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Vehicular Sensor Networks 

I. INTRODUCTION 

The global population spends a tremendous amount of time in traffic every day. For 

example, it is estimated that average American spends at least 50 minutes a day commuting [1]. 

Vehicular sensor networks, which leverage vehicular sensors and wireless communication, could 

improve our in-car experience by making travel safer and faster.  In the past decades, with the 

advance of the new technologies, various electronics components started to be included in the 

automotive system such as acoustic, infrared, still/motion video cameras, etc.  In recent years, 

most new vehicles come already equipped with GPS receivers and navigation systems. Car 

manufacturers such as Ford, GM, BMW and Toyota have already announced efforts to include 

significant computing power within their automotive design [2-5]. After Google revealed its first 

self-driving car, a number of auto-makers began venturing into this research area. This trend is 

expected to continue and, in the near future, the number of vehicles equipped with computing 

technologies and wireless network interfaces will increase dramatically. These vehicles will be 

able to run network protocols that will exchange messages for safer and more fluid traffic on the 

roads. Several protocols have been proposed for implementing vehicular communication. The 

most promising standard is IEEE 802.11p. The physical layer of 802.11p is dedicated short-range 

5.9 GHz for communication among vehicles and with road side infrastructure [6]. 

So far, a diversity of applications have been proposed and evaluated over vehicular 

sensor networks.  Based on the functionality, those applications can be divided into three 

categories: road safety, local information sharing and congestion monitoring/avoidance. 

A typical safety related application example is highway cooperative collision avoidance 

[7]. On highways, an initial collision is often followed by a series of collisions involving the 

following vehicles. This is due to the inability of drivers to react in time to emergency situations. 

By using wireless communication, the initial car involved in the accident can warn the nearby 

vehicles such that their drivers can hit the brake faster. Another example is abnormal driver 

behaviour (e.g., drunkenness and fatigue) detection in literature [8], where each vehicle’s on-

board unit calculates  the score of abnormality for each driver through Dynamic Bayesian  

Networks based on the contextual information collected from various sources including  traffic 

management centre (TMC),  road site units and other vehicles’ broadcasting messages.  Once the 

abnormality score is above a certain threshold, an alert is send to the driver to prevent accidents 

from happening. 

A large body of applications focus on creating information sharing services to facilitate 

people’s daily lives such as parking availability, taxi dispatching, and context-aware services. 

EZCab [9]  describes a faster and more scalable system that allows people to book nearby cabs 

using their smartphones.  When needed, a client sends a booking request to nearby vehicles, and 

the free cabs reply to the client by means of vehicular ad hoc communication.  Similarly, the 

work in [10] proposes real-time parking navigation service in large parking lots through 

vehicular ad hoc communication. Each vehicle acts as a parking information senor and 

communicates with the incoming vehicles to find the most convenient parking spot.   The 

literature [11] presents a context-aware migratory service model for regional information sharing 

such as traffic jam, local advertisements, parking lot availability, etc. The information in a 

specific area is sensed by the passing vehicles and disseminate to other vehicles in proximity.  
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Recently, utilizing vehicular sensor networks for congestion monitoring/avoidance has 

drawn great attention. Vehicular sensor networks provide a cost-effective platform for traffic 

data collection and vehicle re-routing to avoid congestion and to improve the travel time. The 

rest of this chapter will focus on leveraging vehicular sensor networks for congestion avoidance. 

II. VEHICULAR SENSOR NETWORKS FOR CONGESTION AVOIDANCE  

With the deployment of traffic surveillance infrastructure on more roads (e.g., loop 

detectors, video cameras), we have started to witness web-based services/applications that 

present the drivers with the current view of the traffic and let them decide which route to follow.  

Projects such as Mobile Millennium [12, 13], CarTel [14], JamBayes [15], Nericell [16], and 

surface street estimation [17] use vehicle probe data collected from on-board GPS devices to 

reconstruct the state of traffic and estimate shortest travel time. Similarly, services such as 

INRIX [18] provide real-time traffic information at a certain temporal accuracy, which allows 

drivers to choose alternative routes if they are showing lower travel times.  Systems such as 

Google Maps and Microsoft’s Bing are able to forecast congestion and its duration by 

performing advanced statistical predictive analysis of traffic patterns. Differently, Waze [19] 

utilizes social networks to provide traffic information. In these applications, vehicles act as 

traffic sensors and relay traffic reports to TMC to obtain an accurate view of the current traffic.  

However, these solutions do not try to prevent congestions explicitly (i.e., they are reactive 

solutions) and provide the same guidance for all vehicles on the road at a certain moment as 

function of their destination (i.e., pull model in which drivers query for the shortest route to 

destination). Therefore, similar to route oscillations in computer networks, they could lead to 

unstable global traffic behavior: when it happens, congestion is switched from one route to 

another if a significant number of drivers use the guidance. 

  Trafficview [20] and StreetSmart [21] are examples of distributed systems that could help 

drivers avoid congestion: vehicles collect and disseminate traffic information to nearby vehicles, 

and thus the drivers may change routes if they observe traffic congestions. Peertis [22, 23] 

discusses an efficient and scalable architecture that incorporates a peer-to-peer overlay into a 

vehicular network based on cellular Internet communication to provide traffic information to 

drivers. Scientists are looking for inspiration in Biology and Internet protocols as well. Wedde et 

al. developed a road traffic routing protocol in work [24], Bee-JamA, based on honey bee 

behavior. Similarly, Tatomir et al. [25] proposed a route guidance system based on trial-laying 

ability of ants. Inspired by the well-known Internet routing protocols, Prothmann et al. [26] 

proposed decentralized Organic Traffic Control. Some other distributed applications include 

intelligent traffic light adjustment [27]. Nevertheless, these applications simply use the collected 

data for naive sub-optimal shortest path computation which potentially switch congestion from 

one spot to another. Besides, for larger scale networks, due to wireless contention, latency and 

packet loss, vehicles are unable to acquire complete global traffic view, thus make sub-optimal 

re-routing decisions.   

  Many of the above solutions expect the drivers to react to congestion by changing their 

routes. According to Wardrop’s first traffic equilibrium principle [28], if accurate traffic time on 

each road segment can be obtained, then drivers could be able to reach user-optimum traffic 

equilibrium. It is known, however, that no true equilibrium can be found under congestion [12]. 

Even more important, the usefulness of such services is limited by their reactive nature: they 

cannot prevent congestions.   
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   This situation could be avoided by new solutions based on dynamic user-optimal traffic 

assignment (DTA) which lead to either system-optimal or user-optimal route assignments.  DTA 

research can be classified into two categories: analytical methods and simulation-based models. 

