Karine Zeitouni1 ·Cristian Borcea4

Received: 31 August 2018 / Revised: 25 October 2019 / Accepted: 25 November 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Mobile participatory sensing (MPS) could benefit many application domains. A major
domain is smart transportation, with applications such as vehicular traffic monitoring, vehi-
cle routing, or driving behavior analysis. However, MPS’s success depends on finding a
solution for querying large numbers of smart phones or vehicular systems, which protects
user location privacy and works in real-time. This paper presents PAMPAS, a privacy-
aware mobile distributed system for efficient data aggregation in MPS. In PAMPAS, mobile
devices enhanced with secure hardware, called secure probes (SPs), perform distributed
query processing, while preventing users from accessing other users’ data. A supporting
server infrastructure (SSI) coordinates the inter-SP communication and the computation
tasks executed on SPs. PAMPAS ensures that SSI cannot link the location reported by
SPs to the user identities even if SSI has additional background information. Moreover, an
enhanced version of the protocol, named PAMPAS+, makes the system robust even against
advanced hardware attacks on the SPs. Hence, the risk of user location privacy leakage
remains very low even for an attacker controlling the SSI and a few corrupted SPs. Our
experimental results demonstrate that these protocols work efficiently on resource con-
strained SPs being able to collect the data, aggregate them, and share statistics or derive
models in real-time.

Keywords Location privacy · Secure protocol · Distributed architecture · Mobile ·
Participatory sensing · Real-time urban monitoring

1 Introduction

There is an increasing interest in mobile participatory sensing for urban monitoring, which
appears to be a better alternative to traditional infrastructure-based sensing to cope with the
high installation and maintenance costs, as well as the coverage limitation. Many projects
have been conducted recently around the world - or are still ongoing - in the area of environ-
mental participatory sensing [33], such as Citi-Sense in Oslo, CamMobSens at Cambridge,

� Iulian Sandu Popa
iulian.sandu-popa@uvsq.fr

Extended author information available on the last page of the article.

Geoinformatica (2021) : –58053325

Published online: 20 December 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-019-00389-4&domain=pdf
http://orcid.org/0000-0002-3935-2471
mailto: iulian.sandu-popa@uvsq.fr


MetroSense at Dartmouth, OpenSense in Switzerland or Urban Civics in Paris.1 Many
applications that exploit the sensing features of smart phones are already available. Exam-
ples include community based traffic monitoring (e.g., Waze,2 or Navigon3), evaluating the
quality of road infrastructures,4 finding available parking spaces or noise mapping [15]. As
we can see from these examples, smart transportation applications such as vehicular traffic
monitoring, vehicle routing, or driving behavior analysis, benefit greatly from mobile par-
ticipatory sensing. In addition, the emerging lightweight low-cost sensors are changing the
paradigm of environmental and health monitoring,5 and allow measuring in real-time the
individual exposure to environmental risk factors or the propagation of an epidemic.

In these scenarios, the community members (e.g., their smart phones or vehicular sys-
tems) act as mobile probes and contribute to spatial aggregate statistics, which in turn,
benefit the whole community, e.g., dynamic traffic navigation or air quality mapping
and alerts. Various statistics are of interest: basic count and density, average of reported
measures by location and time, or more complex geo-statistical operations such as spa-
tial interpolation [31]. Unfortunately, most current mobile participatory sensing systems
(MPSS) require users to reveal their locations to trusted monitoring servers, which raises
serious privacy concerns because user identity could be determined based on several loca-
tions that are linked to the same user [30]. We should stress that, even if users might
trust a centralized service, privacy violation examples are legions (see for example Dat-
aLossDB.org) coming from negligence, abusive use, internal or external attacks, and such
violations affect even the most secured servers. In addition to location, sensing data reported
by users could be privacy-sensitive as well. These privacy issues represent a serious obstacle
that can prevent a wide adoption of MPSS.

Several works consider the MPSS privacy problem such as [6, 13, 15, 37, 40]. However,
most approaches require trusting a proxy server [13, 40], while others are too costly [6,
15], or sacrifice sensing accuracy for privacy [37]. Hence, providing a high-quality MPSS,
while protecting the users’ privacy, is still a challenge. Recently, the emergence of per-
sonal secure devices has opened new perspectives in personal data protection. Be it a
secure portable token [1, 41], [25] communicating with the user’s smartphone or plugged
inside it (e.g., Google Vault6), a tamper-resistant hardware security module securing the
on-board computer of a vehicle [16], or the secure TrustZone CPU [3] of the ARM cortex-
A series equipping most of mobile devices today, all such secure devices offer tangible,
hardware-based security guarantees under the form of what is generally called a Trusted
Execution Environment (TEE) [38]. We leverage their secure data processing capability in a
distributed, privacy-by-design architecture, providing an alternative to the traditional server-
centric architecture. Following current technology trends (e.g., Intel SGX [36], TrustZone
CPU [21]), we expect that such secure devices will become ubiquitous in the near future,
equipping by default users’ mobile devices and devices embedded in smart vehicles. As
such, there will be no need for users to buy and connect external hardware to participate in
MPPS applications.

1https://goflow.ambientic.mobi/
2http://www.waze.com
3http://navigon.com
4http://www.streetbump.org/
5http://www.epa.gov/heasd/airsensortoolbox/
6http://www.cnet.com/news/googles-project-vault-is-a-security-chip-disguised-as-an-micro-sd-card/

Geoinformatica (2021) : –58053325534

https://goflow.ambientic.mobi/
http://www.waze.com
http://navigon.com
http://www.streetbump.org/
http://www.epa.gov/heasd/airsensortoolbox/
http://www.cnet.com/news/googles-project-vault-is-a-security-chip-disguised-as-an-micro-sd-card/


This paper presents PAMPAS, a Privacy-Aware Mobile Participatory Sensing system
for efficient mobile distributed query processing in the context of MPSS. The novelty of
PAMPAS7 [44] is two-fold: (1) it provides a system architecture that protects users’ loca-
tion privacy by preventing location tracking from any third-party server; and (2) it provides
efficient aggregation protocols that satisfy the MPSS real-time constraints in spite of the
resource limitations of secure devices. The privacy guarantee gives users strong incentives
for participation [18], in addition to the benefits they get from MPSS applications. In PAM-
PAS, all participants have a mobile device enhanced with secure hardware (i.e., any of
the types described above), called a secure probe (SP). SPs act as probes for the target
phenomenon, perform distributed query processing, and share the results with the users.
The secure hardware prevents users from accessing other users’ data during the distributed
computation. Secure probes exchange data in encrypted form with help from a support-
ing server infrastructure (SSI). To provide real-time results, PAMPAS employs efficient,
parallel, location-based aggregation protocols which partition the probes according to their
geographic distribution. The construction and the maintenance of these partitions aim at
reducing and balancing the workloads on worker SPs, while precluding the SSI from doing
location-based inference attacks against the participants.

Furthermore, to increase the security of PAMPAS and make it robust against advanced
hardware attacks (called lab attacks in the paper8), we design an enhanced aggregation pro-
tocol named PAMPAS+. To this end, we consider first an extended threat model in which we
take into account the possibility that some of the SPs could be corrupted. We then introduce
the PAMPAS+ protocol which, by isolating the risk, is able to avoid a complete leakage of
sensitive user information even if some SPs are corrupted and thus to continue protecting
the privacy of the participants. Hence, PAMPAS+ drastically reduces the benefits of a lab
attack and through this largely increases the system security. At the same time, the improved
privacy protection of PAMPAS+ has a minimal impact on the efficiency and scalability of
the protocol as the most costly operations can be done offline.

We implemented and validated PAMPAS/PAMPAS+ using representative secure hard-
ware platforms. We used two applications for experiments, traffic and noise monitoring,
with both real and synthetic datasets representing small and medium-size cities. Using these
applications, we compared PAMPAS with a state-of-the-art secure aggregation protocol
described in [41]. The experimental results show that PAMPAS outperforms this protocol in
terms of latency and scalability, which translates to much lower resource utilization at the
user side.

The rest of this paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the system architecture of PAMPAS, the base threat model, and the
protocol requirements. Section 4 presents the location-based global aggregation protocol,
and Section 5 describes the privacy-aware probe partitioning protocol. Building up on the

7This paper is an extended version of [44]. The new material covers three significant contributions. First,
we design a new, more robust aggregation protocol that is resilient to advanced hardware attacks. Second,
we provide an alternative, more effective partitioning algorithm that offers a different tradeoff in terms of
efficiency and partitioning quality than the base partitioning algorithm. Third, we provide a thorough analysis
of the privacy protection and also an extensive evaluation of the new proposed protocols.
8We use the terminology of ARM [3] which designates as lab attacks the most advanced, comprehensive
and invasive hardware attacks for which the attackers have access to laboratory equipment and the knowl-
edge to perform reverse engineering of a device and also monitor analog signals to perform attacks such as
cryptographic key analysis.

Geoinformatica (2021) : –58053325 535



foundation laid by the PAMPAS protocol, we present PAMPAS+ in Section 6, an efficient
privacy improvement of PAMPAS which addresses the important lab attack problem. The
security analysis of PAMPAS and PAMPAS+ is presented in Section 7, while the exper-
imental results as well as the performance comparison of PAMPAS and PAMPAS+ are
shown in Section 8. Finally, we conclude the paper in Section 9.

2 Related work

Traditional system architectures used in MPSS such as [13, 40] rely on a centralized server
to collect data from mobile participants, process it, and publish the results. This server-
centric model is straightforward and easy to deploy, run, and maintain. However, this basic
approach also raises serious privacy concerns and prevents a wide adoption of MPSS. An
attacker who is able to link several location reports to the same user can then determine the
identity of the user by leveraging, for example, background information (e.g., user home
address). Thus, an attacker can identify the MPSS participants and infer their personal habits
and activities [30]. In addition to location which is normally included in MPSS reports, the
sensing data reported by users could be privacy-sensitive as well. The works that address this
issue belong to three classes: (1) server-centric architecture and (2) cryptographic protocols
for MPSS, and (3) secure hardware devices and user-centric architectures.

Server-centric approaches Virtual trip lines (VTLs) [22] deal with the privacy issue by
distributing the traffic monitoring service implementation across several specialized servers
and by providing a spatiotemporal cloaking of the users under the VTLs. Although the
attack of a single system component prevents linking the identity and location of the users,
choosing privacy-insensitive locations for VTLs is tricky and limits the traffic information
to a part of the road network. Also, the problem of multi-component attack (or collusion)
remains, as well as the high cost of building such a complex system distributed over several
components. A similar approach is AnonySense [10] which proposes a system composed
of many entities such as the mobile nodes, the registration authority, the task services, the
report service, the access point and the mix network. Each component takes responsibility
for a specific role so that a single malicious entity in the system cannot have access to too
much private information.

Shi et al. [39] propose PriSense, a people-centric urban sensing system to tackle the
problem of the privacy concerns of participating individuals. The architecture of PriSense
comprises two main components: powerful aggregation severs (ASs) and participating indi-
viduals (called nodes). Each AS is in charge of a certain region and provides network access
services for the nodes in that region. The AS broadcasts queries in their region and the nodes
contribute with their data to the AS if they are relevant. To protect the user privacy, a node
randomly splits its data and sends the shares to other nodes in its region. Then the nodes
send the shares to the AS which is able to compute base aggregation functions over the
collected data. PriSense offers probabilistic privacy protection against malicious ASs and
nodes. However, there are several drawbacks: the deployment cost is high since it requires
an AS for each observed region, the communication cost is important since the data is split
before being sent to the AS, the type of aggregation is limited to base statistical functions
(e.g., average, min, max, percentile, variance) while the accuracy is low since a spatial unit
corresponds to an AS region.

SpotMe [37] proposes a different approach consisting in mixing the real user’s location
with fake locations before posting them to a central server. Then, the server estimates the

Geoinformatica (2021) : –58053325536



aggregated user locations by using probability theory. However, the estimation errors can
be important (around 20%), while the number of observed spatial units cannot exceed a few
hundreds. Also, SpotMe involves higher communication costs because of the large number
of fake locations, while linkability may still be a problem for users who send many con-
secutive location updates, which limits the usability of this approach to sporadic updates.
PoolView [17] tackles the problem of user privacy in participatory sensing applications
by applying data perturbation techniques on the user-side to perturb private measurements
before sharing. In PoolView, there is a tradeoff between the user’s privacy level and the
accuracy of the system, i.e., the higher the required privacy level is, the higher the error
in the computed statistics is. Also, no matter the perturbation method which is applied,
there is no guarantee that the user’s privacy is always protected. Besides, recent proposals
address location privacy in different contexts, such as geo-indistinguishability in location-
based services, by applying the differential privacy principle to geo-location [2, 8, 26, 29]
or geo-obfuscation for the anonymization of workers in spatial task allocation [23, 26, 46].
However, depending on the chosen degree of obfuscation, on the one hand, the quality of
service in such systems may suffer from the information accuracy loss, and on the other
hand, temporal correlation [7] or background knowledge can still be used to infer the user’s
location.9

By employing a fully decentralized architecture for computation, PAMPAS avoids all
the above listed problems. Moreover, the trust is enforced by using cheap but highly secure,
tamper-resistant hardware at the user side.

Cryptographic approaches Another way to protect the users’ privacy is to use secure
cryptographic protocols [6, 15, 27, 35]. Such solutions can offer formal guarantees on loca-
tion privacy and accountability to protect against users trying to upload large amounts of
fake samples. Typically, the cryptographic solutions are based on homomorphic encryption
schemes allowing a central-server [27, 35] or the users [15] to aggregate the samples directly
on the cyphertext. However, the cryptographic methods have to face two major limitations.
First, homomorphic encryption only allows the computation of basic aggregate functions
(e.g., count, average, sum, standard deviation), while more advanced functions require fully
homomorphic encryption schemes, which are not computationally feasible today. Second,
even with the basic aggregate functions, the cryptographic protocols can incur a large com-
putation and communication cost [6, 35]. Hence, the existing works typically limit the size
of the monitored space (e.g., the number of roads) and the monitoring frequency. Therefore,
such solutions cannot meet the scalability and the real-time requirements of MPSS at the
same time, and are not generic w.r.t. the type of aggregate function. Moreover, depending
on the encryption protocol, the accuracy of the aggregate result may also be impacted since
only a (low) number of discrete range values can be computed with such protocols [6, 15,
27, 35].

Secure hardware and user-centric approaches Recent works have also proposed the use
of secure hardware at the user-side [1, 41, 42]. The trust in such a distributed architecture in
which all computation is done by user devices arises from two sources: (i) the decentraliza-
tion, i.e., there is no central-server to be trusted or to be exposed to attacks having a large
benefit/cost ratio; (ii) the (tamper-resistant) secure hardware at the user-side, which protects
the devices against physical attacks (even from the device holder).