Analytical models such as [29], [30, 31], formulate DTA as either nonlinear programming 

problems, optimal control problems, or variational inequalities. Although they provide 

theoretical insights, the computational intractability prevents their deployment in real systems 

[32]. Simulation-based approaches [33], [34], [35], [36] have gained greater acceptance in recent 

years: simulations are used to model the theoretical insights that cannot be derived quickly from 

analytical approaches. Unfortunately, there is still a significant gap between the theoretical or 

simulation results and potentially deployable solutions: tractability for large scale road networks 

given the computational burden associated with the simulator, capability of providing real time 

guidance, effectiveness in the presence of congestion, and behavior of drivers who ignore the 

guidance.  

  In summary,   despite good progress, existing solutions have not been able to provide an 

intelligent, cost-effective, easy-deployable real time traffic guidance system. Such a system 

should possess the following properties: 1) fully utilize vehicles as mobile sensors to provide 

accurate traffic view; 2) be able to compute near-optimal routing paths for vehicles based on the 

collaborative knowledge collected from vehicles; 3) provide effective vehicle re-routing guidance 

to individual drivers in a timely manner; 4) be robust and work well even when drivers do not 

follow the guidance.  In the following section, we present a system that achieves these goals.  

III. A DRIVER RE-ROUTING SYSTEM FOR CONGESTION AVOIDANCE 

The objective is to implement and evaluate a real-time, cost-effective, and easily 

deployable vehicular traffic guidance system that reduces the effect of traffic congestions and 

lowers the trip times for all drivers. Implicitly, fuel consumption and pollution will be reduced as 

well. To achieve this goal, we developed a system consisting of smart phone-based vehicular 

networks and a back end server infrastructure for traffic monitoring and coordination. Smart 

phones were chosen as the vehicular platform because they are already carried by drivers in 

many vehicles, are powerful (have several communication interfaces, GPS, accelerometer, 

powerful CPU, plenty of storage, etc.), and are easily programmable. Once they become 

widespread, vehicular computing systems could be considered instead of smart phones. Figure 

3.1 presents a comparison between these existing solutions and the system. We propose to 

leverage the smart phone ubiquity to design and quickly deploy a cheap and effective traffic re-

routing system. Such a system will benefit all of us through faster routes, less money spent on 

gas, and lower pollution. 

 
Figure 3.1: The system overview 
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Specifically, our traffic guidance system is composed of: (1) a centralized traffic 

monitoring and re-routing service (which can physically be distributed across several servers), 

and (2) a vehicle software stack for periodic traffic data reporting (position, speed, direction) and 

showing alternative routes to drivers. Vehicles run this software either on a smart phone or an 

embedded vehicular system. Vehicles are equipped with GPS receivers and can communicate 

with the service over the Internet when needed. When starting a trip, each vehicle informs the 

service of its current position and destination; the service sends back a route computed according 

to its strategy. It is assumed that the service knows the road network as well as the capacity and 

legal speed limits on all roads. 

Logically, the traffic guidance system operates in four phases executed periodically: (1) 

data collection and representation; (2) traffic congestion prediction; (3) vehicle selection for re-

routing; and (4) alternative route assignment for each such vehicle and pushing the guidance to 

the vehicles. Since data collection has been studied extensively in the literature, this issue is not 

addressed and it is assume that the centralized service receives traffic data from vehicles and 

road-side sensors where available. 

A. Traffic data representation and estimation 

The road network is represented as a directed, weighted graph, where nodes correspond 

to intersections, edges to road segments, and weights to estimated travel times. The weights are 

updated periodically as new traffic data becomes available. Several methods can be employed to 

estimate the travel time over a road segment. For instance, using vehicle probe data collected 

from on-board GPS devices to reconstruct the state of traffic is a well-studied topic [37], [13]. 

We use the Greenshield’s model [38] to estimate the travel time since it is used extensively in 

dynamic traffic assignment models by transportation researchers. The model considers that there 

is a linear relationship between the estimated road speed 𝑉𝑖 and the traffic density 𝐾𝑖 (vehicles 

per meter) on road segment i, as in Equation 1: 

𝑉𝑖 = 𝑉𝑓 (1 −
𝐾𝑖

𝐾𝑗𝑎𝑚
),   𝑇𝑖 =

𝐿𝑖

𝑉𝑖
   (1) 

where 𝐾𝑗𝑎𝑚 and 𝑉𝑓 are the traffic jam density and the free flow speed for road segment i, while 

 𝑇𝑖 and 𝐿𝑖 are the estimated travel time and length for the same segment. The free flow speed 𝑉𝑓 

is defined as the average speed at which a motorist would travel if there were no congestion or 

other adverse conditions. To simplify our implementation, we consider that the free flow speed is 

the road speed limit. Basically, 
𝐾𝑖

𝐾𝑗𝑎𝑚
 is the ratio between the current number of vehicles 𝑁𝑖 and 

the max number of vehicles 𝑁𝑚𝑎𝑥. The current number of vehicles 𝑁𝑖 is obtained from the traffic 

data collected by the service, whereas the 𝑁𝑚𝑎𝑥 = length of road/ (average vehicle length + min 

gap). 

B. Congestion prediction 

Periodically, the service checks the road network to detect signs of congestion. A road 

segment is considered to exhibit congestion signs when  
𝐾𝑖

𝐾𝑗𝑎𝑚
> 𝛿  , where  𝛿 ∈  [19] is a 

predefined threshold value. Choosing the right value for delta is particularly important for the 

service performance. If it is too low, the service could trigger unnecessary re-routing; this may 
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lead to an increase in the drivers’ travel times. If it is too high, the re-routing process could be 

triggered too late and congestion will not be avoided. The evaluation in section V-B confirms 

these hypotheses. 

C. Selection of vehicles to be re-routed 

When a certain road segment presents signs of congestion, the service looks for nearby 

vehicles to re-route. Specifically, we select vehicles from incoming segments (i.e., segments 

which bring traffic into the congested one). To decide how far from congestion to look for 

candidates for re-routing; the service uses a parameter L (level). This parameter denotes the 

furthest distance (in number of segments) a candidate vehicle can be away from the congested 

segment. In practice, L could be computed as function of the severity of congestion; for example, 

we can use the “level of service” (LOS) defined in the Highway Capacity Manual [39]. L’s value 

has to be large enough to mitigate congestion. If L is too high, however, more vehicles than 

necessary will be selected for re-routing, which can have undesired consequences (e.g., creating 

congestion in another spot). Since our focus is on the re-routing algorithms and the analysis of 

their performance, we decided to consider L a tuning parameter that is varied during our 

experiments. 

 
 

Figure 3.2: The vehicle selection process 

The service performs a breadth first search (BFS) on the inverted network graph (i.e., the 

road network graph is directed), starting from the congested segments with maximum depth L 

and considers all these cars as candidates for rerouting. The process is illustrated in Figure 3.2. 