9https://github.com/chatziko/location-guard

Geoinformatica (2021) : –58053325 537

https://github.com/chatziko/location-guard


In [1], Allard et al. propose METAP, a privacy-preserving data publishing protocol in the
context of an architecture composed of low power secure devices and a powerful but un-
trusted server in order to release sanitized data to third parties. However, this data publishing
protocol does not consider the case of spatiotemporal sensed values and cannot be used in
participatory sensing aggregations.

To et al. [41, 42] propose a similar architecture, but consider the problem of execut-
ing SQL queries over a distributed database without revealing any sensitive information
to central servers. In particular, the work in [41] proposes a secure protocol to evaluate
GROUP BY SQL-like-queries, which are similar to some extent to mobile participatory
sensing aggregates. In a nutshell, the secure devices at the user-side push their query rel-
evant tuples in an encrypted form to a centralized server infrastructure. After collecting
the tuple data, the central server randomly partitions the tuples and sends each partition
to a secure device which decrypts it and produces partial aggregations (i.e., it aggregates
the data belonging to the same group in a partition). The partial aggregations are then sent
back to the server, which repeats the process (i.e., repartitions the intermediate results and
resends them to some secure devices for further aggregation). Hence, several (or many) iter-
ations are required before all tuples belonging to each group are aggregated. Considered
in our context, this protocol incurs high computation and communication costs because of
the specificity of MPSS aggregates (e.g., the aggregate groups are locations, there is a high
number of such groups, the computation is continuous and should follow the data gener-
ation frequency, the aggregate functions can be complex such as spatial interpolation). To
improve the efficiency of the secure protocol, an equi-depth histogram-based protocol is
presented as an alternative in [41]. The idea is to partition the aggregation groups into buck-
ets before the query processing, which leads to a uniform distribution of the data in the
obtained buckets, similar to an equi-depth histogram. This allows the server to assemble the
data tuples belonging to the same bucket into the same partition, which in turn allows the
secure devices to compute the final aggregation result in one iteration. However, building
an equi-depth histogram efficiently requires either knowing in advance the data distribution
or having a nearly-static distribution and then computing it using the costly secure protocol
introduced above. Unfortunately, these hypotheses are not verified in MPSS apps since the
spatial distribution of the participants is not known in advanced and also rapidly evolves
over time.

PAMPAS shares the idea of employing a user-centric decentralized architecture with
the above mentioned works. However, unlike existing protocols, its secure aggregation
protocol is adapted to MPSS requirements, i.e., high dynamicity of the participants, real-
time constraints for computation, complexity of the aggregate statistics, and low resource
utilization.

Recently, a distributed vehicular rerouting system, called DIVERT, was proposed in [32]
to optimize vehicle travel time through proactive traffic congestion avoidance. Similar to
PAMPAS, DIVERT employs a hybrid architecture since, although the rerouting computa-
tion is done at the vehicles, a central server is still needed to determine an accurate global
view of the traffic. DIVERT proposes a privacy-aware traffic reporting scheme to protect
the user privacy against attackers at the server side. However, applying this solution to
generic participatory sensing applications (i.e., outside the context of path rerouting com-
putation for congestion avoidance) is impractical since its privacy mechanism only allows
users to upload their location information when located in low sensitive areas, i.e., road
segments with significant traffic density since such roads naturally offer a higher degree of
anonymity to the participants. Hence, vehicles may only send traffic reports to the server if
the road density is higher than a predefined threshold. Moreover, in DIVERT the users are

Geoinformatica (2021) : –58053325538



considered trusted. Different, PAMPAS employs secure hardware at the user side to prevent
unauthorized access to private data and also provides secure protocols preventing a massive
leakage of private data in case of a lab attack and collusion with the server.

Acknowledging users’ privacy concerns as one of the main obstacles for long-term
participation in MPSS, PriMe [28] defines a human-centric privacy measurement method
based on users’ perception. The user preferences related to sharing certain types of data
are transformed into privacy metrics to measure the individual’s inherent sensitivity and her
sensitivity toward data items based on data features. However, on the one hand, pushing the
privacy permission settings at the user side may lead to privacy issues, since not all partic-
ipants are aware of the sensitivity of the data they want to share. Also, once shared, users
lose control of their data. On the other hand, highly protective privacy settings may lead to
very low accuracy levels of aggregation results. In PAMPAS, we take a different approach,
i.e., all the user raw data is protected using secure hardware and secure aggregation proto-
cols; only the aggregation results can be accessed by the participants or other third parties.
Furthermore, our data protection has no impact on the result accuracy.

A centralized solution based on secure hardware could also be devised using recent
proposals to ensure shielded application execution over untrusted servers. For example,
Haven [4] extends the hardware level protection features provided by the Intel SGX archi-
tecture from code snippets to the entire OS. But there are limitations: this solution slows
down the computation substantially; the entire security architecture depends on the chip
manufacturer’s ability to protect the secret keys; programmers will miss certain features,
such as process creation, that are not supported. More important, such an approach exhibits
the intrinsic problem of single point of failure and hence cannot protect against lab attacks
on the secure hardware at the server side, a problem which we address in PAMPAS+.

3 System overview

This section presents the system architecture of PAMPAS, the threat model in our system,
and the data and computation model of the system. Based on these elements, we derive the
requirements for the PAMPAS protocols. All acronyms used in this paper are described in
Table 1.

Table 1 Acronyms used in the article

Acronym Description

AES The Advanced Encryption Standard symmetric cryptographic algorithm

IDW Inverse Distance Weighting

MPS Mobile Participatory Sensing

MPSS Mobile Participatory Sensing System

PAMPAS Privacy-Aware Mobile Participatory Sensing system and protocol

PAMPAS+ Enhancement of the PAMPAS protocol dealing with corrupted probes

PKI Public Key Infrastructure

RSA The Rivest-Shamir-Adleman asymmetric cryptographic algorithm

SHA Secure Hashing Algorithm

SP Secure Probe

SSI Supporting Server Infrastructure

TEE Trusted Execution Environment

Geoinformatica (2021) : –58053325 539



3.1 System architecture

PAMPAS relies on a hybrid architecture combining secure elements at the user side (secure
probes – SP) and a supporting server infrastructure (SSI) that enables secure exchange of
messages between the mobile users. SPs and SSI jointly run a privacy-preserving protocol to
exchange sensed sample updates, continuously compute the spatially aggregated results, and
periodically partition SPs according to their location. This protocol can be either PAMPAS
or an enhanced version of PAMPAS called PAMPAS+ (but not both at the same time).
Figure 1 shows the general architecture of our system in the context of traffic monitoring.

Compared to a purely decentralized peer-to-peer (P2P) architecture, this hybrid archi-
tecture has the salient advantage of not consuming any resources from the participants to
maintain the P2P overlay, which is important given the low resources and availability of the
user devices. In addition, it exchanges messages between SPs in O(1) hops as opposed to
the typical O(logN) hops in P2P networks.

Secure probe (SP) Each user holds a secure portable device, which can be implemented by
any type of (tamper-resistant) secure devices flourishing today and described in Section 1.
In this paper, we consider the more challenging case of cheap, low-end secure devices
(see Fig. 2); extending the proposed solution to more powerful TEEs such as TrustZone or
Intel SGX is straightforward in terms of computation efficiency and resource consumption.
Whatever its commercial name and form factor, such a basic secure device, called secure
probe (SP) hereafter, usually embeds at the very least a secure micro-controller (MCU) for
computation (e.g., a smart card chip) connected to a large NAND Flash memory for data

Fig. 1 Overview of PAMPAS’s system architecture: mobile secure probes (SPs) leverage an untrusted Sup-
porting Server Infrastructure (SSI) for efficient message passing among SPs. SPs continuously compute a
spatial probe partitioning (depicted by the purple dashed lines) allowing for efficient and secure sample data
aggregation

Geoinformatica (2021) : –58053325540



Fig. 2 Examples of cheap, low-end secure tokens that can be used in PAMPAS

storage (e.g., an SD card). An SP plays three roles: (i) mobile probe, (ii) processing node,
and (iii) query issuer. The SP sends encrypted samples (containing spatiotemporal sensed
measures) to SSI, participates in the data aggregation, and receives the final results from
other SPs with the help of SSI. However, the high-level of security of SPs comes at a price.
The MCU usually has a low power CPU and a tiny RAM (a few tens of KB). In addi-
tion, SPs have low availability in our context since they can be connected/disconnected as
required by the users. Therefore, all the computation and communication with the SPs have
to be highly optimized.

Supporting server infrastructure (SSI) Different from the typical server-centric architec-
ture, the SSI in our system acts only as a coordinator for exchanging messages between the
SPs and for temporary storage purposes. In our architecture the SSI is not trusted. Therefore,
all the temporary results stored in the SSI have to be encrypted, e.g., using non-deterministic
encryption.

In conclusion, the foundation for the security and privacy in PAMPAS arises from the
combination of secure hardware with a high degree of distribution of the architecture (i.e.,
all computations are executed by some of the SPs). The challenge is then to be able to
continuously compute any type of aggregate functions in real-time in this user-centric archi-
tecture given the low resources of the SPs, while limiting the private information leakage to
SSI or potentially corrupted SPs.

3.2 Base threat model

In this section, we present the base threat model considered in PAMPAS. The attackers in
PAMPAS could be either users or the owners of SSI. Their goal is to collect private user
information (e.g., location or sensing data). Using this private information, attackers can
determine the user identities and learn their activities and behaviors. Our threat model is
based on the following assumptions.

Assumption 1. Even though the users are untrusted, we assume in the base threat model
that all the SPs are trusted. This is reasonable considering that a Trusted Execution
Environment provides a high level of protection against hack attacks [3] (i.e., local or
remote software attacks on the secure device) or shack attacks [3] (i.e., low budget
hardware attacks). In addition, all the persistently stored data in the NAND Flash is
cryptographically protected. Thus, SP owners cannot access the private data in their SPs.

In Section 6.1 we relax this assumption, i.e., we consider that some SPs could be
exposed to lab attackss [3] (i.e., high budget hardware attacks) and thus be corrupted.
Then, we modify the PAMPAS protocols accordingly.

Geoinformatica (2021) : –58053325 541



Assumption 2. Each SP is supplied with a trustworthy certificate, e.g., from an offline
trusted PKI. Without this assumption, an attacker can easily emulate nodes in the net-
work, and conduct a Sybil attack [14], mastering a large proportion of SPs, thus defeating
any countermeasure. We also assume that the hardware manufacturer is trusted and
protects the secrets embedded in SPs.

Assumption 3. We assume an honest-but-curious (or covert adversary) SSI, i.e., it obeys
the protocol it is supposed to do, but may try to infer anything it can from the data or
behaviors is sees. Considering a malicious SSI (i.e., the server tampers with the proto-
col, e.g., by dropping messages to infer more information) is of little interest, since a
malicious SSI can be easily detected (e.g., the SPs that aggregate the data verify if their
own samples are present in the data sent by the server) leading to critical financial/legal
consequences for the service.

Assumption 4. We assume that the communication channel through which the SPs trans-
mit (encrypted) raw data to SSI is anonymous, e.g., by using a proxy forwarder or
an anonymization network (e.g., Tor). We assume such systems are able to hide the
packet origin from an adversary, so that privacy cannot be compromised by a malicious
server searching to recognize the origin of the uploaded messages. Let us emphasize
that IP anonymity is not enough to protect the user privacy in MPSS because identity
information could be determined from the location and sensing data.

Our goal is to ensure that users cannot read the raw data reported by other users. The SSI must
not be able to read the user raw data. Also, the SSI must not be able to infer any additional
location information about the participants more than it already knows or could be inferred
from the aggregate result. Hence, the scope of PAMPAS is to fully protect the raw data and the
aggregation process, and does not consider the privacy exposure risks that arise from analyzing
the aggregate results, which is a complementary aspect of this work (e.g., see [29]).

3.3 Data and computationmodels

Data model. PAMPAS is designed to be generic with respect to the type of computation
required by participatory sensing applications. In most cases, such applications require
the aggregation of geo-localized and time-stamped sensed values collected by the sens-
ing devices of the participants. Therefore, a participant’s device periodically generates
an update in the form sample = (location, time, value), which is encrypted and sent
to the SSI. PAMPAS does not impose any restriction on the generation frequency of
samples, which may depend on the application sample generation policy. However, the
system should be efficient and scalable for a large number of participants and a high gen-
eration frequency of samples. Also, the participants’ privacy should be fully protected
independent of the number and spatiotemporal distribution of the samples. Furthermore,
PAMPAS considers two types of locations corresponding to the two typical types of
movements of users: (i) free movements in the two-dimensional space, i.e., location =
(x, y); (ii) movements constrained by a transportation network (e.g., road or railroad net-
work), i.e., location = (rid, pos), where rid is the road identifier and pos is the relative
position on the road. Finally, the value corresponds to the sensed measure (e.g., traffic
speed, noise level, etc.).

Query model. Given a stream of samples and an aggregate function, PAMPAS produces a
spatiotemporal aggregation of the sample stream such as the stream-SQL-like [24] query

Geoinformatica (2021) : –58053325542



Fig. 3 The stream-SQL-like query formulation of the spatio-temporal aggregates supported in PAMPAS

formulation in Fig. 3. The aggregation is temporal since the result is computed continu-
ously over time as long as it is required or whenever the number of participants exceeds
some predefined threshold. In this way, the spatiotemporal evolution of the measure of
interest is monitored over time. To this end, PAMPAS divides the stream using a slid-
ing time window (see Fig. 3) and computes an aggregate result based on all the samples
generated in the time window. The final aggregation result is a spatial function represent-
ing the evolution in space of the observed measure in the respective time window. For
instance, the result can be the noise heat-map in the covering area of a city or the average
travel time in a road network. As with the duration of observation, we do not impose any
restrictions regarding the extent of the observed space.

Spatial units. As shown in the above query, spatial aggregates are based on a discrete
referential space, i.e., a finite set of spatial units. Without loss of generality, we consider
two types of referential spaces corresponding to the two types of users’ movements. In
the case of free movement, we consider a uniform grid and each grid cell corresponds
to a spatial unit. The size of the units is determined based on the application require-
ments, space size, number of participants, etc. In the case of constrained movement by a
transportation network, we consider that a spatial unit corresponds to a network (road)
segment, i.e., the network path connecting two adjacent network nodes (e.g., the road
segment between two intersections). In both cases, the number of spatial units can be
large (e.g., hundreds of thousands). The COUNT in the query model is optional and is
required in the aggregation protocol to check the probes partitioning.