Assuming L=2 and signs of congestion are detected on the segment Sc, the system recursively 

selects the vehicles situated on the incoming segments of the congested segment in two steps. 

First, the vehicles located on segments S1 are included in the candidate set, followed by the 

vehicles situated on segments S2. We select the union of all the vehicles affected by all the 

congested segments in the whole network within the same level, then perform vehicle ranking, 

path computations, and path assignments detailed in the following sections. 

D. Rank of the selected vehicles 

The selected vehicles need to be ranked and assigned to alternative paths according to 

their rank. In this way, the performance of the strategies improves. The impact a congested road 

segment has on a vehicle’s travel time is different depending on the remaining distance to the 

vehicle’s destination. Intuitively, the drivers that are close to their arrival point may have a 

different perception of the congestion than the drivers that are far away from their destination. 

Our system uses an urgency function to rank the vehicles that are selected for re-routing. Hence, 

the vehicles with higher urgency are re-routed first and get relatively better routes. 
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Definition 1. Given a set of vehicles V = (v1, v2, v3, …, vm) to be re-routed, we define two 

urgency functions to compute the re-routing priority of a vehicle in V :  

 Absolute Congestion Impact: ACI=RemTT-RFFTT 

 Relative Congestion Impact: RCI=(RemTT-RFFTT)/RFFTT 

where RemTT is the remaining travel time, and RFFTT is the remaining free flow travel time for 

the vehicle. 

 

ACI measures the impact of all the (congested) segments of the remaining journey of a 

vehicle, since (RemTT-RFFTT) is the absolute increase of the travel time with respect to the free 

flow travel time. With ACI, the longer the remaining distance to the destination for a vehicle is, 

the higher is the probability for that vehicle to get a higher rank (as the difference RemTT-RFFTT 

normally increases with the RFFTT). On the other hand, RCI weighs the congestion impact on a 

vehicle relative to its remaining travel time. Hence, RCI gives a higher priority to vehicles that 

are close to their destination. Since the further the vehicle is from it’s the destination, the higher 

are the number of alternative paths and the potential benefit of re-routing, we expect ACI to 

perform better than RCI in our system. 

E. Alternative Route Computation and Assignment 

There are two main requirements for the re-routing algorithm: (1) compute an alternative 

routes for each driver that improve both single driver's trip time and global network efficacy (2) 

push the guidance to drivers fast to allow them enough time to switch on the new route. 

Essentially, a best effort algorithm is required, which finds good enough alternatives with real-

time constraint. 

Accordingly, two types of solutions were developed. The first solution is “Single Shortest 

Path Strategies”, the second one is “Multiple Shortest Paths Strategies”. The former computes 

one single path for each vehicle collaboratively according to the other vehicles' paths. The later 

computes k loopless shortest paths [40], [41], [42] according to current travel time and pick the 

optimal one for each vehicle. This is because one of the main goals of the system is to prevent 

moving congestion from one path to another. If all vehicles are re-routed on their current shortest 

paths, the algorithm might end-up doing exactly that. For this reason, vehicles are provided with 

alternative paths that lower their currently predicted travel time, but these paths do not have to be 

the shortest. The specification of the re-routing algorithms is presented in Section IV. 

IV. RE-ROUTING STRATEGIES 

Recent research has proved that real-time traffic flow data and road travel time can be 

determined based on data reported by vehicles or road-side sensors [15], [13], [16]. The question 

is how to utilize this knowledge in an intelligent fashion to avoid congestion and reduce the 

drivers’ travel times. This section presents five re-routing strategies that we classify in two 

categories. The first, presented in Section IV-A, includes two re-routing strategies that compute a 

single, alternative new path for each re-routed vehicle. The strategies are based on the well-

known Dijkstra algorithm and on the A* algorithm with a modified heuristic, respectively. 

Section IV-B presents the second category consisting of three re-routing strategies that compute 

multiple, alternative new paths for each of the rerouted vehicles. Then, different heuristics are 

used to choose the best alternative path to be assigned to a vehicle. Based on the five proposed 
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strategies, we describe the main rerouting process executed by the traffic guidance system in 

Section IV-C. Finally, Section IV-D presents a Dynamic Traffic Assignment strategy [36] that 

we use as a baseline to measure the effectiveness and efficiency of the proposed strategies.  

A. Single Shortest Path Strategies 

1. Dynamic Shortest Path (DSP) 
DSP is a classical re-routing strategy that assigns the selected vehicles to the path with 

lowest travel time. However, different from the existing systems, the system described in this 

system takes a proactive approach. Specifically, each time a road segment presents signs of 

congestion, the service obtains the set of cars whose paths intersect this road segment and 

computes for each car a new shortest path based on the current travel time in the road network. 

Therefore, the path of each car can be periodically updated on an event-driven basis. The 

advantage of this strategy lays in its simplicity and consequently reasonable computational cost, 

i.e., O(E + V log(V )) [43], where E is the number of road segments and V is the number of 

intersections of the road network. This strategy is expected to provide good results when the 

number of re-routed vehicles is low, since in this case the risk of switching congestion from one 

spot to another is low. Hence, locally redirecting the traffic when congestion happens should be 

sufficient in this case. On the other hand, when the traffic density is higher, there is an increased 

risk of switching the congestion from one road to another. Moreover, the re-routing frequency 

for a driver is likely to increase in this case, which can be annoying to drivers. 

2. A* Shortest Path with Repulsion (AR*) 
The DSP strategy only takes into account the current view of the traffic when performing 

re-routing, without considering the impact the re-routing will have on the future traffic. To 

address this limitation, AR
*
 is proposed, which modifies the A

*
 search algorithm to include the 

prior re-routing decisions into the computation of the current shortest path. A
*
 [44] uses best-first 

search and heuristic function to determine the order in which the network nodes (road 

intersections in this case). Given a node x, a heuristic function F(x) is computed as the sum G(x) 

+ H(x). G(x) is the path-cost from the start node to x, which corresponds to the travel time in this 

case, while H(x) is a heuristic estimation of the remaining travel time from x to the destination 

node. In addition, H(x) has to be “admissible” (i.e., it must not overestimate the remaining travel 

time to the destination) to produce the shortest path between the source and the destination. 

Therefore, H(x) is computed as the Euclidean distance divided by the maximum speed in the 

road network. 

Future congestion occurs if many drivers take the same road segment within the same 

future time window. As the drivers share their route information with the central service, it is 

possible to estimate the future footprint of each driver in the road network. 