Aggregate functions. PAMPAS can compute most types of aggregate statistics required
by participatory sensing applications. Practically, our system can compute in real-time
any type of function having reasonable time and space complexity given the relative
low CPU power and little RAM of the SP. For illustrative purpose, we consider three
classes of functions in this paper: (i) Typical algebraic functions: count, sum, average,
standard deviation. Such aggregate functions are the most popular in the works related
to participatory sensing [6, 15, 35]. These functions allow for example to compute the
average travel time or the traffic density in a road network; (ii) Specific functions: inverse
distance weighting (IDW). For instance, an application monitoring the noise pollution
in the city could use the IDW function to compute a heat-map of the noise level in the
entire space [31]; (iii) Holistic functions: median, percentile, top-k. Such functions are
also frequently used in statistical computations (e.g., the median speed of vehicles in a
road network). Their particularity is that the computation of the result requires accessing
the entire sample set and cannot be achieved incrementally by accessing only subsets of
samples as with the previous two classes of functions.

Geoinformatica (2021) : –58053325 543



An important observation is that cryptographic solutions based on homomorphic encryp-
tion cannot be applied for specific or holistic functions (see Section 2). Also, the holistic
functions cannot be computed efficiently in a distributed architecture by the secure protocol
proposed in [41] (as shown in Section 8).

3.4 Protocol requirements

In the light of the above description of the proposed user-centric architecture, the PAM-
PAS protocols have to deal with the following challenges: (i) Privacy: By keeping all the
sensitive data in the SPs, the adopted user-centric architecture matches this requirement in
contrast with a server-centric architecture. In short, the computation protocol should not
reveal to the SSI any additional information about the participants’ paths besides what the
SSI can infer from the aggregate result. (ii) Generality: the protocols should be able to com-
pute any type of function over the spatiotemporal sensed measures by the mobile users and
covering a large observation space. This is different from the works based on cryptographic
approaches in which, typically, only basic computation (e.g., simple aggregates like sum,
average) can be achieved and only in specific locations over limited periods of time. (iii)
Efficiency: the protocols should be highly efficient to be able to continuously compute the
aggregate results in real-time with very limited resources. Indeed, for economic and secu-
rity reasons, the SPs used for data processing have low resources and limited availability.
Hence, it is necessary to minimize the computation and communication costs of the PAM-
PAS protocols. (iv) Scalability: the protocols should allow PAMPAS to scale to a large
number of participants (e.g., up to millions of users), high sampling frequencies, and very
large regions. (v) Accuracy: PAMPAS should continuously reflect the sensed measures with
good precision. In other words, protecting the users’ privacy should not impact the accuracy
of the aggregate result computed by the protocols.

4 Global aggregation protocol

The global privacy-preserving protocol in PAMPAS consists of three phases that are repeat-
edly executed in pipeline (see Fig. 4). First, the SSI collects all the sensing updates sent by
the participants for a period equal to the sliding time window (i.e., the collection period).
Each update is encrypted using symmetric non-deterministic encryption so that the SSI can-
not gain any knowledge from these updates. All the SPs share a secret key, which is renewed
periodically to increase security. The key is generated randomly by a randomly chosen SP.

Fig. 4 Workflow representation of the global protocol in PAMPAS

Geoinformatica (2021) : –58053325544



To distribute the secrete key, we assume the users authenticate using a typical PKI infras-
tructure, i.e., a certificate is embedded in each user secure hardware (cf. Assumption 2 in
Section 3.2). Whenever a new SP connects to the system, it authenticates using its certifi-
cate. Then, the SP randomly contacts another connected SP, which sends back the current
shared secret key encrypted with the public key of this newly connected SP.

The shared secret key is used by the SPs to symmetrically encrypt the update messages
(e.g., by using AES encryption) so that any SP can decrypt messages and aggregate the
data. Note that, although an SP can decrypt the updates, a user is not allowed to access the
decrypted data in her SP and that the tamper-resistant hardware protects the transiting data
from the user. Therefore, as for the SSI, the users have access only to the final results and
not to the raw data.

At the end of the collection period, the SSI triggers the processing period. In this phase,
only a small subset of SPs, which are randomly selected by the SSI, are involved. The SSI
partitions the collected samples such that the number of updates in a partition can fit the
RAM resources of an SP (otherwise, the persistent Flash storage of the SP has to be used
incurring a much higher computation cost). Then, each sample partition is sent to an SP,
which computes a partial aggregate result for the received updates. The encrypted results
are sent back to the SSI. Finally, the delivery period consists in delivering the current partial
aggregate results to the queriers. Each querier needs to perform the final aggregation of
these partial results, which is merely the union of the demanded partial results.

Algorithms 1 and 2 give the detailed description of the operations executed by the
SSI and the SPs respectively. In the following, we denote by Ek and nEk the symmetric
deterministic and non-deterministic encryption with the key k, and by E−1

k and nE−1
k the

opposite decryption operations while Gi indicates the identifier of group i. All the notations
used in the algorithms are listed in Table 2.

Table 2 Notations used in the algorithms

Notation Description

Esk Symmetric deterministic encryption using the shared key

nEsk Symmetric non-deterministic encryption using the shared key

E−1
sk Symmetric deterministic decryption using the shared key

nE−1
sk Symmetric non-deterministic decryption using the shared key

CKij The couple key shared between SPi and SPj

nE ckij Symmetric non-deterministic encryption using the couple key shared between SPi and SPj

nE ck−1
ij Symmetric non-deterministic decryption using the couple key shared between SPi and SPj

AE PKi Asymmetric encryption using the public key of SPi

AE SKi Asymmetric encryption using the secret key of SPi

AE SK−1
i Asymmetric decryption using the secret key of SPi

Gi Identifier of probe group i

P
f ake
Gi

Probability to send a fake message in group i

N Number of spatial units

NG Number of probe groups

QIcomm Degradation factor of the communication time

QIcomp Degradation factor of the computation time

Comp timei Computation time for the group i

Geoinformatica (2021) : –58053325 545



Geoinformatica (2021) : –58053325546



To address the performance limitations of the existing protocols (such as [41] as
described in Section 2), the aggregation protocol in PAMPAS groups the participants based
on their location, which permits processing by a single aggregating SP the reported sample
updates from all the SPs in a spatial unit (forming a group) for a time window. Thus, the SSI
pushes these samples to one aggregating SP which can aggregate the received data in one
iteration. To put that in perspective, the secure protocol in [41] incurs a costly aggregation
process in our context mainly because it requires a large number of iterations, as confirmed
by our experimental evaluation (see Section 8). Note that an aggregating SP does not have
to belong to the probe group for which it aggregates the samples. Indeed, the SSI randomly
selects from all the participants as many aggregating SPs as there are probe groups and then
assigns the samples in each group to an aggregating SP (as indicated in Algorithm 1).

To this end, the probes also send the deterministically encrypted value of the spatial unit
they are currently located in, in addition to the non-deterministically encrypted value of the
sample, i.e., message = (Ek(groupID), nEk(sample)) (Algorithm 1, lines 4-5 and Algo-
rithm 2, lines 3-4). Consequently, the SSI can group the messages based on the encrypted
unit number and then send each group of samples to a different SP for aggregation (lines
7-11 in Algorithm 1 and lines 10-12 in Algorithm 2). By doing so, the advantage is man-
ifold. First, the processing period is guaranteed to terminate in a single iteration, since
each involved SP produces directly the aggregation result corresponding to a spatial unit,
which greatly improves both the computation and the communication cost of the aggre-
gation process. This is possible since an aggregating SP receives all the samples inside a
spatial unit and can thus produce in one iteration the final aggregated results corresponding
to the unit. This is valid for all the considered aggregated functions. However, the benefits
in term of efficiency compared to a protocol requiring several iterations (such as the one
in [41]) are greater for holistic functions. Second, data processing by an SP is also efficient
since only one aggregate is computed, which greatly reduces the RAM requirements and
avoids/reduces the usage of the persistent storage. Third, the final aggregate result is also
partitioned and the queriers can demand the results only for specific spatial units, which fur-
ther improves the communication cost. Furthermore, in order to avoid leaking information
regarding the spatial distribution of users, the SPs also generate and send fake messages
to the SSI (see Algorithm 2, lines 6-8). The rational and detailed explanations for this
technique are discussed in the next section.

However, despite all these benefits, the above approach has one fundamental shortcom-
ing originating from the skewed spatial distribution of the participants. Although the exact
location of the updates and the spatial unit ID are hidden, the SSI knows the number of
participants in each spatial unit. If the SSI has access to side information about the spatial
distribution of the users (e.g., global traffic density information), then it may use this informa-
tion to infer the approximate location of the participants (e.g., the road segment where a group
of samples have been generated). This translates into larger privacy leakage for the users
(which we quantify in Section 7.2), which indicates an increase of the probability with which
the SSI could link subsequent sample updates and thus endanger the participants’ privacy.

5 Probe partitioning protocol

To counter the privacy threats that are rooted in the skewed spatial distribution of the
participants, PAMPAS continuously partitions the set of probes based on their current loca-
tion and the spatial units of the query. Similar to the global aggregation protocol, this
privacy-aware partitioning protocol is executed by SPs. The idea is to group SPs located in
adjacent spatial units such that the resulted probe groups have approximately the same size.

Geoinformatica (2021) : –58053325 547



Therefore, in PAMPAS a group Gi covers several spatial units (as defined in Section 3.3)
and includes all the SPs in these units. Note that in this paper we opted for selecting spatially
co-located units to constitute probe groups mainly for ’semantical’ reasons. Typically, the
privacy location metrics (see Section 7.2) are defined with respect to some spatial region.
In general, a region refers to a connected subspace in the related work. That being said, we
believe that the choice between regions formed by spatially co-located units or dispersed
units has little if no impact both on the efficiency and the security of the protocols. Indeed, as
long as the employed partitioning algorithm produces relatively balanced groups in terms of
contained number of SPs (while the remaining differences are compensated by fake sample
injections), the overall cost and security of the protocols are preserved.

The probe partitioning has to be recomputed periodically to keep the groups balanced
since the users’ distribution in space changes over time. Moreover, the groups should contain
users located in closely situated spatial units to maximize the lifetime of a partitioning. The
challenge is to implement a partitioning algorithm that can be executed periodically at SPs
because the typical spatial partitioning algorithms are much too costly to be considered in
our context (i.e., limited-resources SPs).

Our algorithm is based on the following idea. We use a space-filling curve to index the spatial
units of the application query. A space-filling curve has the property to map a multidimen-
sional space to a one-dimensional space such that, for two objects that are close in the original
space, there is a high probability that they will be close in the mapped target space. Then,
we sort the spatial units on the space-filing curve index. Once sorted, an approximate bal-
anced grouping can be checked and computed in O(NG) space complexity and O(N) time
complexity, where NG is the number of probe groups, and N is the number of spatial units.

Indexing the spatial units To allow for an efficient probe partitioning in PAMPAS, we
associate an index value to each spatial unit of the query and then sort the spatial units on
the index values. In our system, we use Hilbert curves to index the spatial units considered
by the participatory sensing application. The index values correspond to the indices of the
Hilbert curve covering the spatial units.

In the case of free movement, the indexing is straightforward since the space is already
partitioned with a uniform grid (see Fig. 5 left). Then, we cover the grid cells with the Hilbert
curve corresponding to the grid granularity and label each cell with the obtained Hilbert
index. In the case of constrained movement, the indexing requires two steps. First, we cover
the transportation network with a uniform grid (see Fig. 5 right). The grid granularity is
chosen such that the number of network segments (see Section 3.3) intersecting with a grid
cell is low for most of the cells. Then, the grid cells are indexed with a Hilbert curve and
each network segment is labeled with the Hilbert index of the cell containing the segment
center. In case several segments are contained by a cell, the segments are sorted by the
x-coordinate and the y-coordinate of their centers and labeled accordingly.

Once the spatial units are labeled with the Hilbert index, we sort them on the index value to
obtain a sorted unit vector. This sorted unit vector is broadcasted to all the SPs and used, in
the probe partitioning phase, as reference by the partitioning algorithms (i.e., in both the
linear partitioning algorithm - see Algorithms 3 and 4- and the binary partitioning algorithm
- see Algorithm 9).

Checking and repartitioning the probe grouping Periodically, our system verifies if the
current probes partitioning is still balanced with respect to the number of probes in each
group. The verification frequency depends on the dynamicity of users in space. In PAMPAS,
the checking and repartitioning processes can be executed often (i.e., every few seconds)

Geoinformatica (2021) : –58053325548



Fig. 5 Basic examples showing the indexing of spatial units in the case of free movement (left) or constrained
movement (right)

due to their low cost. When a partitioning checking is triggered, the system computes a count
aggregate in addition to the application aggregate function (see Fig. 3), which gives the actual
number of users (SPs) in all the spatial units. The count aggregate result is then pushed to an SP
randomly chosen by the SSI. The checker SP decrypts the results and updates the weights10 of
the sorted spatial unit vector (lines 4-7 in Algorithm 3). This operation hasO(N) complexity
assuming that a small index containing the partitions frontiers is kept in memory by the
SP (which requires only NG Flash addresses to be kept in RAM). At the same time, the
SP computes in memory the count by group (since the groups are sent one by one by the
SSI, line 8 in Algorithm 3) and compares the counts. If the balancing of the current probes
partitioning is within the predefined limits, the checker SP sends the current values to all the
other SPs (i.e., exchanged encrypted through SSI), which update the weights of the spatial
units with the new count values. Otherwise, the checker SP computes a new partitioning.

10The weight is the number of probes in a spatial unit.

Geoinformatica (2021) : –58053325 549



Once the sorted vector of spatial units is updated with the new weight values, the probe
repartitioning can be efficiently computed in O(N) and O(NG) time and space complexity
respectively (see Algorithm 4). To set the partition borders we use a greedy algorithm, which
adds spatial units to a group as long as the total weight of the group is lower than a thresh-
old value (lines 12-17 in Algorithm 4). The threshold is computed as the ratio between the total
number of probes and the number of groups (line 10 in Algorithm 4), and represents the
average number of users per group. The partitioning result is a list of NG milestones indicat-
ing the group borders in the sorted index of spatial units (line 15 in Algorithm 4). The result
is then encrypted and delivered, through SSI, to all users, which update their partitioning
data and generate new samples accordingly starting from the next computation window.

The proposed probes partitioning algorithm has low complexity and can be efficiently
executed even with the low resources of an SP. However, the partitioning algorithm cannot
guarantee a certain degree of balancing of the partition weights. Yet, the partitioning balanc-
ing is required to avoid leaking any information regarding the spatial distribution of users.
To deal with this problem, the SPs generate fake samples in all the probe groups having a
number of users lower than the maximum size group. Therefore, in the collection period of
each computing time window, an SP sends probabilistically a dummy sample in addition

Geoinformatica (2021) : –58053325550



to the real sample. The probability to send a fake sample is proportional to the difference
between the maximum size group and the number of users in the SP’s group, and inversely
proportional to the number of users in the group (see Algorithm 2, lines 6-8). The same
approach is used to hide the number of spatial units in each group. At the end of the aggre-
gation phase, each aggregating SP adds to the result a number of fake values equal to the
difference between the maximum number of units in the groups and the number of units
in the current group. In this way, all the partial aggregate results received by the SSI have
the same size and the SSI cannot infer the number of units in any group. Note that the fake
values are filtered out by the worker or querier SPs and therefore have no impact on the
accuracy of the results.