 

Definition 2. A weighted footprint counter, fci, of a road segment i is defined as follows: fci = 

ni×ωi, where ni is the total number of vehicles that are assigned to paths that include segment i, 

and wi is a weight associated with i. ωi = 
𝑙𝑒𝑛𝑎𝑣𝑔

𝑙𝑒𝑛𝑖×𝑙𝑎𝑛𝑒𝑖
×

𝑉𝑓𝑎𝑣𝑔

𝑉𝑓𝑖
, where lenavg is the average road 

segment length in the network, V favg is the average free  flow speed of the network, leni is the 

length of i, V fi is the free flow speed of i, and lanei is number of lanes of i. 
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In the formula, ni represents the discretized future traffic flow on road i. The weights were 

incorporated into the formula in order to count for different road characteristics. For example, 

suppose there are two road segment ri, rj. Although ni=nj, the segments should not be treated 

equally since ri has higher capacity (more lanes or longer length), thus the possibility of causing 

congestion is lower. In other words, the impact of the traffic flow ni on road ri is lower than nj on 

rj even though ni=nj. 

In AR
*
, the heuristic function F(x) is modified to include the other vehicles sharing the 

same path as a repulsive force. Specifically, the repulsive score R(x) of a node x is defined as the 

sum of the weighted footprint counters (cf. Definition 2) from the starting node to the node x. 

Thus, the path-cost function becomes F(x) = (1-β) × (G(x) +H(x)) +β×R(x), where G(x) and H(x) 

are computed same as in the original algorithm. G(x) + H(x) measures the travel time factor, 

while R(x) reflects the impact of other vehicle traces on the examined path. Since the travel time 

and the repulsive force use different metrics, the values are normalized and F(x) is a linear 

combination of the two factors. Parameter β presents the weight of the repulsion. If β is too high, 

the resulting path will be diverted too far away from the optimal. Similarly, if β is too low, it will 

be the same as the naive shortest path (DSP) strategy. Therefore, the beta value was varied from 

0.01 towards 0.5 and it was observed that the interval [0.05, 0.2] results in better performance in 

Section V-B. 

The complete algorithm is presented as pseudo code in Algorithm 1. Starting from the 

initial node, the algorithm maintains a queue of nodes to be traversed, denoted as the open set 

(lines 3-5). At each iteration, the node with the lowest F score value is removed from the queue 

(lines 16-19), the values of its neighbours are updated accordingly (lines 27-28), and these 

neighbours are added to the queue (line 30). The algorithm continues until the end node has been 

reached or until the queue is empty. The normalization of the travel time and the repulsive force 

factors is done at line 14. A path is returned at line 18 if found, otherwise an empty path is 

returned in line 48. 

 
Figure 4.1: AR* re-routing example. All road segments have same weight and β= 0.5 

 

Figure 4.1 illustrates a simple example of how AR
*
 is used in re-routing. Given the 

assumption that vehicles v1, v2, v3 having the same origin and destination, i.e., from ab to ij, need 

to be re-routed and that urgency (v1) > urgency (v2) > urgency (v3). At the beginning, since no 

vehicle has been assigned any path, AR
*
 performs normal A

*
 search and assigns the shortest path 

ab, bc, cd, di, ij to vehicle v1. When computing the shortest path for vehicle v2, AR
*
 will find ab, 

bg, gh, hi, ij. Although v2 has the same destination as v1, the path found by AR
*
 is different since 

it considers the footprints produced by v1 as a repulsion. Hence, AR
*
 avoids the already assigned 

paths as much as possible, while still keeping the new path as short as possible. Finally, the 

procedure is repeated for vehicle v3 and the path ab, bc, cd, di, ij is obtained for the same 

reasons. 
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In  
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Notice that AR
*
 has to be employed by the re-routing system in an iterative manner. 

Namely, after the selected vehicles to be re-routed have been ranked based on their urgency, the 

system calculates sequentially each vehicle's route starting from the most urgent one. Therefore, 

in the case of AR
*
, the computation time increases linearly with the number of re-routed 

vehicles. On the other hand, as explained in the next sections, the rest of the proposed re-routing 

methods optimize this phase by grouping the vehicles to be re-routed based on their origin-

destination, which leads to lower computational complexity. 

B. Multiple Shortest Paths Strategies 

The two strategies proposed above compute a single path for each re-routed vehicle. 

However, the two methods have opposite behaviours. Firstly, DSP sacrifices effectiveness (since 

it does not consider the impact of re-routing on the future traffic) to optimize the computational 

cost (by grouping the re-routed vehicles on their origin destination). Secondly, AR
*
 trades 

efficiency (since it computes an alternative path for each vehicle) for effectiveness (by taking 

into account the future traffic configuration). In this section, a new class of re-routing strategies 

designed to obtain the best trade-off between efficiency and effectiveness are introduced. For 

these strategies, the re-routing process is divided into two steps. First, k-shortest paths are 

computed for each selected vehicle based on the travel time in the road network, where k is a 

predefined parameter. Compared to DSP this approach involves a higher computation time, but it 

still permits to group vehicles on their origin-destination. Therefore, the computation time is 

expected to be lower than AR
*
. Second, the vehicles are assigned to one of their k-shortest paths 

in the order of their ranking. Among the k-shortest paths, the algorithm selects the path the least 

employed by other vehicle traces. Hence, this strategy is expected to have effectiveness similar 

to AR
*
. Three heuristics for the selection of the best path among the k-shortest paths are 

proposed. 

1. Random k Shortest Paths (RkSP) 
RkSP assigns each selected vehicle to one of the k paths randomly. The goal is to avoid 

switching congestion from one spot to another by balancing the re-routed traffic among several 

paths. Compared to DSP, the price to pay is a higher computational complexity, O(kV (E + V 

log(V ))) [40], which increases linearly with k. Although a larger k will allow better traffic 

balancing, it also increases the difference in the travel time among the k paths. Therefore, to 

prevent an excessive increase of the travel time for some drivers, RkSP limits the maximum 

allowed relative difference between the fastest and the slowest path to 20%. 

2. Entropy Balanced k Shortest Paths (EBkSP) 
While RkSP addresses the main potential shortcoming of DSP (i.e., moving congestion to 

another spot), it has its own deficiencies. First, it increases the computational time, which matters 

because the alternative paths must be computed and pushed to vehicles before they pass the re-

routing intersection. Second, it assigns paths randomly to vehicles, which is far from optimal 

both from a driver point of view and from the global traffic point of view. To address this second 

shortcoming of RkSP, the EBkSP strategy is proposed. The idea is to perform a more intelligent 

path selection by considering the impact that each selection has on the future density of the 

affected road segments. The more intelligent path selection comes at the cost of a slightly 

increased complexity. 
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However, this optimization is expected to improve the traffic from a global point of view. 

In addition, as in AR
*
, EBkSP ranks the cars to be re-routed based on an urgency function that 

quantifies the degree to which the congested road affects the driver travel time. Thus, the more 

affected vehicles will have priority and be re-routed first. 