Choosing the number of probe groups The cost of the aggregation protocol is composed
of the computation cost at the SP side and the communication cost between the SSI and
the SP. The number of probe groups impacts both the computation and the communication
costs. Specifically, the computation cost decreases with the increase in the number of groups
and attains the minimum value when the number of groups is equal to the number of spatial
units, i.e., an SP is used to aggregate the samples for each spatial unit. But increasing the
number of groups leads to a higher imbalance in the groups’ weights, which in turn requires
injecting more fake samples and enlarges the communication cost. Therefore, modifying
the number of groups has opposite effect on the computation and the communication cost.

QIcomp = Maxi=1,NG
[Comp timei] − Maxj=1,N [Comp timej ] (1)

QIcomm = size(sample)

bandwidth

NG∑

i=1

{Maxj=1,NG
[Countj (probes)]

−Counti(probes)}

+ size(sample)

bandwidth

NG∑

i=1

{Maxj=1,NG
[Countj (spatialUnits)]

−Counti(spatialUnits)} (2)

PAMPAS computes two quality indicators to measure the impact of the number of groups
on the computation and communication costs, i.e., QIcomp and QIcomm, as defined by
Formulas (1) and (2). QIcomp estimates the degradation of the computation time at the SP
side generated by the fact that several spatial cell aggregates are delegated to one SP instead
of using one SP for each cell. Estimating the computation time is fairly simple since the time
is typically linear with the number of samples to be processed by the SP, assuming that the
aggregation can be entirely processed in RAM. The cost model can be extended to the case
in which it is required to access the secondary storage. QIcomm estimates the degradation
of the communication cost caused by the imbalance of the group weights. The first term
indicates the overhead incurred by the fake samples generated to balance the groups, while
the second term measures the overhead of generating fake results to balance the number of
aggregate results in each group.

Each time an SP computes the probe partitioning, it also computes the values of QIcomp

and QIcomm (line 2 in Algorithm 4). If QIcomp > QIcomm, the SP multiplies by two
the number of groups and re-partitions the probes. If QIcomp < QIcomm the SP divides
by two the number of groups and re-partitions the probes (lines 5-8 in Algorithm 4). The
SP continues to adjust the number of groups until QIcomp + QIcomm has minimum value
(lines 20-24 in Algorithm 4), meaning that the aggregation cost is near optimal. Thus, this

Geoinformatica (2021) : –58053325 551



process allows adapting the number of groups to the number and the spatial distribution of
the probes.

6 PAMPAS+

In this section, we present an improved version of the proposed PAMPAS protocol that we
name PAMPAS+. The objective of PAMPAS+ is twofold. First, PAMPAS+ enforces the
security of the base protocol by taking into account an enlarged threat model compared to
the threat model introduced in Section 3.2. Our second objective is to limit as much as pos-
sible the impact of the increased security on the protocol requirements that were defined in
Section 3.4. Specifically, the increased security should not be achieved at the price of a sig-
nificant tradeoff with the desirable features of PAMPAS, i.e., privacy, generality, efficiency,
scalability and accuracy.

We introduce first the extended threat model of PAMPAS+. Then we present the modi-
fied aggregation and partitioning protocols of PAMPAS+. The analysis of the privacy level
and efficiency of PAMPAS+ in comparison with the basic PAMPAS protocol are presented
in Sections 7 and 8 respectively.

6.1 Extended threat model

The PAMPAS protocol is based on four assumptions enunciated in Section 3.2. In particu-
lar, Assumption 1 considers that the SPs are inviolable, which is reasonable since the SPs
integrate tamper-resistant hardware. Hardware protection has the salient advantage of pre-
cluding software and simple (low-budget) hardware attacks. Yet, no hardware security can
be described as unbreakable. For this reason, in many cases the security of a system is rather
evaluated by comparing the estimated cost of a successful attack with the potential benefit.
If the benefit of a successful attack is much lower than its cost (e.g., financial or invested
time), the system can be reasonably assumed to be secure. In the opposite case, the system
can be considered at risk. In the light of this consideration, we revisit below the first assump-
tion of the base threat model. The rest of the assumptions (2 to 4) defined in Section 3.2
remain unchanged.

Assumption 1’. We assume that one or a few SP owners have the means to conduct an
advanced lab attack on the devices in their possession. A lab attack is usually described as
an invasive hardware attack for which the attacker has the knowledge to perform reverse
engineering of a device and also has access to the necessary laboratory equipment. Such
an attack, if successful, can offer the attacker access to secret cryptographic material
(e.g., the secret encryption keys) stored inside the device.

This new assumption has a major impact on the threat model. Let us consider that follow-
ing a successful attack, the attacker colludes with the SSI by revealing to the SSI the shared
secret key used to encrypt the messages that are exchanged between SPs. In this case, the
SSI can decrypt all the messages in transit. In particular, the SSI has access to the update
messages from SPs containing the location of each user. Therefore, the privacy of all the
participants can be entirely compromised.

Although the cost of the above presented attack is hard to estimate, this shows that the
risk of successfully corrupting one SP is to reveal to the attackers all the sensitive informa-
tion that are managed by the system. Therefore, the first objective of PAMPAS+ is to protect
the participants against this type of attack. To this end, we extend the threat model defined in

Geoinformatica (2021) : –58053325552



Section 3.2 by taking into account the possibility that a few participating SPs could be cor-
rupted, while the vast majority of the SPs remain trusted. Specifically, our extended threat
model is based on two main assumptions. First, even if a lab attack on one or a few SPs is
costly, it can be interesting for an attacker if the attack benefit is high. In our case, a high
benefit is equivalent to getting access to a significant amount of the private information.
Second, we consider that an attacker can directly access, at most, a very limited number of
SPs and therefore could control only a few SPs in the system. In other words, we do not
consider the case of a powerful state-size attacker that would be able to control a significant
proportion from the total number of SPs. In this context, PAMPAS+ searches to minimize
the information leakage by the corrupted SPs and to avoid a complete “meltdown” of the
system as it would be the case for the base protocol. The idea is to ensure that the amount
of privacy leakage remains proportional with the ratio of corrupted SPs in the system and
therefore impose to an attacker to corrupt many SPs to gain access to a significant amount
of private data, which contradicts the assumption above.

6.2 Aggregation protocol in PAMPAS+

The main idea in PAMPAS+ is to avoid using a single shared key to encrypt all the messages
that the SPs exchange and that are relayed by the SSI. An alternative to using the SSI as
a message dispatcher would be to employ direct point-to-point communications between
the SPs. However, this latter solution is not feasible in our context since it implies large
resource consumption at the SP side. For instance, in the aggregation phase the aggregating
SPs would have to manage a high number of connections (e.g., hundreds or thousands) in
a very short time window (i.e., during the duration of the aggregation phase), which is not
reasonable. For this reason, we still employ the SSI in our system architecture.

Nevertheless, to avoid the risk of complete meltdown in case of a successful lab attack
on an SP, we propose in PAMPAS+ that each message transmitted by an SP to the SSI to
be encrypted such that only the recipient SP can decrypt it. We have basically two options
to achieve this. The first is to use an asymmetric public-secret key encryption (e.g., RSA
encryption). Typically, in the aggregation phase, the SPs in a group are informed about the
identity of the aggregating SP. Therefore, all the messages in the group are encrypted with
the public key of the aggregating SP. This public key can be broadcasted at the beginning
of aggregation phase for the SPs that do not have it. The problem with this approach is the
relatively large cost of the asymmetric encryption. For instance, with our secure tokens, the
cost of encrypting/decrypting a message using RSA with a key length of 256 bytes is around
0.4/0.6 seconds. This leads to a large aggregation time, which is mostly explained by the
high decryption time that dominates the overall cost of the aggregation at the aggregating
SP, and to not respecting the efficiency requirement of the protocol.

The second and retained option is to use the very efficient symmetric encryption (e.g.,
AES 256) as in the base protocol. This requires that for any two SPs participating in the
system, there has to be a shared symmetric encryption key only known by the two SPs
(called couple key hereafter) and used to encrypt/decrypt all the messages that are exchanged
between the two SPs.

Couple keys exchangeprotocol Let us note that the secret couple keys cannot be generated
on the fly in real-time. For example, at the aggregation time, the aggregating SP would have
to contact and establish a secret key with all the SPs in its partition with which a secret
key has not been established before. This is much too costly since it requires exchanging

Geoinformatica (2021) : –58053325 553



asymmetrically encrypted messages which incur an important processing time as described
above.

Therefore, the secret couple keys have to be generated “offline” (i.e., outside the aggre-
gation process) (see Algorithms 5 and 6). Typically, when a new SP registers in the system,
it sends a “Hello” message to the SSI containing its identification (i.e., signed certificate
proving that it is an SP and containing its public key, see lines 1-6 in Algorithm 6 and lines
4-7 in Algorithm 5). This message is broadcasted by the SSI to all the already registered
SPs (lines 8-14 in Algorithm 5). At receiving a “Hello” message, each SP generates a secret
random key used to communicate with the newly arrived SP, encrypts the secret key with
the public key of the new SP and sends the encrypted message (lines 7-16 in Algorithm 6)
to the SSI that will push it to the new SP. Both the SP generating the couple key and the
newly registered SP add the new couple key to their couple key index using a couple key
tag (lines 17-18 and 25-28 in Algorithm 6). More details about the usefulness of the couple
key tags are given in Algorithms 8 below.

Geoinformatica (2021) : –58053325554



This process can be costly (i.e., the number of exchanged messages is proportional with
the number of registered SPs) but it does not have to cope with real-time constraint of the
main aggregation process. The major inconvenient is that a new SP entering the system
cannot communicate with another SP until the corresponding couple key is not created.

The idea of generating pairwise shared AES keys is a standard method to increase cryp-
tographic efficiency (instead of using asymmetric encryption based on the public/private
key). The same goes for the couple key exchange protocol which is based on the classi-
cal approach of using the PKI certificates to authenticate the two nodes to each other and
also permit the secure couple key exchange. Note also that the security practices require to
periodically update the couple key to prevent an attacker that obtains the key to gain access
to the entire history of exchanged messages. However, in the context of distributed data

Geoinformatica (2021) : –58053325 555



aggregation using secure hardware, the idea to use a dedicated secret key to secure the data
exchange between each couple of peers is novel. For instance, [41, 42] use a single secrete
key shared among all peers as in the basic PAMPAS protocol. Similarly, in the context of
distributed privacy-preserving data publishing with secure hardware, [1] uses the traditional
approach that divides the peers into several clusters and employs one key for each cluster.
Thus, in case of a lab attack, the data leakage is contained to the participants belonging to the
same cluster as the compromised peer. In our context, the clusters correspond to the probe
groups obtained through partitioning. Nevertheless, this approach is not feasible in PAM-
PAS because the high mobility of the participants leads to frequent probe repartitioning,
which in turn requires the costly operation of renewing the group keys at each repartitioning.

By using a dedicated key for each pair of SPs, PAMPAS+ achieves a much stronger
security level, while protecting the privacy of the participants even in case of successful lab
attacks (as discussed in Section 7.3). On the other hand, the increased security introduces
a computational overhead since the probes have to manage a large set of keys instead of
a single key. The second major contribution of PAMPAS+ is to propose optimizations to
alleviate this problem and keep the protocol efficient and scalable. There are two significant
optimizations. The first optimization is the tagging and indexing of the shared keys by each
SP, which allows an optimal retrieval of the encryption key for each received update sample.
The second optimization is a new partitioning algorithm able to compute a more balanced
partitioning (see Section 6.3), which reduces the number of inserted fake samples and thus
improves the aggregation time (see Sections 8.3 and 8.4).

Shared encryption key The couple keys allow a secure data exchange between SPs through
the SSI during the collection and processing periods (see Figure 4). Nevertheless, the global
PAMPAS protocol also includes a delivery period and a probe partitioning process. The
delivery period consists in delivering the aggregation results to the participating SPs. The
partitioning process consists in checking the current partitioning based on the spatial distri-
bution of the SPs and in computing and delivering to all the SPs a new probe partitioning, if
the current one is unbalanced. To keep the delivering of the aggregation and the partitioning
results efficient, we continue to use in PAMPAS+ a shared encryption key as in the initial
PAMPAS protocol (see Section 4). Otherwise, the aggregating SP or the probe partitioning
SP would have to individually encrypt and send the results to the other SPs, which would
consume too many resources of the worker SP and take significant time.

Using a shared key in the delivery phase of the aggregation protocol has no impact on the
privacy guarantees of our protocol since as indicated in our threat model (see Section 3.2),
our protocol focuses on the protection of the raw data and the aggregation process and
not on the exposure risks that arise from analyzing the aggregate results. However, using a
shared key for delivering the partitioning results has the inconvenient of reducing the privacy
guarantees of the protocol in case of a successful lab attack. This is thoroughly analyzed in
Section 7.3. For now, let us note that this does not call into question the complete security of
the PAMPAS+ protocol, but merely the level of the privacy offered by the proposed protocol.

Global aggregation in PAMPAS+ Algorithms 7 and 8 present the aggregation protocol in
PAMPAS+ at the SSI-side and SP-side respectively. The new protocol is similar with the basic
protocol of PAMAPS and consists of a collection period, a processing period and a delivery
period. Compared with the basic protocol, there are two major modifications in PAMPAS+.
First, the selection of the aggregating SPs is done at the beginning of the collection period
and not during the processing period. The reason is that the list of the worker SPs has to be

Geoinformatica (2021) : –58053325556



broadcasted to all the SPs beforehand so that each participating SP can choose the appro-
priate couple key (i.e., the couple key corresponding to the aggregating SP in its partition)
to encrypt its sample data (lines 2-7 in Algorithm 7 and lines 2-5 in Algorithm 8).

Second, each sample is encrypted using a couple key instead of the shared key (lines 6-
10 in Algorithm 8). Beside, each SP holds a hash index allowing to efficiently retrieve the
couple key shared with another SP (line 7 in Algorithm 8). The couple key is also associated
with a unique tag generated at the creation of the key and shared by the two SPs holding
the key. The tag is required in the processing period to allow an aggregating SP to know
which couple key to use to decrypt a sample (lines 18-20 in Algorithm 8) since the samples
are anonymously sent to the SSI (line 11 in Algorithm 8). A second hash index is equally
built on the couple keys to allow the efficient retrieval of a couple key given the associated
tag (line 19 in Algorithm 8). As in the basic protocol, the SPs probabilistically send fake
samples to compensate for the unbalanced number of probes in the groups. Finally, we note
that the security of the protocol, and in particular the case of corrupted aggregating SPs, is
analyzed in Section 7.3.