The entropy idea comes from Shannon information theory [45]. Several works [46], [47] 

have successfully applied it to compute the popularity of a visited area among all the users. To 

avoid creating new congestions through re-routing, a “popularity” measure is associated with 

road segments in EBkSP. Entropy is used to define the popularity of a path as follows. 

 

Definition 3. Let (p1, ..., pk) be the set of paths computed for the vehicle which will be assigned 

next. Let (r1, …, rn) be the union of all segments of (p1, ..., pk), and let (fc1, ..., fcn) be the set of 

weighted footprint counters associated with these segments. The popularity of pj is defined as 

Pop(pj) = e
E(pj )

.  E(pj) is the weighted entropy of pj and is computed as 

E(pj)= − ∑
𝑓𝑐𝑖

𝑁
𝑙𝑛

𝑓𝑐𝑖

𝑁

𝑛
𝑖=1 , 𝑁 = ∑ 𝑛𝑖

𝑛
𝑖=1 . 

The value of E(pj) measures the probability that a number of vehicles will be on the path 

pj in a time window. According to the above definition, the value of Pop(pj) is 0 <Pop(pj) < m, 

where m is the number of vehicles. Pop(pj) has the maximum value m when every previously 

assigned vehicle traverses entirely pj (i.e., they take the same path). Pop(pj) has the minimum 

value when no one takes the path pj. Intuitively: the higher the popularity of a path, the higher 

the probability that more drivers will take this path. 

After vehicle selection and ranking, the central server assigns each vehicle to the least 

popular path among its k-shortest paths in order to avoid potential future congestions. 

Specifically, the first vehicle is assigned the current best path without considering others. Then, 

the road network footprints are updated based on the new path. When assigning the second 

vehicle, the popularity score of its k-shortest paths are calculated and the least popular path will 

be chosen. The process is then repeated for the rest of the re-routed vehicles. 

 
 

Figure 4.2: An EBkSP re-routing example. All segments have same weight 

 

Figure 4.2 illustrates an example of EBkSP re-routing. It is assumed that vehicles (v1, v2, 

v3) have been assigned to their paths before v4, and each road has the same weight (i.e., ωi = 1). 

The footprints of (v1, v2, v3) in the next time window are (fg, gh, hi, ij), (ab, bg, gh, hi, ij), and 

(ch, hk), respectively. For v4, which travels from ab to ij, there are three alternative paths with 

similar travel times: p1(ab, bg, gh, hi, ij), p2(ab, bc, ch, hi, ij), and p3(ab, bc, cd, di, ij). The union 
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of their segments is the set (ab, bg, gh, hi, ij, bc, ch, cd, di), and their weighted footprint counters 

are (1,1,2,2,2,0,1,0,0). Consequently, N=11, E (p1)=2.29, E (p2)=1.67 and E(p3)=0.53. Hence, v4 

will be assigned to p3 because it is the least popular.  

 

3. Flow Balanced k Shortest Paths (FBkSP) 
 RkSP and EBkSP distribute the traffic load of the re-routed vehicles by randomly 

choosing between alternative paths or by balancing the system entropy among multiple paths. 

Since the key idea is load balancing, an alternative approach designed to directly balance the 

traffic load, i.e., the weighted footprint counters, through local search optimization [48]. The 

goal of the "local search" is to find the path assignment in which the sum of the weighted 

footprint counters is minimal, i.e., to minimize in a network region, where S is the set of all 

region segments. As described in Definition 2, weighted footprint counter fci indicates the impact 

of the traffic flow on road segment ri (i.e., the possibility of generating future congestion on ri). 

Therefore, the summation of the weighted footprints counters of all the road segments measures 

the risk of congestion of the whole network. In another words, as a weighted footprint counter 

indicates the future  flow magnitude, minimizing the sum of the weighted footprint counters 

means having balanced flows on all paths, and thus, reducing the risk of producing congestion. 

Figure 4.3 illustrates how the path assignment affects the total number of weighted 

footprint counters. Assume that initially the vehicles (v1, v2, v3) are assigned to the paths (ab, bc, 

cd, di, ij), (fg, gh, hi, ij) and (ab, bc, ch), respectively, and that the road segments have different 
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weights (cf. Figure 4.3). Then, the sum of the weighted footprint counters in this network region 

is 18 (cf. Figure 4.3 (a)). However, if v1 switches to the path (ab, bg, gh, hi, ij), the sum of the 

weighted footprint counters is reduced to 16 as shown in Figure 4.3 (b). Therefore, the system 

will select the latter assignment. 

 
 

Figure 4.3: A FBkSP example. ωfg = ωgh = ωhi = ωij = ωch = 1, ωab = ωbc = ωcd = ωde = ωaf 

= ωbg = ωdi = ωej = 2 

To implement the optimization of the total number of footprints in a road network region, 

a random search strategy (cf. Algorithm 2) is implemented. The system generates first a good 

path assignment solution for all selected vehicles by assigning to each vehicle the path with the 

current least number of footprints (lines 2-8 in Algorithm 2). This initial assignment does not 

necessarily guarantee the minimum sum of footprint counters of the considered network region, 

i.e., the union of all segments of the k shortest paths of the re-routed vehicle. Therefore, the 

system randomly modifies the initial assignment in order to improve it (lines 14-16). If the new 

assignment reduces the total number of weighted footprint counters in the network region, the 

new assignment is accepted (lines 18-19). Otherwise, the assignment is rejected. This process 

runs iteratively until the limit number of iterations is attained (line 26). 

 

C. Re-routing Process 
In this section, the global re-routing process is presented, which was the basis for the 

traffic guidance system described in this thesis. The process is presented in Algorithm 3. The 

system periodically looks for signs of congestion in the road network (line 4). If signs of 

congestion are detected, then the system selects the vehicles situated near to the congested road 

segments and ranks them based on the urgency function. Finally, alternative routes are computed 

for the selected vehicles by using one of the five proposed re-routing strategies. It is worth 

noticing that except AR*, all the other re-routing strategies optimize the alternative path search 

by grouping the vehicles on their origin-destination (line 10). This can lead to a significant 

reduction of the computational cost as showed in Section V-B. 
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D. Dynamic Traffic Assignment 

The work on DTA algorithms is essential for the problem considered here, i.e., improving 

the individual travel time through traffic re-routing and guidance. Nevertheless, as explained in 

Section II, DTA is not yet the most viable solution for real-time traffic guidance, mainly because 

of the DTA's very high computational complexity coupled with the high dynamics of the traffic 

and the imperfections in traffic knowledge. In spite of this, DTA can offer valuable information 

as, for example, the level of improvement in the travel time that can be achieved in an ideal 

situation (i.e., where computational cost is not an issue and the traffic information is perfect). 

Therefore, DTA is employed to obtain a lower bound on the optimization of the travel time for 

comparison with the results produced by the proposed strategies. 

The DTA model used here tries to achieve stochastic user equilibrium (SUE) through an 

iterative simulation process and mathematical modelling (see Section II). Given the traffic 

demand, it chooses some initial routes assuming zero traffic. Then, it calculates the network load 

and the travel times by simulation and updates the route choices of the drivers. This process is 

repeated until the travel times are stationary or a maximum number of iterations is reached. The 

simulation-based DTA tool employed here was proposed in [49], [36]. At least three parameters 

have to be given as input: a road network, a set of trips, and the maximum number of iterations. 

The higher the number of iterations is, the higher is the probability to achieve a SUE traffic state. 

In these experiments, the maximum number of iterations is defined to 50, since that was the 

value specified in [50]. The DTA algorithm, as defined in [36], is summarized next: 

Step 1: Initialize the route of each driver by the optimal route in the empty network. 

Step 2: Calculate the time dependent costs of the road segments by simulation. 

Step 3: Recalculate the optimal routes of a certain portion p of the drivers using the time 

dependent costs from step 2. 

Step 4: If routes have changed in step 3, go to step 2. 

Note that the DTA algorithm involves not only shortest path graph computations but also 

simulations. The purpose of the simulation is to help DTA acquire a relative accurate estimation 

of the travel times given the assignment of the previous iteration. Then, the estimated travel 

times are used to adjust the assignment in the next iteration. 

However, this inevitably leads to increased computational burden. In comparison, the 

approach used here prompts alternative routes to drivers during their entire journey based on the 

dynamic conditions in the road network, and most of the computation is spent on shortest path 

graph algorithms. Therefore, this approach is expected to be more efficient than DTA. 

V. EVALUATION OF THE RE-ROUTING SYSTEM 

The main objective of this simulation-based evaluation is to study the performance of the 

five re-routing strategies under various scenarios. Specifically, to address the following 

questions: 

 Which strategy leads to the most benefits for drivers in terms of travel time and number 

of re-routings? 

 What is the trade-off between strategy effectiveness and their efficiency in terms of 

computation time? How do the proposed strategies compare to a DTA-based approach in 

terms of effectiveness and efficiency? 

 Which strategies scale better with the number of cars?  
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 How robust is the system under various compliance rates (i.e., percentage of drivers who 

follow the guidance) and penetration rates (i.e., percentage of vehicles which have this 

software)? 

The experimental settings are firstly introduced in Section V-A. Afterwards, the 

results are presented and analysed in Section V-B. 

 

Table 5.1: Statistics of the Two Road Networks 

 Brooklyn Newark 

Network area 75.85 km
2
 24.82 km

2
 

Total number of road segments 551 578 

Total length of road segments 155.55 km 111.41 km 

Total number of intersections 192 195 

 

 

Figure 5.1: The simulation process 

A. Experimental Settings 

Both SUMO [51] and TraCI [52] were employed for these simulations. SUMO is an open 

source, highly portable, microscopic road traffic simulation package designed to handle large 

road networks. TraCI is a library providing extensive commands to control the behaviour of the 

simulation including vehicle state, road configuration, and traffic lights. The re-routing strategies 

algorithms were implemented using TraCI. Essentially, when SUMO is called with the option to 

use TraCI, SUMO starts up, loads the scenario, and then waits for a command. Thus, variables in 

the simulation can be changed (e.g., new paths assigned to certain vehicles). Then, a new 

command can be sent with how many seconds to run the simulation before stopping and waiting 

for another command.  

Two urban road maps were downloaded from OpenStreetMap [53] in osm format. One is 

a section of Brooklyn, NY and the other is in Newark, NJ. The Netconvert tool in SUMO was 

used to convert the maps into a SUMO usable format, and the Trafficmodeler tool [54] to 

generate vehicle trips. Netconvert removes the pedestrian, railroad, and bus routes, and sets up a 

static traffic light at each intersection to make the simulations more realistic (as the maps do not 

have STOP signs). All roads have the same speed limit (13.9 m/s); some roads have one lane in 

each direction, while others have just one lane based on the specification in the OpenStreetMap 

osm file. The statistics of the two networks are shown in Table 5.1. By default, the shortest travel 

time paths are automatically calculated and assigned to each vehicle at the beginning of 

simulation based on the speed limit. Figure 5.1 illustrates the simulation process. Figures 5.2 (a) 

(b) show the traffic flow in both networks. Trafficmodeler was used to generate a total of 1000 



  19 
 

cars in the Brooklyn network from the left area to the right area in an interval of 1000 seconds. 

The origins and the destinations are randomly picked from the left area and the right area, 

respectively. In the Newark network, 908 cars were generated having the origins picked 

randomly from the peripheral road segments and the destinations on the road segments inside the 

hot spot circle. 

 

 
Figure 5.2: Traffic flow in the road networks 

Table 5.2: Parameters in Centralized Re-routing Algorithms 

period The frequency of triggering the re-routing; by default period=450s 

Threshold δ Congestion threshold; if Ki/Kjam > δ , the road segment is 

considered congested; by default  δ= 0.7 

urgency Urgency policy: RCI or ACI 

level L Network depth to select vehicles for re-routing starting from the congested 

segment and using BFS on the inverted network graph 

# paths k The max number of alternative paths for each vehicle; by default k = 4 

repulsion weight β The weight of repulsion in AR
*
; by default  β= 0.05 

 

In the simulations, the default settings in SUMO 15.0 were used for vehicle length=5m, 

the minimal gap=2.5m, the car following model (Krauss [55]), and the driver's imperfection=0.5. 

For each scenario, the results are averaged over 20 runs. Initially, an ideal scenario is assumed, in 

which all drivers have the system and accept the route guidance. These assumptions are relaxed 

in the last part of the evaluation. Table 5.2 defines the parameters used in this evaluation. 

A DTA-based re-routing strategy (cf. Section IV-D) was also implemented by using a 

DTA tool provided with the SUMO generator. Contrary to the proposed approach, the DTA 

strategy computes the routes leading to user equilibrium for all the vehicles in one shot, before 

any vehicle starts its journey. Thus, the DTA tool produces a file containing the routes of all the 

simulated vehicles, which is supplied to the SUMO simulator. Based on this route file, SUMO 

generates a single, continuous simulation, i.e., without any other route changes as in the case of 

the proposed strategies. Hence, the CPU time measured in the next section indicates, in the case 

of DTA, the time required to produce the route file, whereas in the case of the proposed 

strategies, the cumulated time (i.e., over the whole simulation) required to compute alternative 

paths for the re-routed vehicles. 
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B. Results and Analysis 

 

Figure 5.3: Average travel time (L= (3, 4), k=4, urgency=ACI, period=450s, δ =0.7, β =0.05) 

1. Average Travel Time  
Figure 5.3 presents the average travel time obtained with the five strategies and with 

DTA on both networks. The “no-reroute” bars indicate the travel time in the absence of any re-

routing. The results show that all the proposed strategies improve the travel time significantly. In 

most cases, the proposed strategies obtain travel times at least two times lower than no-rerouting. 