Geoinformatica (2021) : –58053325 557



6.3 Partitioning protocol in PAMPAS+

In this section, we propose a new probe partitioning algorithm to be used with PAMPAS+.
We note from the beginning that the initial partitioning protocol proposed in Section 5 can
be applied without any change in the context of PAMPAS+. Thus, the new partitioning
algorithm proposed in this section is not motivated by a lack of compatibility but by the need
of increasing the effectiveness. Specifically, our initial partitioning algorithm (lines 9 to 17
in Algorithm 4) is very efficient, its cost being linear with the number of spatial units (i.e.,
O(N) andO(NG) time and space complexity respectively, whereN is the number of spatial
units and NG is the number of groups). However, this high efficiency is counterbalanced by
the quality of the obtained partitioning (i.e., the balance factor with respect to the number of
probes in the obtained partitions) since the partitioning decisions are taken based on local
knowledge of the probe distribution in the spatial units.

Geoinformatica (2021) : –58053325558



The main objective of the new partitioning algorithm is to propose an alternative to the
base algorithm which offers a different tradeoff between the efficiency and the quality of
the partitioning. The new algorithm (see Algorithm 9) can increase the partitioning quality
by making partitioning decisions that are based on the global knowledge of the probe dis-
tribution in the spatial units. The idea behind the proposed algorithm is to recursively split
the sorted vector of spatial units such that the total number of probes is balanced as most as
possible in the two obtained sub-vectors. This is equivalent to building a binary partitioning
tree on the sorted vector of spatial units of height h = log(NG).

Geoinformatica (2021) : –58053325 559



The binary partitioning algorithm is implemented as a recursive function (lines 23-32 in
Algorithm 9). The function isLeaf (line 24) decides if a node is internal (and therefore needs
to be split) or not, while the split function determines the optimal position in the current
node to do the split. The price to pay for the potential higher quality of the partitioning is
an increased computational complexity. Nevertheless, the complexity of the new algorithm
remains low and as we show in Section 8.3, it can still be used in real-time in our context.
Specifically, the new algorithm hasO(N×log(NG)) andO(NG) time and space complexity
respectively.

Parallel partitioning Beside, the partitioning algorithm can be easily parallelized (i.e.,
executed in parallel by several SPs), which can drastically reduce its execution time. As
opposed to the base partitioning, several SPs can be involved in the partitioning process of
PAMPAS+. Specifically, there is a coordinator SP that triggers the partitioning and com-
putes the top levels of the binary partitioning tree. Then, the coordinator SP distributes the
remaining partitioning of the bottom levels of the tree to other SPs. The final partitioning
results are in the end aggregated by one selected SP (e.g., the coordinator SP). The benefit
of this approach is that the bottom levels of the partitioning tree are computed in parallel
by several SPs. On the other hand, a parallel partitioning also entails a communication cost
between the participating SPs. We study these aspects in detail and compare the efficiency
and effectiveness of the two proposed partitioning algorithms in Section 8.3.

Let us finally note that the checking of the probe partitioning in PAMPAS+ is done
exactly the same as in the base protocol (see Algorithm 3) and therefore further discussions
on this aspect are omitted in this section.

7 Security and privacy analysis

In this section, we discuss the security and privacy of the proposed protocols. We ana-
lyze first the security and privacy of the base PAMPAS protocols in Section 7.1 and 7.2
respectively. Then, we analyze the additional privacy protection offered by PAMPAS+ in
comparison with the base PAMPAS in Section 7.3.

7.1 Security analysis

The security analysis presented in this section is valid if all the four assumptions presented
in Section 3.2 hold. The users cannot read the raw data of other users because the data stored
in memory is protected by the secure MCU (i.e., the RAM is located inside the MCU) and
the data stored in NAND Flash are cryptographically protected.

The SSI does not have the encryption key, so it cannot access the transiting data. In
addition, the non-deterministic encryption protects the data against frequency-based attacks.
The SSI may also try to buy an SP and pass for a user to gain access to the shared encryption
key. However, this would be useless since the tamper-resistance of an SP protects the key.
The SSI could collude with a querier, but it will gain access only to the aggregate result.
Finally, since the samples are communicated through anonymizers, the SSI cannot identify
the senders or link consecutive messages from the same user.

The SSI could try to infer information from the deterministically encrypted group ID
values. Nevertheless, the SSI cannot perform a frequency-based attack using the encrypted
group ID, since all the groups contain approximately the same number of messages. There-
fore, the SSI cannot infer the corresponding (approximate) location of a group or the

Geoinformatica (2021) : –58053325560



topological neighborhood of the groups (which would be the first step to attack the users’
privacy). Hence, the only knowledge the SSI acquires is the number of groups and its evo-
lution over time, which does not endanger the users’ privacy. Note that even if the SSI has
somehow access to the full partitioning information and the corresponding encrypted ID, a
user is still hidden under the corresponding group area and within the crowd in the same
group (let us recall that the messages are sent anonymously so it is hard for the server to link
the messages coming from the same user). Hence, the protocols are secure and fully protect
the raw data generated by the users.

Although protecting the privacy of users beyond the aggregate results is out of the scope
of this paper (as discussed in Section 3.2), one can easily integrate basic protection mecha-
nisms in PAMPAS for such cases. For example, to avoid the risk of exposure for the users
situated in very sparse areas (e.g., a single user or very few users located in a spatial unit),
we can simply add a predicate in the HAVING clause of the aggregate query (see Fig. 3)
indicating the minimum number of users in a spatial unit. In this way, the sparse spatial
units are eliminated from the aggregate results. Another solution is to increase the size of
the sliding window or of the spatial units accordingly.

7.2 Privacy analysis

As discussed in the previous section, neither the SP users, nor the SSI have access to the
samples (containing the exact locations of the probes) or the intermediary results generated
by the SPs. Hence, the privacy leakage can only be described in terms of statistical informa-
tion exposure or location obfuscation level. To underline the high level of privacy protection
of PAMPAS w.r.t. the SSI, we consider two metrics, i.e., an entropy-based metric and a
location obfuscation metric, and apply them in the context of two scenarios that are related
to our architecture. We then compare the privacy leakage in these two scenarios with the
privacy leakage in PAMPAS. We focus on the privacy leakage only at the SSI side since the
SSI is untrusted and constitutes the transit point of all the probe generated data, while an SP
gets external probe data sporadically (i.e., only when it is selected as aggregating SP).

Entropy-based metric Entropy is a popular metric to describe location privacy in gen-
eral [11], and it is also appropriate to describe the privacy-preserving mechanism of
PAMPAS, similar to the work in [32]. Commonly, entropy is used to quantify the average
degree of uncertainty associated with a set of events. In the case of location privacy, the idea
is to prevent user identification by obfuscating her exact location in a spatial region con-
taining a certain number of individuals. Therefore, the level of privacy is directly related to
the popularity (i.e., number of individual footprints) of the region. This means the higher
the popularity, the higher the privacy level of the users in that region. Then, entropy is used
to quantify the degree of popularity of a region. Formally, let reg be a spatial region and let
U(reg) = {u1, u2, . . . up} be the set of users in region reg. Let fi (with 1 ≤ i ≤ p) be the
number of sample updates (i.e., footprints) that user ui sends from reg and F = ∑p

i=1 fi

be the total number of sample updates sent from reg.

Definition 1 Entropy of a region: the entropy of region reg is defined as: E(reg) =
−

p∑
i=1

fi

F
. log fi

F
.

Definition 2 Popularity of a region: the popularity of region reg is defined as: Pop(reg) =
2E(reg).

Geoinformatica (2021) : –58053325 561



Definition 3 Entropy privacy leakage: the entropy privacy leakage for each updatek sent
by user ui is defined as: entropy leakui

(updatek) = 1
Pop(location of updatek)

.

The value of the entropy leakage for an update varies between 0 and 1, with 0 indicating
that there is no entropy leakage and 1 indicating a maximum entropy leakage. The minimum
value is obtained when the popularity of the considered region is extremely high, i.e., there
is a very large number of users inside the region. The maximum value is obtained in the
opposite case, i.e., the user is alone inside the region.

Location obfuscation-based metric Location obfuscation is a widely used technique in
mobile applications to protect the user privacy [11], e.g., to protect the identity [9] or
the behavior [12] of the user. The idea is simple: the exact user location reported in an
update is replaced with a region containing the user location [19, 20]. The larger the
region is, the larger the obfuscation and hence the protection. The protocols in PAMPAS
do not reveal exact probe locations to the SSI but leak some information regarding the
group to which each sample belongs to. Since each group is associated with a spatial par-
tition in the observed space (representing a region or a set of road segments), the location
obfuscation becomes a relevant metric in our context, e.g., if the SSI knows the spatial
extent of the partitions. Let obs space denote the total observed space (two-dimensional
or network) of an MPSS app. Let obf region be the obfuscation area of an update with
obf region ⊆ obs space.

Definition 4 Location privacy leakage: the location privacy leakage for each updatek sent
by user ui is defined as:

location leakui
(updatek) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − size(obf region)
α·size(obs space)

, if size(obf region)

≤ α · size(obs space)

0, if size(obf region)

> α · size(obs space)

where α is a real value indicating the relative location sensitivity w.r.t. the size of observed
space.

Definition 4 offers a simple way to quantify location leakage, with normalized values
between 0 and 1 as for the entropy leakage. It indicates that the location privacy leakage
for an update depends on the area of the obfuscation region hiding the real location in the
case of non-constrained movement or on the total length of network segments in the region
in the case of constrained movement. If the obfuscation space is greater than the entire
application space multiplied by the location sensitivity factor α then the location leakage is
minimum, i.e., 0. If the update contains the exact location of the user (i.e., a point in space),
the leakage has maximum value, i.e., 1. The location sensitivity factor α is a parameter
indicating the region size (relative to the observed space size) from which there is a location
privacy leakage. For instance, for α = 0.01, there is a location leakage only when the
obfuscation region is smaller than 1% of the observed space.

To compute the privacy leakage in different cases, we consider a simple numerical exam-
ple inspired by the datasets used in our experimental evaluation (see Section 8.1). Let us
consider that 200 thousand users participate in a mobile sensing application that aggregates
data over 20 thousand spatial units (e.g., road segments in a road network). To keep the for-
mulas tractable (but without loss of generality), let us consider that each user produces 50
samples from 50 distinct spatial units. This implies that on average, there are 500 footprints

Geoinformatica (2021) : –58053325562



(i.e., updates) in each spatial unit. Finally, we consider that there is a location privacy leak-
age only when the obfuscation region is smaller than 200 times the average road segment
length, i.e., α = 0.01.

Scenario 1: there is no grouping of the probes. Each participant sends the non-
deterministically encrypted value of a sample together with the deterministically
encrypted value of the spatial unit identifier to allow an efficient aggregation of the data.
However, no fake sample is inserted by the probes. Although the spatial unit identifiers
are encrypted, the SSI could easily determine the location of the spatial units if it has
access to the global spatial distribution of the probes (i.e., a frequency-based attack). In
this case, the average entropy of a spatial unit by applying Definition 1 is E(s.unit) =
−∑500

i=1
1

500 .log
1
500 = log(500), which gives a popularity of Pop(s.unit) = 500 and

an average entropy leakage of entropy leak = 0.002 for each update. Clearly, the
privacy leakage can be lower or higher for each spatial unit depending on the popular-
ity value compared with the average value. Similarly, the average location leakage is
location leakui

= 1 − Average road segment length
0.01·T otal road segment length

= 0.995.
Scenario 2: there is a static partitioning of probes, i.e., the spatial units are statically

partitioned into a number of groups containing closely located spatial units. As in the
previous case, the probes send the deterministically encrypted value of the spatial group
and are also exposed to a frequency-based attack from the SSI. However, grouping many
spatial units leads to decreasing the privacy leakage risk (but at the cost of increased
aggregation time). For instance, partitioning the spatial units in 200 groups (i.e., 100
spatial units per group), leads to an average popularity Pop(group) = 103 and thus an
average privacy leakage entropy leak(update) = 10−3, which is smaller than in the
previous scenario. Also, the obfuscation region is much larger since it corresponds to 100
spatial units instead of one, i.e., location leakui

= 1 − 1
0.01 · 200 = 0.5.

PAMPAS goes even further in the protection of the participants’ privacy by using a
dynamic partitioning of the probes based on their location and spatial distribution. The
adaptive partitioning produces nearly balanced groups of probes. In addition, the even-
tual imbalance of the groups is corrected by injecting fake tuples, which precludes the
SSI doing frequency-based attacks. This means that it is extremely difficult for the SSI
to estimate even the approximate corresponding area of each group. Therefore, in our
case, the entropy applies indistinguishably to all the participants leading the a popularity
Pop(group) = 2 · 106 and an average privacy leakage entropy leak(update) = 5 · 10−7,
while the location leakage is location leakui

= 0. Practically, in PAMPAS, the privacy
leakage depends only on the total number of participants, while the obfuscation area corre-
sponds to the entire observation space. Besides, the number of groups is adaptively chosen
such as to minimize the aggregation cost.

7.3 Privacy benefits of PAMPAS+

The first observation is that PAMPAS+ offers the same privacy level as PAMAPS if the
base threat model (see Section 3.2) is considered. The explanation is that the global mecha-
nism of both the aggregation and the partitioning protocols remains the same in PAMPAS+
compared to PAMPAS. In particular, the insertion of fake tuples balances the number of
messages generated by the probe groups and precludes the SSI from inferring even the
approximate location of an update as explained in Section 7.1 and 7.2.

Besides, the PAMPAS+ aggregation protocol is designed to offer strong privacy guaran-
tees to the participants in the context of an extended threat model. The objective is to make

Geoinformatica (2021) : –58053325 563



the protocol robust to the (unlikely) situation in which one or a few SPs are compromised as
described in Assumption 1’ in Section 6.1. We analyze hereafter the potential privacy leak-
age for a participant in the worst case scenario with respect to the extended threat model,
i.e., a few SPs are compromised and at least one compromised SP colludes with the SSI.

PAMPAS and lab attacks. Let us first consider the basic PAMPAS protocol. In this case,
a corrupted SP that colludes with the SSI is equivalent with the SSI obtaining the shared
secret key. This allows the SSI to decrypt all the messages that are exchanged between
the SPs. Typically, the SSI gets access to the sample data periodically sent by each
participating SP, i.e., sample = (location, time, value). If the location data is approx-
imated to the spatial unit that contains the actual location of the SP (e.g., only the road
identifier is reported and not the exact location on the road), then the privacy leakage
for each update is the same with the value computed in Scenario 1 in Section 7.2 (i.e.,
entropy leak(update) = 0.002 and location leakui

= 0.995). However, to achieve
high accuracy it is likely that the applications would require the exact location of the
probes, which leads to location leakui

= 1. Even if the updates are sent anonymously,
having access to the exact location of each update makes it easier for the SSI to link
the updates coming from the same probe (e.g., in relatively sparse areas) and thus
compromise the privacy of the participants.