For instance, with a selection level of 3, compared to "no-reroute", EBkSP reduces the travel 

time by 2.2 times and 4.5 times on Brooklyn and Newark, respectively. As expected, DTA has 

the best average travel time since it can achieve user equilibrium. Based solely on the obtained 

average travel time, the five strategies are ranked as follows: DTA>AR
*
>(EBkSP, 

FBkSP)>RkSP>DSP>no-rerouting. The results confirm the hypotheses laid out in Section IV 

with statistical significance of 95% confidence interval. DSP can improve the travel time, since it 

re-routes dynamically the vehicles by considering the traffic conditions. However, in some cases, 

e.g., if many vehicles have similar current positions and destinations, respectively, new 

congestions can be created by the re-routing process. RkSP avoids this shortcoming since it 

balances the traffic flow over several paths. Nevertheless, a randomly picked path is not 

necessarily the best one. EBkSP and FBkSP offer even better performance by carefully selecting 

the path for each re-routed vehicle. Finally, AR
*
 has the best performance among the proposed 

strategies as it considers all the other vehicles in the road network in the computation of a new 

route. 

The experiments also demonstrated that setting the depth level to 3 or 4 is best for 

selecting a relatively optimal number of vehicles for re-routing (the two values lead to similar 

performance for Brooklyn, while level 3 is better for Newark). Lower level values do not select 
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enough cars; whereas higher values increase the number of re-routings (see Figure 5.4). 

Therefore, the level parameter is set to 3 in the remaining experiments. 

 

 
 

Figure 5.4: Average number of re-routings (L= (3, 4), k=4, urgency=ACI, period=450s, δ 

=0.7, β =0.05) 

2. Average Number of Re-routings 
 It is important that the re-routings frequency for a given vehicle during a trip stay low. 

From the driver point of view, changing the path to the destination too often can be distracting 

and annoying. From the system point of view, having a low number of re-routings means 

decreasing the computational burden because the re-routing process is costly. Figure 5.4 

compares the number of re-routings across the five proposed strategies. The statistical analysis 

shows that AR
*
 < (EBkSP, FBkSP) <RkSP<DSP in terms of average rerouting number with 95% 

confidence interval. For example, compared to DSP, AR
*
 reduces the average number of re-

routings by up to 2.0 and 1.5 times, while compared to RkSP, AR
*
 is better by 1.6 and 1.3 times 

on Brooklyn and Newark, respectively. The reason is that by considering future path information 

in the re-routing decision, EBkSP, FBkSP and AR
*
 can not only mitigate the current congestion, 

but also avoid creating new congestions; hence, the lower necessity for recurrent re-routing. 

3. CPU Time 
 At this point, the results indicate that AR* produces the best average travel times (near to 

the DTA times), followed closely by EBkSP, FBkSP, and in some cases, by RkSP. An important 

question is what is the computational performance among all the proposed five strategies. If the 

computational complexity of the algorithms that the strategies are based on is considered, the 

complexities of the Dijkstra shortest path (used by DSP), k loopless shortest paths (used by 

RkSP, EBkSP and FBkSP) and A
*
 (used by AR

*
) algorithms must be evaluated. Dijkstra shortest 



  22 
 

path and k loopless shortest paths require O(E + V log(V )) and O(kV (E + V log(V ))), 

respectively, while A
*
 was proven to be faster than Dijkstra [56]. However, this complexity 

analysis is pertinent only when the selection of an alternative path for one single vehicle is 

considered. From the system point of view, the global computational complexity also depends on 

the number of re-routings processed in a time window; this number is a function of the number 

of congested road segments and the congestion severity (i.e., how many vehicles are selected for 

re-routing). Moreover, DSP, RkSP, FBkSP and EBkSP compute shortest paths after grouping the 

vehicles on their origin-destination, whereas AR
*
 calculates a new path for each vehicle. 

Therefore, AR
*
 could require a larger computation time than the other methods.  

 
 

Figure 5.5: CPU time for both the networks (L=3, k=4, urgency=ACI, period=450s, δ 

=0.7, β =0.05) 

 

Figure 5.5 (a) shows the global CPU time consumed for re-routing by the five methods 

and by DTA. Note that the experiments were conducted on a 64 bit Ubuntu machine with Intel 

Core i5-2467M CPU (1.6GHz) and 4GB of memory. The following four observations were 

noted regarding the CPU time results: 

 DSP requires the least CPU time for re-routing, mainly due to the low complexity of the 

shortest path algorithm (compared to the k-shortest paths algorithm) and to grouping the 

re-routed vehicles. 

 AR
*
 consumes significantly more CPU time. Specifically, it requires 2.0 and 2.3 times 

more CPU time than RkSP and EBkSP on Brooklyn. The main reason is that AR
*
 cannot 

group the re-routed vehicles like the other methods as stated in Section IV-A. 

 EBkSP, FBkSP and RkSP are situated in between the above mentioned methods from the 

CPU time point of view. Interestingly, EBkSP and FBkSP require less computation time 
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than RkSP even though they execute more complex path selection algorithms in addition 

to the k-shortest path computation. The explanation is that EBkSP and FBkSP decrease 

the total number of re-routings processed in a period. This decrease becomes apparent 

when the number of origin-destination (OD) pairs involved in the computation was 

examined, as indicated in Figure 5.5 (b). The total number of OD pairs is lower for 

EBkSP and FBkSP than for RkSP. Figure 5.5 (b) also shows that the although DSP leads 

to the largest number of OD pairs, it still has the lowest CPU time because of the much 

lower computational complexity of Dijkstra algorithm compared to the k-shortest path 

algorithm.  

 DTA has the largest CPU time and scales poorly with an increasing number of vehicles 

(in terms of CPU time) when compared to AR
*
 or the other proposed methods (as shown 

in Figure 5.6 (b)). Also, it is worth noticing that DTA assumes all vehicles in the system 

known at the beginning (i.e., when it computes its routes). However, in real life, vehicles 

may appear at any time, and DTA would be required to perform its expensive 

computation over and over again. Therefore, due to its very high computational cost in 

real life, DTA may be impractical (i.e., it may not be able to compute alternative routes 

fast enough in order to mitigate congestions). 

In conclusion, if both the average travel time and the CPU time are considered, EBkSP 

and FBkSP appear to be the best strategies since they offer the best trade-off between re-routing 

effectiveness and computational efficiency. If computational cost is not an issue, one can use the 

AR
*
 strategy, while in the opposite case, DSP is the most appropriate choice. 

 

 
Figure 5.6: The average travel time and CPU time for Brooklyn network for different 

traffic densities (L=3, k=4, urgency=ACI, period=450s, δ =0.7, β =0.05) 
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4. Traffic Density  
The results presented up to here already offer a good idea about the capabilities of the 

proposed re-routing strategies to alleviate traffic congestions. Yet there is an important aspect 

that still needs to be explored, i.e., how the proposed methods scale with the increase of the 

traffic volume. To respond to this question, another set of experiments were conducted on the 

Brooklyn network, where the number of vehicles were increased from 1000 to 2500. Figure 5.6 

shows the obtained results both for the average travel time and the CPU time for different traffic 

densities. AR
*
 and DTA present the best scalability from the average travel time point of view. 

However, these methods are also the least scalable from the CPU time point of view. It was 

apparent that DTA exhibits particularly poor scalability compared to the proposed strategies, 

confirming the hypothesis that DTA is not yet a suitable approach for real-time traffic 

management. Also, somewhat interestingly, AR
*
 obtained better average travel times than DTA 

(see Figure 5.6 (a)) when the number of vehicles was above 1500. This is certainly due to the 

fact that the 50 iterations limit, set in the DTA tool is not sufficient to achieve user equilibrium 

for higher traffic densities. Therefore, a higher number of iteration is needed in this case, which 

will lead evidently to even higher CPU times. 

 
Figure 5.7: Average travel time as a function of the compliance rate on Brooklyn network. (L=3, 

k=4, urgency=ACI, period=450s, δ=0.7, β =0.05) 

5. Compliance Rate 
It is unrealistic to assume that every driver follows the re-routing guidance. The drivers' 

compliance rate (i.e., the possibility for the driver to accept the guidance) is an important factor 

for the re-routing strategy design. Therefore, the average travel time was measured, while 

varying the compliance rate for the five proposed strategies and for DTA. Specifically, for the 

strategies, given a compliance rate of x%, at each re-routing period, each of the selected vehicles 
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change their routes with x% possibility. As for DTA, x% of the vehicles are randomly selected to 

follow the DTA assigned route, while the rest of the vehicles follow the shortest time route. 

Figure 5.7 (a) indicates that the average travel time can be significantly improved by all 

five strategies even under low compliance rates. This is due to the fact that even under low 

compliance rates, the drivers who comply with the guidance can still receive more rapid routes, 

which in turn can improve the travel time for the rest of the drivers. Figure 5.7 (b) shows the 

average travel time for a wide range of compliance rates. 

In particular, when the compliance rate is low, RkSP, EBkSP, FBkSP and AR
*
 show 

significantly better travel time than DTA. The reason is that when compliance is low, the drivers 

who comply benefit much more from this guidance than from the DTA guidance. In the DTA 

approach, the route computation is done once before any vehicle enters the network. If the 

compliance rate is low, the DTA computed routes are far from user equilibrium, inclusively for 

the compliant drivers. Differently, these strategies can adjust the vehicles' routes periodically 

based on the current traffic information. Therefore, although the non-compliant drivers create 

congestion in the network, the compliant ones can still receive fairly good paths, which 

implicitly reduces the congestion level in the network. 

 
 

Figure 5.8: Average travel time as a function of the penetration rate on Brooklyn network 

(L=3, k=4, urgency=ACI, period=450s, δ =0.7, β =0.05) 

6. Penetration Rate 
 To understand how easy is to deploy this solution in real life, the effect of the penetration 

rate on the average travel time was studied. Specifically, before the system starts, each vehicle 

was predefined with x% possibility of owning the system(e.g. providing position information and 

receiving guidance). Once the system starts, only those the x% vehicle will have the chance to be 

rerouted. The penetration rate is a parameter of major importance for two reasons. First, since 

only the vehicles which have the system provide position and route information to the server, the 
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accuracy of congestion detection and road travel time estimation depend directly on this 

parameter (i.e., the lower the penetration rate is, the lower the accuracy is and vice-versa). 

Second, similar to the compliance rate, the effectiveness of the load balancing mechanism 

implemented by the re-routing strategies increases with the percentage of the vehicles that use 

the system. 

Figure 5.8 (a) shows the average travel time for various penetration rates, when traffic 

data are collected only from vehicles (i.e., no support from road-side sensors). When the 

penetration rate is low, the performance of the proposed methods is the same as "no-reroute". In 

this case, the service does not have enough data to accurately detect signs of congestion. Once 

the penetration rate is greater than 0.4, the system is able to improve the travel time. For 

penetration rates above 0.6, EBkSP, FBkSP and AR* start to perform better than DSP and RkSP, 

since a larger number of vehicles are re-routed, which requires a more advanced load balancing 

mechanism. Compared to these methods, DTA performs better under low penetration rates since 

the DTA re-routing is not triggered by the congestion detection as in this approach. 

To boost the adoption of the system, it is possible that data from road-side sensors (in 

conjunction with data from vehicles) can be leveraged to detect congestion more accurately in 

case of low penetration rates. When road sensors are present, the road traffic density can be 

measured, the congestion can be detected and the travel time can be estimated more accurately. 

Figure 5.8 (b) demonstrates that these methods can significantly improve the travel time even 

under low penetration rates if road-side sensor information is available. Moreover, EBkSP, 

FBkSP and AR* perform better than DTA in this case. When penetration rate is low (x%), DTA 

distributes evenly the x% vehicles without considering the rest, which can still create congestion. 

Therefore, the alternative routes proposed by DTA are not as effective in alleviating congestion. 

By comparison, these strategies can take advantage of the sensor information to divert the x% of 

the drivers and to reduce congestion. 

VI. CONCLUSION 

The ubiquity of mobile devices such as smart phones or on-bord vehicle units is leading 

to real-life vehicular sensor networks. This chapter presented a novel approach to tackle the ever 

more stringent problem of traffic congestion. This approach is based on a traffic guidance system 

that monitors traffic and proactively pushes individually-tailored re-routing guidance to vehicles 

when there are signs of congestion. The system is responsible for several functions such as traffic 

data representation, congestion prediction, and selection of the vehicles to be re-routed. We 

chose to focus in this chapter on a key element of our re-routing system, i.e., the re-routing 

strategies. We proposed five rerouting strategies to compute alternative routes for vehicles. Then, 

we conducted an extensive set of simulation-based experiments to validate our approach. The 

results showed the proposed re-routing algorithms are very effective in mitigating congestion and 

adapt well to the dynamic nature of the traffic, being also more efficient and scalable than 

existing approaches. In addition, our traffic guidance system remains useful even with low 

compliance rate and moderate penetration rate.  

As future work, we intend to investigate a hybrid architecture that off-loads parts of the 

computation and decision process in the network and uses vehicle-to-vehicle communication to 

better balance the need for privacy, scalability, and low overhead with the main goal of low 

average travel time. 
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