PAMPAS+ and lab attacks. Let us have the same privacy analysis in the context of
PAMPAS+. Corrupting an SP and colluding with the SSI is equivalent to offering the
SSI the couple keys and the shared secrete key stored in that SP. The access to the cou-
ple keys of an SP allows the SSI to decrypt the messages that are destined to that SP.
This happens in the aggregation phase whenever the corrupted SP is chosen as aggre-
gating SP. However, since the aggregating SP has to change at each aggregation time
window, the SSI will get access to the raw data in a single time window. For a high
number of participants, the probability to leak the data collected in a time window is
equal to the ratio between the number of corrupted SPs and the total number of SPs, i.e.,
very low. Therefore, although the privacy leakage can be occasionally significant (e.g.,
entropy leak = 0.002/location leakui

= 1 as discussed in the previous paragraph),
the very rare periodicity of this situation makes that the overall privacy leakage to remain
very low, i.e., similar to the leakage in which none of the SPs is corrupted. To increase
significantly the privacy leakage and therefore the probability to reconstruct the trajecto-
ries of the SPs, an attacker would have to corrupt a significant number of SPs, which has
a prohibitive cost. This shows the major advantage of the PAMPAS+ protocol over the
basic protocol, i.e., having a dedicated encryption key for the communication between
each two SPs.

On the other hand, PAMPAS+ uses a single shared key for the efficient transmission of
the partitioning and aggregation results. Gaining access to the shared key would allow the
SSI to decrypt the partitioning information and hence to know the exact spatial extent of
each partition. In addition, the SSI knows to which partition belongs each update since the
partition value is deterministically encrypted with the shared key to allow the SSI to group
the messages partition-wise (line 11 in Algorithm 7). Hence, the entropy leakage of each
update transmitted by an SP can be estimated as done in Scenario 2 in Section 7.2 (i.e.,
entropy leak(update) = 10−3). At the same time, the location leakage is still small since
the footprints of each participant are spatially hidden within the partition and among the
footprints of the other participants in the same group, i.e., location leakui

= 0.5.

Geoinformatica (2021) : –58053325564



Thus, PAMPAS+ offers good privacy protection even in the context of the extended
threat model and definitely much better than compared with the basic PAMPAS protocol,
in which the privacy leakage is associated with the exact location of the probe. We recall
that in order to degrade the privacy protection to this level, an attacker has to corrupt at least
one SP and collude with the SSI, which is costly. We recall also that the choice of keeping a
shared secret key in PAMPAS+ is determined by the efficiency and scalability requirements
of the proposed protocol and therefore it is a tradeoff with the privacy protection level.

A final observation is that in the case of a lab attack, the privacy leakage in PAMPAS+
depends on the probe partitioning, i.e., the number of probes in a partition for the entropy
leakage, and the spatial size of a partition for the location leakage. Our current parti-
tioning algorithms choose the number of probe groups strictly based on data aggregation
performance criteria (see “Choosing the number of probe groups” in Section 5). However,
extending the partitioning model to include privacy related criteria is easy. For instance, we
can impose a minimum value for the number of probes in a group and/or a minimum spa-
tial extent of a partition, which in turn limits the potential entropy leakage and/or location
leakage, respectively. Surely, this can have an impact on the aggregation efficiency.

7.4 Other attacks

The attacks studied in the previous section can be considered as “passive” attacks since, let-
ting aside the act of corrupting the SPs and colluding with the SSI, the attacker observes the
private information to which he gains access after breaking the data confidentiality barrier,
but does not derive from the original protocol. However, a lab attack can offer the attacker
access to the cryptographic material protected by the secure hardware, which in turn could
allow him to insert forged data into the system with the objective to infer or gain access to
even more private data. We discuss in this section two important “active” attacks and explain
the way the system handles them.

The first type of active attack from the owner of a corrupted SP would be to try to create
a large number of fake identities that are all associated with the corrupted SP to gain a
disproportionate influence in the system, i.e., the Sybil attack [14]. In this case, the benefit
of the attacker is multiplied with the number of fake identities while the cost is minimized
to corrupting a single SP. To deter Sybil attacks we rely on the fact that a user cannot easily
obtain multiple user IDs because the user ID is derived from a user certificate and obtaining
digital certificates is not cheap. Specifically, we consider that a PKI certificate is associated
with the secure hardware of each SP and to gain access to multiple certificates, an attacker
would have to possess and corrupt as many SPs, which contradicts the assumptions in our
threat model (see Assumption 2 in Section 3.2). We recall that the certificate of an SP is
verified at each couple key exchange with another SP. Hence, a “fake” SP, even if it succeeds
registering in the system (at the SSI) and be chosen as aggregating SP, it will not be able to
aggregate any data since this requires a prior couple key exchange with all the other “real”
SPs in the system. Further, techniques such as [34, 45], complementary to our protocol, can
be used to address these attacks.

The second possible active attack is related to the fact that the owner of a corrupted
SP may detain the secret cryptographic keys, which allows him to either produce as many
forged samples as needed (in the collection phase) or forge a fake aggregation result (in the
aggregation phase in case it is chosen as aggregating SP). Tampering with the accuracy of
the aggregation results may be used by an attacker as a way to infer more private informa-
tion. Yet, it is reasonable to think that the attacker will make use of such actions only if he is
sure he cannot be detected since otherwise he can be banned from the system. In the case of

Geoinformatica (2021) : –58053325 565



Fig. 6 Basic graphic visualization of aggregation maps for two applications: noise monitoring (left) and
traffic monitoring (right) [43]

a corrupted SP forging many sample, an honest aggregating SP can easily detect that there
are many samples coming from a same SP (since the samples have to be encrypted using the
same couple key). Therefore, a corrupted SP could forge a maximum of one sample for each
partition to be sure it cannot be detected. But this has a negligible influence on the accuracy
of the results knowing also that samples containing extreme values can be filtered out as
being outliers. In the case of a corrupted aggregating SP, if the forged aggregation result is
very different from the real result, this can be detected in the next protocol iterations when
the results for the same partition are computed by honest SPs. A corrupted aggregating SP
could still marginally perturb the result, but the benefit of doing so is equally small.

8 Experimental evaluation

The goals of our experimental evaluation are twofold: (i) compare the execution time and
scalability of PAMPAS and PAMPAS+ with those of a state-of-the-art protocol described
in [41]; (ii) quantify the cost and scalability of our partitioning and aggregation protocols.
We implemented and validated PAMPAS and PAMPAS+ through emulations using secure
tokens which have a hardware configuration representative for secure hardware platforms.
For PAMPAS+, we consider that the couple keys (see the protocols in Section 6.2) have
been exchanged between any two SPs participating in aggregation process. As applications
for our experiments, we used traffic monitoring and noise monitoring with both real and
synthetic datasets representing small and medium-size cities. Figure 6 illustrates our graphic
interface for these applications; it shows the aggregate results for the noise heat-map and
the average travel time for the road network. A demo of our prototype was presented in [43]
using a traffic monitoring scenario.

8.1 Experimental setting

Hardware platform. In our experimental evaluation, the SSI is hosted on a PC (3.1 GHz
i5-2400, 8GB RAM, running Windows 7) which also displays the aggregate results in
a graphical form for validation purpose. The SPs are implemented by representative
secure hardware devices (see Fig. 7) which include an MCU with a 32-bit RISC CPU
at 120MHz, a cryptographic co-processor implementing AES and SHA, 128KB of static

Geoinformatica (2021) : –58053325566



Fig. 7 Secure tokens used in our experimental evaluation

RAM and 1MB of NOR Flash to store the software stack, a smartcard chip hosting
the cryptographic credentials (i.e., the secrete encryption keys) and an SD card reader
allowing for a large storage capacity. We used a commodity SD card (Samsung SDHC
Essential Class 10 of 32GB) as secondary Flash storage. The SSI in our testing sys-
tem manages a multi-channel Ethernet connection with a global bandwidth of 100Mbps.
Importantly, on the SP’s side, our implementation limits the RAM consumption to only
30KB and the maximum communication bandwidth to 200Kbps to validate the pro-
posed protocols with less powerful secure devices. Thus, in our experiments, all the SPs
have this minimalist configuration. To emulate a very large number of SPs, we execute
sequentially on an SP the aggregate computations and communications for all the worker
SPs and measure the “parallel” execution time as the maximum aggregation time in the
execution sequence.

Baseline system. To underline the importance of the PAMPAS and PAMPAS+ protocols,
we implemented the secure protocol proposed in [41] and took it as the baseline. This
protocol can be applied without modification to aggregate the samples collected in each
time window. Since the basic PAMPAS offers the same level of security and privacy
as the baseline protocol, while PAMPAS+ offers even stronger privacy protection (see
Section 7.3), our experimental evaluation focuses on the efficiency part. Note that in [41],
two more protocols are proposed that are even more expensive than the secure protocol
considered in our context.

Datasets and aggregate functions. We use both synthetic and real datasets to test the
efficiency and scalability of PAMPAS and PAMPAS+. We employed the well-known
Brinkhoff generator [5] to generate mobility traces on two real road networks of the
cities of Oldenburg (Germany) and Stockton (San Joaquin County, CA). Oldenburg is a
small size network having 7035 road segments, while Stockton is a medium size road
network having 24123 segments. Depending on the network size, we generated traces
corresponding to a medium and large number of users. With Oldenburg, the medium and
large datasets contain 47 thousand and 270 thousand users respectively. With Stockton,
the medium and large datasets contain 200 thousand and 1.35 million users respectively.
The spatial distribution of the traces follows the network spatial density. Compared to
the existing real datasets, the synthetic datasets have the prominent advantage of hav-
ing excellent spatial and temporal coverage. However, it is also important to validate
the proposed protocol with real datasets. To this end, we used the T-Drive Taxi trajec-
tory dataset [47]. This dataset contains around 15 million trajectory units collected from

Geoinformatica (2021) : –58053325 567



10357 taxis over a period from Feb. 2 to Feb. 8, 2008 in Beijing. Because the density of
taxis is too low compared to the synthetic dataset, we extracted and merged a period of
one hour in our tests, in order to generate a dataset containing 191 thousand trajectories
covering 32800 road segments.

To show the generality of PAMPAS and PAMPAS+, we selected three aggregate func-
tions, i.e., average, IDW [31] and median, corresponding to the three aggregate types
described in Section 3.3. We associate the average and median aggregates with the traffic
monitoring application, i.e., compute the average travel time and the median speed for each
road segment in a road network. Hence, these two scenarios consider the constrained move-
ment type. The IDW aggregate is associated to the noise-level monitoring application and a
free movement type. In this case, we use the same generated mobility traces, but consider
them in the 2D space instead of the network space. Also, we use a 64x64 grid to divide the
observed 2D space into 4096 spatial units for the free movement scenario. The speed sam-
ple values are directly generated by the moving objects generator, while the noise values are
generated by us proportionally to the number of probes in the spatial unit.

8.2 Performance evaluation

Execution time Figure 8 compares the aggregation time (in a logarithmic scale) of PAM-
PAS, PAMPAS+ and baseline protocols for the three considered functions with 191
thousand probes in Beijing (real dataset) and with 200 thousand probes in Stockton. The
aggregation time is global, i.e., it includes both the computation and communication time.
The number of partitions was selected as the optimal value for the average function (i.e.,
128 partitions). The results indicate that PAMPAS is very efficient since it requires only a
few seconds to compute the aggregate results for all the tested functions in both datasets.
The aggregation time in PAMPAS+, although higher than in PAMPAS, is still small enough
to respect the real-time requirement of the protocol. The increased time is expected since in
PAMPAS+ there is the additional cost of accessing the couple key from the Flash memory
for each sample during the aggregation processes. Nevertheless, the fixed number of parti-
tions (i.e., 128) used in these tests plays mostly in the disadvantage of PAMPAS+. As we
show in the scalability tests here below, the difference between PAMPAS and PAMPAS+
remains acceptable in all cases when the number of partitions is tuned correctly. Also, the
aggregation times are similar with the real and synthetic datasets for both PAMPAS and
PAMPAS+. However, in both cases the baseline protocol is much more costly (especially

Fig. 8 Aggregation time of PAMPAS, PAMPAS+ and Baseline protocols with the real dataset (left) and the
synthetic dataset (right)

Geoinformatica (2021) : –58053325568



for complex aggregate functions) leading to aggregation times up to three orders of magni-
tude higher than PAMPAS. Moreover, the aggregation times with the baseline protocol are
larger for the Beijing dataset. The explanation is that the number of spatial units is larger
in Beijing (i.e., 32800) than in Stockton (i.e., 24123). On the other hand, PAMPAS and
PAMPAS+ are scalable with respect to both the aggregation function and the number of
spatial units in the query.

Scalability We further test the scalability of the protocols with different number of probes,
spatial units, and aggregate functions. Figure 9 shows the aggregation time for the three pro-
tocols for the average (top graph) and median (bottom graph) functions with medium and
large number of users on both road networks. The number of partitions in this evaluation
is selected as the optimal value for each case. Specifically, the number of partitions ranges
from 128 to 512 and from 128 to 1024 in PAMPAS and PAMPAS+ respectively depend-
ing of the data size and the aggregation function, i.e., a larger data size leads to a higher
number of partitions as well as complex computations such as the IDW or median func-
tions. The results confirm that only PAMPAS and PAMPAS+ are scalable with respect to
all the varying input parameters. In the worst case, the computation time of PAMPAS and

Fig. 9 Scalability of the PAMPAS, PAMPAS+ and Baseline protocols with Average function (top) and
Median function (bottom)

Geoinformatica (2021) : –58053325 569



Fig. 10 The partitioning costs (left) and the partitioning unbalance factor (right) in PAMPAS with different
number of partitions

PAMPAS+ attains 14 seconds and 18 seconds respectively to compute the median speed for
1.35 million samples covering 24123 spatial units.

The baseline protocol does not scale with the number of samples and especially with
the number of spatial units. Practically, the baseline can provide real-time aggregation only
for a small number of spatial units (i.e., 7000 in Oldenburg) and basic aggregate functions
(e.g., average). The very limited RAM of the SPs and the impossibility to efficiently par-
allelize the aggregate computation make the baseline inadequate for the requirements of
participatory sensing applications.

Cost and scalability of the partitioning protocol of PAMPAS Figure 10 (left) presents the
partitioning computation time in PAMPAS for both Oldenburg and Stockton networks. A
new partitioning can be computed in a few seconds by an SP.11 This means that the check-
ing and probes re-partitioning can be executed frequently, which allows PAMPAS to adapt
to even fast changes in the spatial distribution of the probes. Most of the partitioning cost
resides in reading and writing the partitioning data to the secondary Flash storage (see the
detail in Section 8.3). This also explains the increase of the partitioning time with the num-
ber of partitions, since in this case the I/O operations are executed at a smaller granularity,
which is more costly.

Figure 10 (right) indicates that the partitioning unbalance factor of PAMPAS, i.e.,
the ratio between the maximum and the average partition size, increases with the num-
ber of partitions. The unbalance factor is an important indicator in PAMPAS since the
higher the unbalance, the higher the number of fake injected samples and, therefore, the
communication cost.

Figure 11 shows the impact of the number of partitions on the global aggregation time
as well as on the computation and communication cost, which compose the total time. The
computation time decreases with the increase of the number of partitions since the amount
of work done by the aggregating SPs also decreases. Conversely, the communication time
increases with more partitions since more fake samples are injected into the system as
explained above. Globally, the near-optimal aggregation time is obtained with a number of
partitions that minimizes the cumulated degradation of the computation and communica-
tion costs (see Section 5). We obtained similar results with the real dataset, for which the

11We note that in this paper we employed an optimized implementation of the base partitioning algorithm
compared to the version used in [44]. While the general algorithm remains the same (see Algorithm 4), we
optimized the number of Flash IOs through a better usage of the 30KB of RAM available for data processing
at the SP side.

Geoinformatica (2021) : –58053325570



Fig. 11 Communication and computation costs of Median function in PAMPAS with different number of
partitions and road networks

optimal number of partitions is 128 while the network partitioning is computed in just 2
seconds. The aggregation cost is partially shown in Fig. 8 (left). For the sake of brevity and
also due to the similarity of the results with the synthetic datasets, we omit here the details
of the results with the real dataset.

8.3 Partitioning efficiency of PAMPAS+ versus PAMPAS

In this section, we analyze the efficiency and effectiveness of the partitioning algorithm of
PAMPAS+ compared with the base algorithm. We compare the overall cost and the unbal-
ance factor with different number of partitions for the two methods. Then, we detail the
global partitioning cost by separating the CPU and the secondary memory access costs.
Finally, we evaluate the parallel execution cost of the PAMPAS+ partitioning method (see
Section 6.3) with different number of probes.

Figure 12 shows the partitioning cost (left) and the unbalance factor (right) in PAMPAS
and PAMPAS+ for the Stockton large dataset. As expected, the partitioning algorithm of
PAMPAS+ is more costly but produces more balanced partitions especially for large num-
bers of partitions. Overall, both methods have reasonable partitioning cost and acceptable
unbalance factor, which allows both algorithms to be employed in real-time in mobile par-
ticipatory sensing applications. Given the higher cost but better quality of the partitioning
algorithm of PAMPAS+, this method will be preferred for large networks and high number
of participants. Also, the aggregation process of PAMPAS+ is more costly than in PAM-
PAS. Therefore, a more effective partitioning is required to reduce the aggregation cost (see
Section 8.4), since a lower unbalance factor reduces the volume of fake messages and hence

Fig. 12 The partitioning costs (left) and the partitioning unbalance factor (right) in PAMPAS and PAMPAS+
with different number of partitions

Geoinformatica (2021) : –58053325 571



Fig. 13 The detailed partitioning costs - CPU (left) and Flash IOs (right) - in PAMPAS and PAMPAS+ with
different number of partitions

the communication cost while allowing to involve a larger number of SPs in the aggregation
phase.

For a better understanding of the behavior of the two partitioning methods, we detail in
Fig. 13 the CPU cost (left) and the IO cost (right). We can observe that in terms of CPU cost
the difference is only marginal between the two algorithms. The performance difference
is largely explained by the IO cost. The recursive nature of the partitioning algorithm in
PAMPAS+ requires repeated reads/writes from/to the Flash storage especially given the low
RAM memory limit imposed in the protocol (i.e., 30KB), which explains the larger number
of IO compared with the base method.

Parallel partitioning As described in Section 6.3, the partitioning algorithm of PAMPAS+
can be easily parallelized. We validated experimentally the parallel execution of the parti-
tioning algorithm. Figure 14 shows the partitioning cost for different numbers of partitions
for the large Stockton dataset when the partitioning process is executed by a different num-
ber of SPs varying from 1 to 32. The first observation is that delegating the process to several

Fig. 14 The parallel partitioning costs in PAMPAS+ with different number of partitions

Geoinformatica (2021) : –58053325572



Fig. 15 Communication and computation costs of Median function in PAMPAS+ with different number of
partitions and road networks

SPs can drastically reduce the partitioning cost for large number of partitions (i.e., above
256). At the same time, increasing the number of worker SPs above a certain limit results
is augmenting the partitioning cost. The reason is twofold. First, the communication cost
increases with increased number of SPs. Second, when a large number of SPs are used, the
coordinator SP (see Section 6.3) has to do more work at the beginning of the process before
delegating the tasks to the other SPs.

Typically, a number of 4 to 8 SPs offers the best performance in our experiments. More
importantly, if parallelized, the partitioning algorithm in PAMPAS+ becomes faster than the
equivalent algorithm in PAMPAS.

8.4 Aggregation efficiency of PAMPAS+ versus PAMPAS

Similar to PAMPAS, the number of partitions plays an important role in global aggregation
time of PAMPAS+ and has to be tuned correctly to obtain low aggregation cost. Figure 15
shows the variation of the communication and computation costs with different number of
partitions for the median function and the large Stockton and Oldenburg datasets. As in the
base protocol, increasing the number of partitions decreases the computation cost but aug-
ments the communication cost. However, due to a more effective partitioning (see Fig. 12
(right)), the increase of the communication cost is slower in PAMPAS+ then in PAMPAS.
This also makes that, in some cases, the optimal number of partitions (i.e., minimizing the
overall cost) to be higher in PAMPAS+ then in PAMPAS for the same dataset and aggrega-
tion function. For instance, PAMPAS reaches the best performance with 256 partitions while
PAMPAS+ requires 512 partitions for the large Oldenburg dataset and the median function.

Fig. 16 Overall costs of IDW function in PAMPAS and PAMPAS+ with different number of partitions

Geoinformatica (2021) : –58053325 573



Figure 16 compares the overall aggregation cost of PAMPAS and PAMPAS+ with dif-
ferent number of partitions for the IDW function and the medium and large Stockton
datasets. In general, both PAMPAS and PAMPAS+ offer a reasonable cost in all cases. For
PAMPAS+, the aggregation time drops rapidly with the increase of the number of parti-
tions before attaining the near-optimal value. Compared with PAMPAS, the aggregation
cost of PAMPAS+ is much higher for a small number of partitions, while the cost difference
reduces to practically none for large number of partitions. If we compare the near-optimal
costs of the two protocols, we can observe that the aggregation time of PAMPAS+ is about
twice larger. However, the aggregation time of PAMPAS+ remains sufficiently small to
be still considered as a real-time protocol even for very large number of users (i.e., 1.35
millions).

8.5 Discussion

This section wraps up the experimental evaluation. The first observation is that the exist-
ing data aggregation protocols built on secure hardware [41, 42] have not been designed
for applications requiring real-time processing such as in the area of participatory sensing
and therefore cannot be used in this context. On the other hand, both protocols proposed
in this paper are secure, efficient, scalable, accurate and generic with respect to the aggre-
gation function. PAMPAS is extremely efficient and builds its efficiency on the reasonable
premise of the inviolability of secure hardware. PAMPAS+ goes one significant step for-
ward from the security point of view and trades efficiency to increase the security level of
the aggregation protocol. Thus, PAMPAS+ offers stronger privacy guarantees to the partici-
pants since it protects their privacy even if some SPs are successfully compromised by their
owner (see Section 6.1). PAMPAS+ minimizes the information leakage by the corrupted
SPs and hence drastically reduces the benefit of a successful lab attack (see Section 7.3).
The price to pay for the increased security level is larger aggregation time. Also, PAMPAS+
requires an additional couple-key exchange phase in which each pair of SPs exchanges a
secret key, but this process does not have to meet the real-time constraint imposed to the
main aggregation process.

Selecting the partitioning algorithm Both proposed protocols include a specific partition-
ing algorithm. Nevertheless, we note that both the linear partitioning algorithm of PAMPAS
and the recursive binary partitioning of PAMPAS+ can be interchanged in the two proto-
cols. For the sake of clarity we did not provide any results for the aggregation cost of the
two protocols using interchanged partitioning methods. The rationale is simple. Using the
binary partitioning in PAMPAS leads to decrease the aggregation cost of about 9.64% (on
average), but at the same time significantly increases the cost of the partitioning phase.
Since PAMPAS is already very efficient in the aggregation phase using the linear partition-
ing, we believe that a better partitioning is superfluous in this case. Oppositely, using the
linear partitioning in PAMPAS+ leads to increase the aggregation cost of about 12.53% (on
average), but decreases the cost of the partitioning phase. Given that the aggregation cost
is significantly larger in PAMPAS+ than in PAMPAS, any increase could be perceived as
being too much and hence the binary partitioning should be preferred in this case in our
opinion. We also recall that the binary partitioning can be executed in parallel which can
drastically reduce the execution time but requires several SPs to do the computation.

Selecting the query spatial units In PAMPAS, the probe groups are built on top of the spa-
tial units requiring each group to include entirely the spatial units it covers. This is done to

Geoinformatica (2021) : –58053325574



increase the data aggregation efficiency as explained in Sections 4 and 5. However, the way
the spatial units are chosen for a query can have an impact on the query computation effi-
ciency. Choosing units of smaller size is better since a finer decomposition of the observed
space may allow for a more balanced group partitioning (especially for highly skewed spa-
tial distribution of participants), which in turn increases the aggregation efficiency (since
less fake tuples need to be generated to balance the data in the groups). On the other hand,
smaller units may increase the probability of filtering out more aggregation results cor-
responding to the units with low number of participants (as discussed in Section 7.1). In
conclusion, while PAMPAS is agnostic to the selection of the query spatial units, their con-
figuration can impact its efficiency and to some extent its accuracy. Studying this issue is
an interesting perspective of future work.

Dealing with parallel MPS queries In this paper, our focus is on having a framework as
generic as possible from the viewpoint of possible types of spatio-temporal aggregation and
then providing efficient and secure protocols to achieve such aggregations. Therefore, the
spatial units are defined per query (see Section 3) and thus can change for different queries.
Maintaining the partitioning for each query leads to a higher overhead, but this is the cost for
privacy and flexibility. One solution to reduce this overhead is to consider the same spatial
units for different queries. However, this raises a number of issues. First, sharing the same
spatial unit decomposition would, obviously, make sense only if the physical referential
space is the same (e.g., the geographical area of a city). However, even if the physical space
is the same, the type of movement can completely change the spatial unit representation
(i.e., road segments for vehicle movements versus grid cells for pedestrian movements). So
considering the same spatial units is possible only for the same type of movement. Second,
assuming that the previous elements are verified, there is the question regarding the partici-
pants to the queries. If several queries are run in parallel, the users may opt to participate to
only part of them. Hence, for any two parallel queries, there is no guarantee that the respec-
tive sets of participants are identical. However, the distribution of the participants over the
spatial units is an essential parameter of the partitioning algorithm. Without knowing the
accurate spatial distribution, the system can no longer guarantee the optimum privacy level.
Also, verifying the intersection between two lists of participants in a distributed and privacy-
preserving way is not trivial (and may even exceed the cost of partitioning). We should
finally note that in PAMPAS the partitioning cost is low (a few seconds in most cases) and
can be effectively done in parallel by only a few SPs (see Section 8.3). Moreover, its cost is
much lower than the aggregation cost which dominates the overall cost of PAMPAS since
the aggregation involves a few hundred SPs at each iteration as indicated by our experimen-
tal evaluation. However, optimizing the partitioning cost with different queries executed in
parallel is another interesting perspective of future work.

Boosting performance Finally, it is worth mentioning that the aggregation time can be
greatly improved by increasing the processing power and the communication bandwidth of
the SSI. For example, increasing the server bandwidth from 100Mbps to 1 GBps, makes
the maximum aggregation time (i.e., median function with the large Stockton dataset) to
drop from 14 seconds and 18 seconds to less than 7 seconds and 10 seconds in PAMPAS
and PAMPAS+ respectively. Also, in some scenarios, pushing the computation in the user
devices may be problematic (e.g., battery powered devices, concurrent applications running
in the device). However, our protocols minimize this type of problem thanks to their design
and high efficiency. For instance, in our tests, a user participating in the system for one hour,
has a probability between 3.5% and 8.7% to participate once to an aggregate computation

Geoinformatica (2021) : –58053325 575



assuming that aggregates results are produced every 30 seconds, and a probability between
0.004% and 0.12% to do a repartitioning assuming that the probes partitioning is checked
every 1 minute. In all cases, the computation is done in a few seconds at most and requires
only modest resources (i.e., MCU-like low power CPU, 30KB of RAM and 200Kbps com-
munication bandwidth). Moreover, the computation effort is inversely proportional to the
probability to be picked.

9 Conclusion

This paper proposes PAMPAS and PAMPAS+, two related privacy-aware mobile participa-
tory sensing systems based on a distributed architecture and personal secure hardware. This
combination allows PAMPAS and PAMPAS+ to achieve the same level of privacy as crypto-
graphic solutions without having to sacrifice generality, scalability, and accuracy. Moreover,
PAMPAS+ protects the participants even against sophisticated hardware attacks without
having to sacrifice too much its efficiency. The proposed aggregation solutions are, to the
best of our knowledge, the first proposal of distributed protocols that are secure, efficient,
scalable and generic w.r.t. the aggregation computation and that fit both the strict hardware
constraints of secure personal devices and the real-time constraints of participatory sens-
ing applications. The experimental evaluation based on representative hardware for secure
platforms validates the proposed solutions.

References

1. Allard T, Nguyen B, Pucheral P (2014) METAP: Revisiting privacy-preserving data publishing using
secure devices. Distributed and Parallel Databases 32(2):191–244

2. Andrés ME, Bordenabe NE, Chatzikokolakis K, Palamidessi C (2013) Geo-indistinguishability:
Differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC
conference on computer &#38; communications security. ACM, New York, pp 901–914,
https://doi.org/10.1145/2508859.2516735. CCS ’13

3. ARM (2009) ARM security technology - building a secure system using trustzone technology. ARM
Technical White Paper

4. Baumann A, Peinado M, Hunt G (2014) Shielding applications from an untrusted cloud with haven. In:
OSDI, pp 267–283

5. Brinkhoff T (2002) A framework for generating network-based moving objects. GeoInformatica
6(2):153–180

6. Brown JWS, Ohrimenko O, Tamassia R (2013) Haze: Privacy-preserving real-time traffic statistics. In:
ACM SIGSPATIAL, pp 540–543

7. Cao Y, Yoshikawa M, Xiao Y, Xiong L (2017) Quantifying differential privacy under temporal correla-
tions. In: 2017 IEEE 33rd international conference on data engineering (ICDE), IEEE, pp 821–832

8. Chatzikokolakis K, Palamidessi C, Stronati M (2015) Location privacy via geo-indistinguishability.
ACM SIGLOG News 2(3):46–69. https://doi.org/10.1145/2815493.2815499

9. Chow CY, Mokbel MF, Aref WG (2009) Casper*: Query processing for location ser-
vices without compromising privacy. ACM Trans Database Syst 34(4):24:1–24:48.
https://doi.org/10.1145/1620585.1620591

10. Cornelius C, Kapadia A, Kotz D, Peebles D, Shin M, Triandopoulos N (2008) AnonySense: Privacy-
aware people-centric sensing. In: MobiSys

11. Damiani ML (2014) Location privacy models in mobile applications: conceptual view and research
directions. GeoInformatica 18(4):819–842

12. Damiani ML, Bertino E, Silvestri C (2010) The probe framework for the personalized cloaking of private
locations. Trans Data Privacy 3(2):123–148. http://dl.acm.org/citation.cfm?id=1824401.1824404

Geoinformatica (2021) : –58053325576

https://doi.org/10.1145/2508859.2516735
https://doi.org/10.1145/2815493.2815499
https://doi.org/10.1145/1620585.1620591
http://dl.acm.org/citation.cfm?id=1824401.1824404


13. D’Hondta E, Stevens M, Jacobs A (2013) Participatory noise mapping works! an evaluation of participa-
tory sensing as an alternative to standard techniques for environmental monitoring. Pervasive and Mobile
Computing 9(5):681–694

14. Douceur JR (2002) The sybil attack. In: Revised papers from the 1st international workshop on
peer-to-peer systems, IPTPS ’01. Springer-Verlag, London, pp 251–260. http://dl.acm.org/citation.cfm?
id=646334.687813

15. Drosatos G, Efraimidis PS, Athanasiadis IN, Stevens M (2012) A privacy-preserving cloud computing
system for creating participatory noise maps. In: COMPSAC, pp 581–586

16. Faezipour M, Nourani M, Saeed A, Addepalli S (2012) Progress and challenges in intelligent vehicle
area networks. Magazine Communications of the ACM 55(2):90–100

17. Ganti RK, Pham N, Tsai YE, Abdelzaher TF (2008) PoolView: Stream privacy for grassroots participa-
tory sensing. In: SenSys

18. Gao H, Liu CH, Wang W, Zhao J, Song Z, Su X, Crowcroft J, Leung KK (2015) A survey of incentive
mechanisms for participatory sensing. IEEE Comm Surveys and Tutorials 17(2):918–943

19. Ghinita G, Damiani ML, Silvestri C, Bertino E (2016) Protecting against velocity-based, proximity-
based, and external event attacks in location-centric social networks. ACM Trans Spatial Algorithms
Syst 2(2):8:1–8:36. https://doi.org/10.1145/2910580

20. Goel P, Kulik L, Ramamohanarao K (2016) Privacy-aware dynamic ride sharing. ACM Trans Spatial
Algorithms Syst 2(1):4:1–4:41. https://doi.org/10.1145/2845080

21. González J, Hölzl M, Riedl P, Bonnet P, Mayrhofer R (2014) A practical hardware-assisted approach
to customize trusted boot for mobile devices. In: Chow SSM, Camenisch J, Hui LCK, Yiu SM (eds)
Information Security. Springer International Publishing, pp 542–554

22. Hoh B, Iwuchukwu T, Jacobson Q, Work D, Bayen AM, Herring R, Herrera JC, Gruteser M, Annavaram
M, Ban J (2012) Enhancing privacy and accuracy in probe vehicle-based traffic monitoring via virtual
trip lines. IEEE Tran on Mobile Computing 11(5):849–864

23. Huang KL, Kanhere SS, Hu W (2010) Preserving privacy in participatory sensing systems. Comput
Commun 33(11):1266–1280. https://doi.org/10.1016/j.comcom.2009.08.012

24. Jain N, Mishra S, Srinivasan A, Gehrke J, Widom J, Balakrishnan H, Çetintemel U, Cherniack M,
Tibbetts R, Zdonik SB (2008) Towards a streaming sql standard. PVLDB 1(2):1379-1390

25. Lallali S, Anciaux N, Popa IS, Pucheral P (2017) Supporting secure keyword search in the personal
cloud. Inf Syst 72:1–26. https://doi.org/10.1016/j.is.2017.09.003. http://www.sciencedirect.com/science/
article/pii/S0306437916303891

26. Li M, Zhu L, Zhang Z, Xu R (2017) Achieving differential privacy of trajectory data publishing in
participatory sensing. Inf Sci 400(C):1–13. https://doi.org/10.1016/j.ins.2017.03.015

27. Li Q, Cao G (2012) Efficient and privacy-preserving data aggregation in mobile sensing. In: IEEE ICNP
28. Liu R, Cao J, VanSyckel S, Gao W (2016) Prime: Human-centric privacy measurement based

on user preferences towards data sharing in mobile participatory sensing systems. In: 2016
IEEE International Conference on Pervasive Computing and Communications (PerCom), pp 1–8.
https://doi.org/10.1109/PERCOM.2016.7456518

29. MaruseacM, Ghinita G, Trajcevski G, Scheuermann P (2017) Privacy-preserving detection of anomalous
phenomena in crowdsourced environmental sensing using fine-grained weighted voting. Geoinformatica
21(4):733–762. https://doi.org/10.1007/s10707-017-0304-3

30. de Montjoye YA, Hidalgo CA, Verleysen M, Blondel VD (2013) Unique in the crowd: The privacy
bounds of human mobility. Scientific reports 3

31. Nittel S, Whittier JC, Liang Q (2012) Real-time spatial interpolation of continuous phenomena using
mobile sensor data streams. In: ACM SIGSPATIAL, pp 530–533

32. Pan J, Sandu-Popa I, Borcea C (2017) Divert: A distributed vehicular traffic re-routing system for con-
gestion avoidance. IEEE Trans Mob Comput 16(1):58–72. https://doi.org/10.1109/TMC.2016.2538226

33. Penza M (2014) Cost action TD1105: New sensing technologies for environmental sustainability in
smart cities. In: IEEE SENSORS

34. Piro C, Shields C, Levine BN (2006) Detecting the sybil attack in mobile ad hoc networks. In: 2006
Securecomm and Workshops, pp 1–11

35. Popa RA, Blumberg AJ, Balakrishnan H, Li FH (2011) Privacy and accountability for location-based
aggregate statistics. In: CCS, pp 653–666

36. Priebe C, Vaswani K, Costa M (2018) Enclavedb - a secure database using sgx. IEEE. https://www.
microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/

37. Quercia D, Leontiadis I, Mcnamara L, Mascolo C, Crowcroft J (2011) Spotme if you can: Randomized
responses for location obfuscation on mobile phones. In: ICDCS, pp 363–372

Geoinformatica (2021) : –58053325 577

http://dl.acm.org/citation.cfm?id=646334.687813
http://dl.acm.org/citation.cfm?id=646334.687813
https://doi.org/10.1145/2910580
https://doi.org/10.1145/2845080
https://doi.org/10.1016/j.comcom.2009.08.012
https://doi.org/10.1016/j.is.2017.09.003
http://www.sciencedirect.com/science/article/pii/S0306437916303891
http://www.sciencedirect.com/science/article/pii/S0306437916303891
https://doi.org/10.1016/j.ins.2017.03.015
https://doi.org/10.1109/PERCOM.2016.7456518
https://doi.org/10.1007/s10707-017-0304-3
https://doi.org/10.1109/TMC.2016.2538226
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/


38. Sabt M, Achemlal M, Bouabdallah A (2015) Trusted execution environment: What
it is, and what it is not. In: 2015 IEEE trustcom/BigDataSE/ISPA, vol 1, pp 57–64.
https://doi.org/10.1109/Trustcom.2015.357

39. Shi J, Zhang R, Liu Y, Zhang Y (2010) PriSense: Privacy-preserving data aggregation in people-centric
urban sensing systems. In: IEEE INFOCOM

40. Thiagarajan A, Ravindranath L, LaCurts K, Madden S, Balakrishnan H, Toledo S, Eriksson J (2009)
Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: ACM SenSys,
pp 85–98

41. To QC, Nguyen B, Pucheral P (2014) Privacy-preserving query execution using a decentralized
architecture and tamper resistant hardware. In: EDBT, pp 487–498

42. To QC, Nguyen B, Pucheral P (2016) Private and scalable execution of sql aggregates on a secure decen-
tralized architecture. ACM Trans Database Syst 41(3):16:1–16:43. https://doi.org/10.1145/2894750

43. Ton-That DH, Sandu-Popa I, Zeitouni K (2015) PPTM: Privacy-aware participatory traffic monitoring
using mobile secure probes. In: IEEE MDM, demo paper

44. Ton-That DH, Sandu-Popa I, Zeitouni K, Borcea C (2016) PAMPAS: Privacy-aware mobile participatory
sensing using secure probes. In: Proceedings of the 28th international conference on scientific and statis-
tical database management, ACM, SSDBM ’16, pp 4:1–4:12. https://doi.org/10.1145/2949689.2949704

45. Wang G, Wang B, Wang T, Nika A, Zheng H, Zhao BY (2016) Defending against sybil devices
in crowdsourced mapping services. In: Proceedings of the 14th annual international conference
on mobile systems, applications, and services, MobiSys ’16. ACM, New York, pp 179–191.
https://doi.org/10.1145/2906388.2906420

46. Wang L, Yang D, Han X, Wang T, Zhang D, Ma X (2017) Location privacy-preserving task allocation
for mobile crowdsensing with differential geo-obfuscation. In: Proceedings of the 26th international
conference onWorldWideWeb, international world wide web conferences steering committee, Republic
and Canton of Geneva, Switzerland, WWW ’17, pp 627–636. https://doi.org/10.1145/3038912.3052696

47. Yuan J, Zheng Y, Xie W, Xie X, Sun G, Huang Y (2010) T-drive: driving directions based on taxi
trajectories. In: SIGSPATIAL, pp 99–108

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Iulian Sandu Popa is an Associate Professor of computer science
in the DAVID lab of University of Versailles (UVSQ) and a mem-
ber of the Petrus team at INRIA Saclay-Ile-de-France. He received
his Ph.D. and M.S. degrees from UVSQ and the B.S. degree from
University Politehnica of Bucarest, Romania. His main research inter-
ests include secure and distributed data management, spatiotemporal
databases and mobile data management, with a particular focus on
topics revolving around privacy and personal data management.

Geoinformatica (2021) : –58053325578

https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1145/2894750
https://doi.org/10.1145/2949689.2949704
https://doi.org/10.1145/2906388.2906420
https://doi.org/10.1145/3038912.3052696


Dai Hai Ton That is a postdoc at College of Computing and Dig-
ital Media, DePaul University, Chicago, Illinois, USA. He received
his Ph.D. in Computer Science from University of Paris-Saclay in
2016. He obtained his Master and Bachelor in Computer Science
from HoChiMinh City University of Technology in 2011 and 2008
respectively. His research interests are Spatio-temporal databases,
location privacy in personal data protection, Reproducibility, Embed-
ded data management, Mobile data management and systems, Big
Data, Programming languages.

Karine Zeitouni received her Ph.D. in Computer Science from the
University of Paris 6. She is a professor in Computer Science at
University of Versailles Saint-Quentin. She is heading the Ambient
Data Access and Mining (ADAM) group at DAVID laboratory. Her
main research interest lies in spatiotemporal databases and knowl-
edge extraction, with a focus on applications in the fields of transport,
environment and health.

Cristian Borcea is a Professor in the Computer Science Depart-
ment at NJIT. He also holds a Visiting Professor appointment at the
National Institute of Informatics in Tokyo, Japan. He received his
Ph.D. degree from Rutgers University, and the M.S./B.S. degrees
from University Politehnica, Bucharest, Romania. His research inter-
ests include: mobile computing & sensing; ad hoc & vehicular
networks; and cloud & distributed systems. More specifically, he
focuses on designing, implementing, and evaluating system archi-
tectures, network protocols, middleware, programming models, and
security mechanisms for networked systems.

Geoinformatica (2021) : –58053325 579



Affiliations

Iulian Sandu Popa1,2 ·Dai Hai Ton That3 ·Karine Zeitouni1 ·Cristian Borcea4

Dai Hai Ton That
tonthatdaihai@gmail.com

Karine Zeitouni
karine.zeitouni@uvsq.fr

Cristian Borcea
borcea@njit.edu

1 DAVID Laboratory - University of Versailles Saint-Quentin, Université Paris-Saclay, Versailles, France
2 INRIA Saclay-Ile-de-France, Université Paris-Saclay, Palaiseau, France
3 College of Computing and Digital Media, DePaul University, Chicago, IL, USA
4 Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA

Geoinformatica (2021) : –58053325580

http://orcid.org/0000-0002-3935-2471
mailto: tonthatdaihai@gmail.com
mailto: karine.zeitouni@uvsq.fr
mailto: borcea@njit.edu

	Mobile participatory sensing with strong privacy guarantees using secure probes
	Abstract
	Introduction
	Related work
	Server-centric approaches
	Cryptographic approaches
	Secure hardware and user-centric approaches



	System overview
	System architecture
	Secure probe (SP)
	Supporting server infrastructure (SSI)


	Base threat model
	Data and computation models
	Protocol requirements

	Global aggregation protocol
	Probe partitioning protocol
	Indexing the spatial units
	Checking and repartitioning the probe grouping
	Choosing the number of probe groups



	PAMPAS+
	Extended threat model
	Aggregation protocol in PAMPAS+
	Couple keys exchange protocol
	Shared encryption key
	Global aggregation in PAMPAS+


	Partitioning protocol in PAMPAS+
	Parallel partitioning


	Security and privacy analysis
	Security analysis
	Privacy analysis
	Entropy-based metric
	Location obfuscation-based metric


	Privacy benefits of PAMPAS+
	Other attacks

	Experimental evaluation
	Experimental setting
	Performance evaluation
	Execution time
	Scalability
	Cost and scalability of the partitioning protocol of PAMPAS


	Partitioning efficiency of PAMPAS+ versus PAMPAS
	Parallel partitioning

	Aggregation efficiency of PAMPAS+ versus PAMPAS
	Discussion
	Selecting the partitioning algorithm
	Selecting the query spatial units
	Dealing with parallel MPS queries
	Boosting performance



	Conclusion
	References
	Affiliations




